1
|
Liu W, Li Y, Liang J, Li Y, Zhu G, Wang J, Chen W, Tang L, Fan L. Design and synthesis of some novel structurally diverse thiochroman derivatives as fungicides against phytopathogenic fungi. PEST MANAGEMENT SCIENCE 2024; 80:6607-6619. [PMID: 39234758 DOI: 10.1002/ps.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Plant diseases infected by pathogenic fungi have a devastating effect on global agricultural and food industry yields. The development of novel, environmentally friendly, and efficient fungicides is an important technique for preventing and combatting phytopathogenic fungi. RESULTS Herein, 99 thiochroman-based derivatives containing hydroxyl, sulfoxide, sulfone, carbonyl, double bond, amino, imine, oxime, oxime ester, and amide moieties were synthesized. The antifungal activities of the target compounds against ten typical phytopathogenic fungi were also investigated. The bioassay results illustrated that most of the target compounds exhibited moderate to excellent antifungal effects against the tested fungi in vitro. Among these, thiochroman-oxime derivatives (12a-12m) exerted a promising inhibition effect, especially against Fusarium solani, Fusarium graminearum, Valsa mali, and Botrytis cinerea strains. Furthermore, the compounds 12f and 12g markedly suppressed the spore germination germ and tube growth. At the same time, they exerted excellent protective effects against potatoes infected by F. solani, making them superior to commercial fungicides Hymexazol and Chlorothalonil. Notably, the compounds 12d and 12f also showed excellent protective effects against cherry tomatoes infected by B. cinerea. Further mechanistic studies revealed that compound 12f exerted an antifungal effect by overtly altering the mycelium structure and remarkably increasing cell membrane permeability. Fortunately, the excellent bioactive compounds showed good safety against human hepatic cell lines (WRL-68). The preliminary structure-activity relationship analysis revealed that the introduction of hydroxyl or oxime fragments at the thiopyran ring might be significantly beneficial to antifungal activity. CONCLUSION This study provides thiochroman compounds that can be used in the development of novel botanical fungicides for the management of phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjing Liu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Yong Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Jun Liang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Yi Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Gaofeng Zhu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Jianta Wang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Wenzhang Chen
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Lei Tang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| | - Lingling Fan
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
2
|
Rocha YM, de Moura GA, Rodrigues JPV, Pinheiro CVG, de Oliveira RN, Marinho MM, Nicolete R. Molecular Dynamics of a N-Cyclohexyl-1,2,4-Oxadiazole Derivative as a Reversible Cruzain Inhibitor in Trypanosoma cruzi. Comb Chem High Throughput Screen 2024; 27:2935-2939. [PMID: 37957896 DOI: 10.2174/0113862073268297231025110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Chagas disease kills around 10,000 people yearly, primarily in Latin America, where it is prevalent. Current treatment has limited chronic effectiveness, is unsafe, and has substantial side effects. As a result, the use of oxadiazole derivatives and similar heterocyclic compounds as bioisosteres are well known, and they are prospective candidates in the hunt for novel anti-Trypanosoma cruzi chemicals. Recent research has revealed that the cysteine protease cruzain from T. cruzi is a validated target for disease treatment. OBJECTIVE Thus, using a molecular dynamics simulation, the current study attempted to determine if a significant interaction occurred between the enzyme cruzain and its ligand. RESULTS Interactions with the catalytic site and other critical locations were observed. Also, the RMSD values suggested that the molecule under research had stable interactions with its target. CONCLUSION Finally, the findings indicate that the investigated molecule 2b can interfere enzymatic activity of cruzain, indicating that it might be a promising antichagasic drug.
Collapse
Affiliation(s)
- Yasmim Mendes Rocha
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - Ceará - Brazil
- Oswaldo Cruz Foundation - Fiocruz - Fiocruz Ceará, Eusébio - Ceará - Brazil
| | - Gabriel Acácio de Moura
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - Ceará - Brazil
- Oswaldo Cruz Foundation - Fiocruz - Fiocruz Ceará, Eusébio - Ceará - Brazil
| | - João Pedro Viana Rodrigues
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - Ceará - Brazil
- Oswaldo Cruz Foundation - Fiocruz - Fiocruz Ceará, Eusébio - Ceará - Brazil
| | - Cristian Vicson Gomes Pinheiro
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - Ceará - Brazil
- Oswaldo Cruz Foundation - Fiocruz - Fiocruz Ceará, Eusébio - Ceará - Brazil
| | | | | | - Roberto Nicolete
- Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza - Ceará - Brazil
- Oswaldo Cruz Foundation - Fiocruz - Fiocruz Ceará, Eusébio - Ceará - Brazil
| |
Collapse
|
3
|
Ortiz C, Breuning M, Robledo S, Echeverri F, Vargas E, Quiñones W. Biological activities of 4H-thiochromen-4-one 1,1-dioxide derivatives against tropical disease parasites: A target-based drug design approach. Heliyon 2023; 9:e17801. [PMID: 37483711 PMCID: PMC10362183 DOI: 10.1016/j.heliyon.2023.e17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
A promising strategy for developing novel therapies against tropical diseases, including malaria, leishmaniasis, and trypanosomiasis, is to detect biological targets such as trypanothione reductase, a vital parasite enzyme that regulates oxidative stress. This enzyme is highly selective and conserved in the Trypanosotidae family and has an ortholog in the Plasmodium genus. Previous studies have established that an isosteric replacement of naphthoquinone's carbonyl group with a sulfone group leads to compounds with high bioactivity and selectivity (half-maximal inhibitory concentration = 3 μM against intracellular amastigotes of L. panamensis, selectivity index = 153 over monocytes U-937). In this study, we analyzed the reactive oxygen species (ROS) levels of parasites through indirect measurements of the tryparedoxin system after treatment with these isosteric compounds. This strategy proved that a significant increase in the ROS levels and strong mitochondrial perturbation led to the death of parasites due to cell homeostatic imbalance, confirming the compounds' effectiveness in disrupting this important metabolic pathway. To improve understanding of the parasite-molecule interaction, 27 new compounds were synthesized and assessed against parasites of the three principal tropical diseases (malaria, leishmaniasis, and trypanosomiasis), displaying an EC50 below 10 μM and good correlation with in-silico studies, indicating that the 4H-thiochromen-4-one 1,1-dioxide core is a special allosteric modulator. It can interact in the binding pocket through key amino acids like Ser-14, Leu-17, Trp-21, Ser-109, Tyr-110, and Met-113, leading to interhelical disruption.
Collapse
Affiliation(s)
- Cristian Ortiz
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Matthias Breuning
- Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Germany
| | - Sara Robledo
- Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Fernando Echeverri
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Esteban Vargas
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Wiston Quiñones
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| |
Collapse
|
4
|
García DJ, Fernández-Culma M, Upegui YA, Ríos-Vásquez LA, Quiñones W, Ocampo-Cardona R, Echeverri F, Vélez ID, Robledo SM. Nanoemulsions for increased penetrability and sustained release of leishmanicidal compounds. Arch Pharm (Weinheim) 2023:e2300108. [PMID: 37068175 DOI: 10.1002/ardp.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
In the last decade, the World Health Organization has driven the development of drugs for topical use in patients with cutaneous leishmaniasis (CL), the most prevalent clinical form of leishmaniasis, a neglected tropical disease. The chemicals C6 I, TC1, and TC2 were reported as promising antileishmanial drugs. We aimed to develop a topical nanoformulation that enhances the advantageous effect of C6 I, TC1, and TC2, guaranteeing higher stability and bioavailability of the pharmacologically active components through the topical route. Nanoemulsions were prepared by ultrasonication based on oleic acid (0.5 g). A relation of Tween®-80/ethanol (1:3) and water was obtained; physicochemical characterization of all formulations was performed, and the preliminary stability and transdermal penetration of these nanoemulsions were also investigated. Newtonian-type fluids with high load capacity, 147-273 nm globule size, and -15 to -18 mV zeta potential were obtained with differential permeability rates in the first pig ear skin assay, first-order kinetics-release model for C6 I, and Weibull for TC1 and TC2. The nanoemulsion showed good stability, high encapsulation efficiency, and higher leishmanicidal activity against Leishmania braziliensis with lower cytotoxicity in U937 macrophages. In conclusion, nanoemulsions of ethanol-oleic acid/Tween®-80 increase the activity of compounds with leishmanicidal activity by increasing their penetration and sustained release.
Collapse
Affiliation(s)
- Darlyn J García
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Yulieth A Upegui
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | | | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Iván D Vélez
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Guo F, Young JA, Perez MS, Hankerson HA, Chavez AM. Progress on the Cu-Catalyzed 1,4-Conjugate Addition to Thiochromones. Catalysts 2023; 13:713. [PMID: 37293477 PMCID: PMC10249614 DOI: 10.3390/catal13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Carbon-carbon bond formation is one of the most important tools in synthetic organic chemists' toolbox. It is a fundamental transformation that allows synthetic chemists to synthesize the carbon framework of complex molecules from inexpensive simple starting materials. Among the many synthetic methodologies developed for the construction of carbon-carbon bonds, organocopper reagents are one of the most reliable organometallic reagents for this purpose. The versatility of organocuprate reagents or the reactions catalyzed by organocopper reagents were demonstrated by their applications in a variety of synthetic transformations including the 1,4-conjugate addition reactions. Sulfur-containing heterocyclic compounds are a much less studied area compared to oxygen-containing heterocycles but have gained more and more attention in recent years due to their rich biological activities and widespread applications in pharmaceuticals, agrochemicals, and material science. This paper will provide a brief review on recent progress on the synthesis of an important class of sulfur-heterocycles-2-alkylthiochroman-4-ones and thioflavanones via the conjugate additions of Grignard reagents to thiochromones catalyzed by copper catalysts. Recent progress on the synthesis of 2-substituted thiochroman-4-ones via alkynylation and alkenylation of thiochromones will also be covered in this review.
Collapse
Affiliation(s)
- Fenghai Guo
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
- Biomedical Research Infrastructure Center, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - Jayla A. Young
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| | - Mina S. Perez
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| | - Holden A. Hankerson
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| | - Alex M. Chavez
- Department of Chemistry, Winston-Salem State University, 601 S. Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
6
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
7
|
Brioschi MBC, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: what has been done so far? Int J Antimicrob Agents 2022; 60:106612. [PMID: 35691601 DOI: 10.1016/j.ijantimicag.2022.106612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.
Collapse
Affiliation(s)
- Mariana B C Brioschi
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth M Coser
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Adriano C Coelho
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Rocha YM, Magalhães EP, de Medeiros Chaves M, Machado Marinho M, Nascimento E Melo de Oliveira V, Nascimento de Oliveira R, Lima Sampaio T, de Menezes RRPPB, Martins AMC, Nicolete R. Antiparasitary and antiproliferative activities in vitro of a 1,2,4-oxadiazole derivative on Trypanosoma cruzi. Parasitol Res 2022; 121:2141-2156. [PMID: 35610523 DOI: 10.1007/s00436-022-07554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Chagas disease (CD) is a neglected disease, prevalent and endemic in Latin America, but also present in Europe and North America. The main treatment used for this disease is benznidazole, but its efficacy is variable in the chronic phase and presents high toxicity. So, there is a need for the development of new therapeutic agents. The five-membered heterocyclic 1,2,4-oxadiazole ring has received attention for its unique properties and a broad spectrum of biological activities and is therefore a potential candidate for the development of new drugs. Thus, the aim of this study was to evaluate the activity of the N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazol-5-amine (2) on the evolutionary forms of Trypanosoma cruzi strain Y, as well as its mechanisms of action and in silico theoretical approach. The results by computational method showed an interaction of the 1,2,4-oxadiazole (2) with TcGAPDH, cruzain, and trypanothione reductase, showing good charge distribution and affinity in those three targets. Furthermore, cytotoxicity in LLC-MK2 cells was performed by the MTT method. In the assays with different parasite forms, the tested compound showed similar time-dependent concentration effect. The evaluation of the antiamastigote effect between the two concentrations tested showed a reduction in the number of infected cells and also in the number of amastigotes per infected cell. By flow cytometry, the compound (2) displayed alterations suggestive of necrotic events. Finally, in scanning electron microscopy structural alterations were present, characteristic of necrosisin the epimastigote forms. Overall, the 1,2,4-oxadiazole derivative (2) here evaluated opens perspectives to the development of new antichagasic agents.
Collapse
Affiliation(s)
- Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz (Fiocruz Ceará), Rua São José, S/N, Eusébio, 61760-000, Brazil
| | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Márcia Machado Marinho
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Valentina Nascimento E Melo de Oliveira
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
- Instituto Federal de Educação Ciência E Tecnologia de Pernambuco, Campus Ipojuca, Ipojuca, 55590-000, Brazil
| | | | - Tiago Lima Sampaio
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ramon R P P B de Menezes
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alice M C Martins
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences - Federal University of Ceará, Fortaleza, CE, Brazil.
- Fundação Oswaldo Cruz (Fiocruz Ceará), Rua São José, S/N, Eusébio, 61760-000, Brazil.
| |
Collapse
|
9
|
Benny AT, Arikkatt SD, Vazhappilly CG, Kannadasan S, Thomas R, Leelabaiamma MSN, Radhakrishnan EK, Shanmugam P. Chromone a Privileged Scaffold in Drug Discovery: Developments on the Synthesis and Bioactivity. Mini Rev Med Chem 2021; 22:1030-1063. [PMID: 34819000 DOI: 10.2174/1389557521666211124141859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Chromones are the class of secondary metabolites broadly occurred in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized "as privileged scaffolds in compounds" in medicinal chemistry. The wide biological responses made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, chalcones and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal free, nanomaterials and different catalysts are included. Details of diverse biological activities such as anti-cancer agents, antimicrobial agents, anti-viral property, anti-inflammatory agents, antioxidants, Monoamine Oxidase-B (MAO-B) Inhibitors, anti-Alzheimer's agents, anti-diabetic agent, antihistaminic potential, antiplatelet agents of chromone derivatives are diecussed.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Sonia D Arikkatt
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah. United Arab Emirates
| | | | - Renjan Thomas
- Division of Molecular Pathology, Strand Lifesciences, HCG Hospital, Bangalore - 560 0270. India
| | | | | | - Ponnusamy Shanmugam
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600020. India
| |
Collapse
|
10
|
Li P, Li S, Li G, Huang H. Synthesis of 2-Aryl-4 H-thiochromen-4-one Derivatives via a Cross-Coupling Reaction. ACS OMEGA 2021; 6:14655-14663. [PMID: 34124488 PMCID: PMC8190924 DOI: 10.1021/acsomega.1c01778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/11/2021] [Indexed: 05/07/2023]
Abstract
A concise and efficient cross-coupling synthetic strategy has been developed to construct 2-aryl-4H-thiochromen-4-one derivatives from 2-sulfinyl-thiochromones and arylboronic acids. This reaction proceeds via a catalyst system of Lewis acid and palladium(II) combined with XPhos as an optimal ligand in moderate to good yields. Besides, this flexible methodology provides a wide scope for the synthesis of different functionally substituted thiochromone scaffolds and can be further exploited to construct diverse thioflavone libraries for pharmaceutical research.
Collapse
Affiliation(s)
- Peng Li
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation,
Institute of Materia Medica, Peking Union
Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Chinese
Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative
Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Shengnan Li
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation,
Institute of Materia Medica, Peking Union
Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Gang Li
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation,
Institute of Materia Medica, Peking Union
Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Chinese
Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative
Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Haihong Huang
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation,
Institute of Materia Medica, Peking Union
Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Chinese
Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative
Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
11
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
12
|
In Lee J. Synthetic Approaches to
2‐Alkylthiochroman
‐4‐ones and Thioflavanones. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jae In Lee
- Department of Chemistry, College of Science and Technology Duksung Women's University Seoul 01369 Republic of Korea
| |
Collapse
|
13
|
Synthesis and Evaluation of Novel 2,2-Dimethylthiochromanones as Anti-Leishmanial Agents. Molecules 2021; 26:molecules26082209. [PMID: 33921252 PMCID: PMC8069510 DOI: 10.3390/molecules26082209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Within this work, we describe the design and synthesis of a range of novel thiochromanones based on natural products reported to possess anti-leishmanial action, and their synthetic derivatives. All compounds were elaborated via the key intermediate 2,2,6-trimethoxythiochromanone, which was modified at the benzylic position to afford various ester, amine and amide analogues, substituted by chains of varying lipophilicity. Upon testing in Leishmania, IC50 values revealed the most potent compounds to be phenylalkenyl and haloalkyl amides 11a and 11e, with IC50 values of 10.5 and 7.2 μM, respectively.
Collapse
|
14
|
Ovalle MA, Romero JA, Aguirre G. N-[2-(3,4-Di-meth-oxy-phen-yl)-2-(phenyl-sulfan-yl)eth-yl]-2-(2-fluoro-phen-yl)acetamide. IUCRDATA 2021; 6:x201663. [PMID: 36340467 PMCID: PMC9462268 DOI: 10.1107/s2414314620016636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 11/10/2022] Open
Abstract
The title compound, C24H24FNO3S, is an inter-mediate in the synthesis of fluorine containing iso-quinoline alkaloids, which crystallizes in the triclinic space group P with one mol-ecule in the asymmetric unit. The structure presents a racemic mixture of enanti-omers. The C-S-C-C torsion angle between the benzene ring system and the sulfonyl benzene ring is -178.5 (1)°. In the crystal, N-H⋯O hydrogen bonds between neighbouring mol-ecules form chains of mol-ecules along the a-axis direction.
Collapse
Affiliation(s)
- Marco A. Ovalle
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico
| | - José A. Romero
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico
| | - Gerardo Aguirre
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico
| |
Collapse
|
15
|
Venkateswarlu S, Murty GN, Satyanarayana M, Siddaiah V. Competitive cascade cyclization of 2′-tosyloxychalcones: An easy access to thioflavones and thioaurones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1775852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Vidavalur Siddaiah
- Department of Organic Chemistry, School of Chemistry, Andhra University, Visakhapatnam, India
| |
Collapse
|
16
|
Bellinger TJ, Harvin T, Pickens-Flynn T, Austin N, Whitaker SH, Tang Yuk Tutein MLC, Hukins DT, Deese N, Guo F. Conjugate Addition of Grignard Reagents to Thiochromones Catalyzed by Copper Salts: A Unified Approach to Both 2-Alkylthiochroman-4-One and Thioflavanone. Molecules 2020; 25:E2128. [PMID: 32370080 PMCID: PMC7248974 DOI: 10.3390/molecules25092128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Grignard reagents undergo conjugate addition to thiochromones catalyzed by copper salts to afford 2-substituted-thiochroman-4-ones, both 2-alkylthiochroman-4-ones and thioflavanones (2-arylthiochroman-4-ones), in good yields with trimethylsilyl chloride (TMSCl) as an additive. The best yields of 1,4-adducts can be attained with CuCN∙2LiCl as the copper source. Excellent yields of 2-alkyl-substituted thiochroman-4-ones and thioflavanones (2-aryl substituted) are attained with a broad range of Grignard reagents. This approach works well with both alkyl and aromatic Grignard reagents, thus providing a unified synthetic approach to privileged 2-substituted thiochroman-4-ones and a potential valuable precursor for further synthetic applications towards many pharmaceutically active molecules. The use of commercially available and/or readily prepared Grignard reagents will expedite the synthesis of a large library of both 2-alkyl substituted thiochroman-4-ones and thioflavanones for additional synthetic applications.
Collapse
Affiliation(s)
- Tania J. Bellinger
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Teavian Harvin
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Ti’Bran Pickens-Flynn
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Nataleigh Austin
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Samuel H. Whitaker
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Mai Ling C. Tang Yuk Tutein
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Dabria T. Hukins
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Nichele Deese
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
| | - Fenghai Guo
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA; (T.J.B.); (T.H.); (T.P.-F.); (N.A.); (S.H.W.); (M.L.C.T.Y.T.); (D.T.H.); (N.D.)
- Biomedical Research Infrastructure Center, Winston Salem State University, Winston Salem, NC 27110, USA
| |
Collapse
|
17
|
In Lee J. New Synthesis of Thioflavanones by the Regioselective Cyclization of 1‐(2‐Benzylthio)phenyl‐3‐phenyl‐2‐propen‐1‐ones with Hydrobromic Acid. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jae In Lee
- Department of ChemistryCollege of Natural Science, Duksung Women's University Seoul 01369 Republic of Korea
| |
Collapse
|
18
|
Li P, Wu Y, Zhang T, Ma C, Lin Z, Li G, Huang H. An efficient and concise access to 2-amino-4 H-benzothiopyran-4-one derivatives. Beilstein J Org Chem 2019; 15:703-709. [PMID: 30992717 PMCID: PMC6444430 DOI: 10.3762/bjoc.15.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
A highly efficient and convenient protocol was developed to access 2-amino-4H-benzothiopyran-4-ones through a process of conjugated addition–elimination. The sulfinyl group was proved to be the optimum leaving group by thorough investigations on the elimination of sulfide, sulfinyl, and sulfonyl groups at the 2-position of benzothiopyranone. Most 2-aminobenzothiopyranones were obtained in good to excellent yields under refluxing in isopropanol within 36 h. This method is base-free and the substrate scope in terms of electronic properties of the substituents of the benzothiopyranone is broad. The ten grams scale-up synthesis of the representative compounds 4a and 4d was implemented to show the practical application of this reaction, which afforded the corresponding compounds in good yields and excellent chemical purity without requiring column chromatographical purification.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yongqi Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Ziyun Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Gang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Haihong Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
19
|
Bass SA, Parker DM, Bellinger TJ, Eaton AS, Dibble AS, Koroma KL, Sekyi SA, Pollard DA, Guo F. Development of Conjugate Addition of Lithium Dialkylcuprates to Thiochromones: Synthesis of 2-Alkylthiochroman-4-ones and Additional Synthetic Applications. Molecules 2018; 23:E1728. [PMID: 30011953 PMCID: PMC6099951 DOI: 10.3390/molecules23071728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 12/05/2022] Open
Abstract
Lithium dialkylcuprates undergo conjugate addition to thiochromones to afford 2-alkylthiochroman-4-ones in good yields. This approach provide an efficient and general synthetic approach to privileged sulfur-containing structural motifs and valuable precursors for many pharmaceuticals, starting from common substrates-thiochromones. Good yields of 2-alkyl-substituted thiochroman-4-ones are attained with lithium dialkylcuprates, lithium alkylcyanocuprates or substoichiometric amount of copper salts. The use of commercially available inexpensive alkyllithium reagents will expedite the synthesis of a large library of 2-alkyl substituted thiochroman-4-ones for additional synthetic applications.
Collapse
Affiliation(s)
- Shekinah A Bass
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Dynasty M Parker
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Tania J Bellinger
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Aireal S Eaton
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Angelica S Dibble
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Kaata L Koroma
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Sylvia A Sekyi
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - David A Pollard
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Fenghai Guo
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
- Biomedical Research Infrastructure Center, Winston Salem State University, Winston Salem, NC 27110, USA.
| |
Collapse
|