1
|
Matsuno Y, Endo N, Ueno K, Ishihara A. Isolation of aflatoxin biosynthetic inhibitor from Chondrostereum purpureum mushroom culture filtrate. J Biosci Bioeng 2024; 138:308-313. [PMID: 39068142 DOI: 10.1016/j.jbiosc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Aflatoxins (AFs) are highly toxic mycotoxins produced by the fungi, Aspergillus flavus and Aspergillus parasiticus. AFs pose severe health risks owing to their acute toxicity and carcinogenic properties. The control of AF contamination remains significantly challenging despite the extensive efforts toward controlling it. Here, we investigated the potential of mushroom extracts as a source of AF biosynthetic inhibitors. The A. parasiticus mutant strain, NFRI-95, that accumulates an AF biosynthesis intermediate, norsolorinic acid, was used in the bioassay to detect the inhibitory activity against AF biosynthesis. The screening of 195 mushroom extracts revealed that the culture filtrate extract of Chondrostereum purpureum exhibited strong inhibitory activity against AF biosynthesis. Next, large-scale culturing of C. purpureum was performed to isolate the compounds accounting for the inhibitory activity. The culture filtrate was extracted with ethyl acetate, after which the active compound was isolated by silica gel column chromatography and preparative high performance liquid chromatography (HPLC). The active compound was identified as cyclo(Val-Pro) by spectroscopic analyses. Further, four stereoisomers of cyclo(Val-Pro) were synthesized by the condensation of the N-Boc derivatives of d- and l-valine with the methyl esters of d- and l-proline. The naturally isolated compound was identified as cyclo(l-Val-l-Pro) by comparing its retention time with those of synthetic compounds by chiral HPLC analysis and CD spectra. The IC50 value of cyclo(L-Val-L-Pro) was 2.4 mM, whereas the LD, DL, and DD isomers exhibited weaker activities, with IC50 values of >5 mM.
Collapse
Affiliation(s)
- Yuya Matsuno
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Naoki Endo
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| |
Collapse
|
2
|
Chenyao Z, Haiyin H, Menglong S, Yucong M, Fauci AJ, Lee MS, Xiaolei W, Junhua Z, Zhaochen J. Commercial Chinese polyherbal preparation: current status and future perspectives. Front Pharmacol 2024; 15:1404259. [PMID: 39119615 PMCID: PMC11306874 DOI: 10.3389/fphar.2024.1404259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Objective With the modernization of traditional Chinese medicine (TCM) industry, the investment in research and development of new commercial Chinese polyherbal preparations (CCPPs) is increasing, and the varieties of CCPPs are growing. CCPPs play an increasingly important role in the TCM industry. This study has comprehensively summarized and analyzed the current situation of CCPPs that has been on the market in China, and provided suggestions for the research and promotion of CCPPs. Methods This study took the CCPPs approved for marketing in domestic drug database of the National Medical Products Administration (NMPA) as the research object, and combined with the publication of related randomized controlled trials (RCTs) of CCPPs in 2020-2022 and the sales of CCPPs in domestic chain pharmacies, statistical analysis was carried out on the drug name, pharmaceutical companies, dosage form, number of flavors, CBDs, ICD-11 classification of diseases treated, etc. Results Currently, 58,409 approvals for CCPPs have been issued in China, involving 9,986 varieties of CCPPs, 2,896 pharmaceutical companies and 39 dosage forms. The number of flavors of prescriptions of CCPPs varies from 1 to 90, among which Glycyrrhiza glabra L. [Fabaceae; Glycyrrhizae radix et rhizoma] and Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae sinensis radix] are the most widely used. The study found that the CCPPs with the most diverse variety is CCPPs for the treatment of respiratory diseases, some CCPPs can treat multiple system diseases. According to the survey, the sales of CCPPs for respiratory diseases in the chain pharmacies account for more than 1/3 of the total sales of the chain pharmacies, while the number of published randomized controlled trials (RCTs) on CCPPs for circulatory diseases was the largest. Conclusion The approval process of CCPPs should be further standardized, and the transformation of TCM prescriptions into CCPPs should be promoted. In the approval process of CCPPs, it is suggested to strengthen the supervision of drug names to clarify the differences between the CCPPs of same name but different prescriptions. Improve the effectiveness and safety of CCPPs by improving the quality of CBDs. It is suggested to optimize the design of new drug research program of CCPPs to avoid waste of research resources.
Collapse
Affiliation(s)
- Zhang Chenyao
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hu Haiyin
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shi Menglong
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ma Yucong
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Alice Josephine Fauci
- Italian National Institute of Health, Rome, Italy
- Joint Sino-Italian Laboratory of Traditional Chinese Medicine, Italian National Institute of Health, Rome, Italy
| | - Myeong Soo Lee
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Wu Xiaolei
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhang Junhua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ji Zhaochen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Joint Sino-Italian Laboratory of Traditional Chinese Medicine, Italian National Institute of Health, Rome, Italy
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Ren J, Wu PP, Xue JH, Zhao WL, Zhu YH, Chen YY, Yang QJ, Luo Q, Cheng X, Bi EG. Discovery of an immunosuppressive functional metabolite from the insect-derived endophytic Aspergillus taichungensis SMU01. Fitoterapia 2024; 176:106007. [PMID: 38744384 DOI: 10.1016/j.fitote.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping-Ping Wu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China; School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia-Hao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China
| | - Wen-Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Han Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Yang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jun Yang
- Department of Stomatology, Jiangmen Central Hospital, Jiangmen 529000, China
| | - Qi Luo
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - Xia Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - En-Guang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Liang S, Chen H, Chen Y, Ali A, Yao S. Multi-dynamic-bond cross-linked antibacterial and adhesive hydrogel based on boronated chitosan derivative and loaded with peptides from Periplaneta americana with on-demand removability. Int J Biol Macromol 2024; 273:133094. [PMID: 38878926 DOI: 10.1016/j.ijbiomac.2024.133094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The design and development of a bio-adhesive hydrogel with on-demand removability and excellent antibacterial activities are meaningful to achieve high wound closure effectiveness and post-wound-closure care, which is desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial hydrogels containing peptides from Periplaneta americana (PAP) were prepared through multi-dynamic-bond cross-linking among 3,4-dihydroxybenzaldehyde (DBA) containing catechol and aldehyde groups and chitosan grafted with 3-carboxy-4-fluorophenylboronic acid (CS-FPBA) to enable the effective adhesion of skin tissues and prevention of bacterial infection of wound. PAP was derived from alcohol-extracted residues generated during the pharmaceutical process, aiming to minimize resource wastage and achieve the high-value development of such a medicinal insect. The hydrogel was prepared by freezing-thawing with no toxic crosslinkers. The multi-dynamic-bond cross-linking of dynamic borate ester bonds and dynamic Schiff base bonds can achieve reversible breakage and re-formation and the adhesive strength of CS-FPBA-DBA-P-gel treated with a 20 % glucose solution dramatically decreased from 3.79 kPa to 0.35 kPa within 10 s. Additionally, the newly developed hydrogel presents ideal biocompatibility, hemostasis and antibacterial activity against Staphylococcus aureus and Escherichia coli compared to commercial chitosan gel (approximately 50 % higher inhibition rate), demonstrating its great potential in dealing with infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ahamd Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Zhang Y, Jia D, Wu Y, Xu Y. Antipyretic and anti-inflammatory effects of inosine, an active component of Kangfuxin. Immunobiology 2024; 229:152812. [PMID: 38781756 DOI: 10.1016/j.imbio.2024.152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Kangfuxin has been widely recognized for its use in treating ulcerative conditions and mucositis, primarily due to its anti-inflammatory properties, which promote cell proliferation, granulation tissue growth, and angiogenesis. However, the exact mechanisms underlying these effects remain poorly understood. In this study, we employed high-throughput mass spectrometry to identify 11 compounds in Kangfuxin, including uracil, hypoxanthine, xanthine, inosine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, and lysine. Notably, the antipyretic and anti-inflammatory properties of inosine, one of these compounds, have not been well characterized. To address this gap, we induced fever in vivo using lipopolysaccharide (LPS) and conducted various experiments, including the analysis of endogenous mediators, inflammatory factors, quantitative polymerase chain reaction (QPCR), Western blotting, and hematoxylin and eosin (HE) staining. Our findings indicate that inosine significantly reduces LPS-induced fever, inhibits the expression of inflammatory factors, and alleviates the inflammatory response. These results suggest that inosine may serve as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| | - Daqi Jia
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District Chongqing, 401320, China.
| | - Yipeng Wu
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| |
Collapse
|
6
|
Wang R, Li XQ, Wang MR, Wu XM, Xu YS, Hilola A, Wang XC, Liu H. Effect of Kangfuxiaomi suppository on pelvic inflammatory disease in rats. J Reprod Immunol 2023; 160:104154. [PMID: 37774536 DOI: 10.1016/j.jri.2023.104154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Pelvic inflammatory disease (PID) is commonly encountered in gynecological practice. Kangfuxiaomi suppository, made from the compound extract of Periplaneta Americana, is a Traditional Chinese Medicine remedy widely used for the treatment of gynecological disorders. This study aimed to preliminarily explore the therapeutic effect of Kangfuxiaomi suppository in a rat model of PID established by chemical injury and pathogen infection. The key parameters assessed were vulvar inflammation score, vaginal + uterine organ index, and serum levels of interleukin (IL)- 8; tumor necrosis factor (TNF)-α; C-reactive protein (CRP); superoxide dismutase (SOD); and malondialdehyde (MDA). In addition, levels of IL-6, cyclooxygenase (COX)- 2, and IL-2 in cervical tissues as well as that of IL-1β and prostaglandin E-2 (PGE2) in uterine tissues were measured. The expression levels of nuclear factor-kappa B (NF-κB) p65 and Toll-like receptor 4 (TLR4) in uterine tissues were detected by immunohistochemical method. After Kangfuxiaomi suppository treatment, the vulva inflammation score and histopathological score of PID rats showed a tendency to decrease. Serum IL-8, TNF-α, CRP, and MDA levels were reduced, while SOD levels were significantly increased. Levels of IL-6, IL-2, and COX-2 in cervical tissues were somewhat decreased, and PGE2 and IL-1β levels in uterine tissue were significantly decreased. Moreover, the levels of NF-κB p65 and TLR4 protein expression were also decreased. These findings demonstrated the therapeutic effect of Kangfuxiaomi suppository in PID rats. The underlying mechanism may involve enhanced antioxidant capacity and decreased secretion of proinflammatory factors via the NF-κB/TLR4 signaling pathway.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacy, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Anning, Yunnan 650302, China
| | - Xiu-Qin Li
- Department of Formulation Engineering, Henan Technician College of Medicine and Health, Kaifeng, Henan 475000, China
| | - Meng-Ru Wang
- School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming, Yunnan 650500, China
| | - Xiu-Mei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Yu-Sheng Xu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410125, China
| | - Ahunova Hilola
- Life Sciences Faculty, Namangan State University, Namangan, Uzbekistan
| | - Xue-Chang Wang
- Department of Pharmacy, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Anning, Yunnan 650302, China.
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
7
|
Wu J, Zhang Z, Wu Q, Zhang L, Chen Z, Zhao H, Wu X, Zhao Y, Zhang C, Ge J, Liu H. Antioxidative effect of Periplaneta americana extract on dextran sulfate sodium-induced ulcerative colitis through activation of the Nrf2 signal. PHARMACEUTICAL BIOLOGY 2023; 61:949-962. [PMID: 37334466 PMCID: PMC10599263 DOI: 10.1080/13880209.2023.2220351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
CONTEXT Periplaneta americana L. (Blattariae) is used as a treatment for ulcerative colitis (UC) in Chinese traditional medicine. OBJECTIVE To evaluate the antioxidative activity of P. americana whole body ethanol extract (PAE) on UC mice and whether glycine and proline could be used for quality control and identification of active PAE components. MATERIALS AND METHODS NCM460 cells were pre-incubated in PAE, AA-L, AA-M, and AA-H (low, high and medium doses of proline and glycine), then treated with recombinant human TNF-α. The glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen (ROS) levels were determined. UC mice were fed with water containing 2.5% dextran sulfate sodium (w/v) after pre-treatment with different doses of PAE once a day for 7 days. ELISA was used to detect the concentrations of inflammation-related factors. Colon tissues of mice were used to detect the activity of myeloperoxidase (MPO), GSH, MDA, and SOD. Histological changes were observed using H&E staining. The expression of target proteins was determined by western blotting. RESULTS In vivo, PAE treatment reduced the DAI score more than in the model group, restoring the weight and colonic length. It also reduced the severity of colitis, and inflammatory and oxidative stress intensity. Additionally, western blotting showed that the Nrf2 pathway was activated by PAE. In vitro PAE significantly alleviated TNF-α-induced cell damage and oxidative stress, which is relevant to the activation of the Nrf2 pathway. CONCLUSIONS PAE may relieve oxidative stress through the Nrf2 signaling pathway, and proline and glycine may be used as active components of its antioxidative stress activity.
Collapse
Affiliation(s)
- Jianzhong Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, P. R. China
- The People’s Hospital of YueChi County, Guangan, P. R. China
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd, Shanghai, P. R. China
| | - Zhen Zhang
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd, Shanghai, P. R. China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, Yunnan, P. R. China
| | - Qimei Wu
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd, Shanghai, P. R. China
| | - Linli Zhang
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd, Shanghai, P. R. China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, P. R. China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, Yunnan, P. R. China
| | - Xiumei Wu
- National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, Yunnan, P. R. China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali University, Dali, Yunnan, P. R. China
| | - Yu Zhao
- National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, Yunnan, P. R. China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali University, Dali, Yunnan, P. R. China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, P. R. China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali University, Dali, Yunnan, P. R. China
| | - Jian Ge
- Shanghai Synergy Pharmaceutical Sciences Co., Ltd, Shanghai, P. R. China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, Yunnan, P. R. China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, P. R. China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Xie Y, Liang S, Zhang Y, Wu T, Shen Y, Yao S, Li J. Discovery of indole analogues from Periplaneta americana extract and their activities on cell proliferation and recovery of ulcerative colitis in mice. Front Pharmacol 2023; 14:1282545. [PMID: 37927593 PMCID: PMC10623332 DOI: 10.3389/fphar.2023.1282545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Background: As an important medicinal insect, Periplaneta americana (PA) has been applied for the treatment of wounds, burns, and ulcers with fewer side effects and a reduced recurrence rate, which provides great potential for developing new drugs based on its active constituents. Materials and methods: The main chromatographic peaks determined by high performance liquid chromatography (HPLC) in the PA concentrated ethanol-extract liquid (PACEL) were separated, purified, and identified by semi-preparative LC, mass spectrum, and 1H NMR spectroscopic analysis. The biological activities of the identified compounds were investigated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method based on in vitro human skin fibroblasts (HSF) and in vivo experiments based on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model. Furthermore, RT-qPCR of six genes related to inflammation or intestinal epithelial cell proliferation was employed to investigate the molecular mechanism of the indole analogues recovering UC in mice. Results: Five indole analogues were purified and identified from PACEL, including tryptophan (Trp), tryptamine (pa01), 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa02), (1S, 3S)-1-methyl-1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa03), and (1R, 3S)-1-methyl-1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa04), among which the pa02 and pa04 were reported in PA for the first time. In vitro and in vivo experiments showed that PACEL, Trp, and pa02 had promoting HSF proliferation activity and intragastric administration of them could alleviate symptoms of weight loss and colon length shortening in the UC mice. Although recovery activity of the compound pa01 on the colon length was not as obvious as other compounds, it showed anti-inflammatory activity in histological analysis. In addition, The RT-qPCR results indicated that the three indole analogues could alleviate DSS-induced intestinal inflammation in mice by inhibiting pro-inflammatory cytokines (MMP7, IL1α) and down-regulating BMP8B expression. Conclusion: This study reported the isolation, purification, structure identification, and biological activity of the active indole analogues in PACEL. It was found for the first time that the PA extract contained many indole analogues and Trp, which exhibited good proliferation activity on HSF fibroblasts as well as anti-UC activity in mice. These indole analogues probably are important components related to the pharmacological activity in PA.
Collapse
Affiliation(s)
- Yuchen Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yifan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Taoqing Wu
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Yongmei Shen
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wang J, Zhong L, Bo Y, Luo N, Hao P. Pharmaceutical preparations of Periplaneta americana (KangFuXin liquid) in the treatment of pressure ulcer: A meta-analysis. Int Wound J 2023; 20:2855-2868. [PMID: 36851877 PMCID: PMC10410340 DOI: 10.1111/iwj.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Pressure ulcers often become chronic wounds that are difficult to treat and that tend to recur after healing. In China, convincing data from randomised trials have demonstrated that the pharmaceutical preparations of Periplaneta americana (KangFuXin Liquid, KFX) have a significant efficacy for pressure ulcers. To provide more reference to the clinicians and experts, we conducted a meta-analysis based on the existing randomised controlled trials (RCTs). We searched the RCTs about KFX for the treatment of pressure ulcers published up to July 2022 in major English and Chinese databases with no language restriction, including PubMed, EMBASE, Web of Science (WOS), Cochrane Central Register of Controlled Trials (CENTRAL), China Network Knowledge Infrastructure (CNKI), Chinese Biomedicine (CBM), Chinese Scientific Journals Database (VIP), and WanFang database. Cochrane Handbook guidelines were used to assess the risk of bias and to evaluate the methodological quality of included RCTs. Estimates of the intervention's effects are expressed as the risk ratio (RR) (95% CI) for binary outcomes and mean difference or standardised mean difference (95% CI) for continuous outcomes. We applied fixed or random effects models, and all analyses were performed using Review Manager version 5.4 and Stata/SE version 12.0. We included 22 studies with a total of 1575 participants. Compared with controls, KFX combined with basic wound care or KFX combined with basic wound care and another topical drug or physical treatment significantly increase clinical efficacy (RR: 1.17; 95% CI, 1.06-1.28; P = 0.001; I2 = 81%) and shorten the complete healing time (MD = -5.11; 95% CI [-8.19, -2.02]; P = 0.001) for pressure ulcers. Subgroup analysis showed a significant difference in the total clinical effect rate between KFX combined with basic wound care and controls. (n = 1018, RR 1.21, 95% CI [1.07, 1.36], I2 = 82%, P = 0.003). No difference was found in the total clinical effective rate between patients using KFX combined with basic wound care and another topical drug or physical treatment with controls (KFX combined with basic wound care and topical physical treatment: n = 267, RR 1.15, 95% CI [0.86, 1.52], I2 = 87%, P = 0.34; KFX combined with basic wound care and topical drug: n = 290, RR 1.05, 95% CI [0.80, 1.37], I2 = 86%, P = 0.71). Based on treatment duration, subgroup analysis indicated that increasing treatment duration increased the total clinical effective rate when treatment duration was not long. (treatment duration: 14 days: n = 158, OR 5.48, 95% CI [1.47, 20.43], I2 = 0%, P = 0.01; 21 days: n = 132, OR 5.93, 95% CI [1.86, 18.91], I2 = 65%, P = 0.003). When treatment duration was 28 days or 30 days, the results showed that there was no significant difference in total clinical effective rate between interventions and controls (treatment duration: 28 days: n = 107, OR 3.04, 95% CI [0.25, 37.32], I2 = 50%, P = 0.38; 30 days: n = 256, OR 0.58, 95% CI [0.11, 3.15], I2 = 65%, P = 0.53). No data on side effects were reported in any of the 22 studies. The conclusion is that the combination of KFX and basic wound care is effective in increasing the total clinical effectiveness and shortening the complete healing time of pressure ulcers.
Collapse
Affiliation(s)
- Jiali Wang
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lingyuan Zhong
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Yang Bo
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nan Luo
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Pingsheng Hao
- Department of DermatologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
10
|
Aslam MS, Kim YJ, Linchao Q. A Bio-Therapeutically Squalene. ADVANCES IN MEDICAL EDUCATION, RESEARCH, AND ETHICS 2023:53-65. [DOI: 10.4018/978-1-6684-7828-8.ch004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Although the skin tissue on our bodies is a well-organized structure with high biomechanical properties like tensile strength and friction, we have all experienced various types of wounds throughout our lives owing to numerous etiological factors. In the general population, it is a substantial source of morbidity. For instance, in the case of burnt skin tissue, self-healing is in fact a large and challenging barrier to tissue regeneration. Squalene is a bioactive triterpene that occurs naturally and plays a key role in the process of making sterols. The most well-known source of squalene is shark liver oil. Vegetable oils may contain squalene in a range of concentrations. They have been extracted using a variety of techniques, including supercritical carbon dioxide, microwave, ultrasonic, cold press, and traditional Soxhlet extractions. In vitro and in animal models, these substances have been demonstrated to have anticancer, antioxidant, drug carrier, detoxifier, skin moisturising, and emollient effects.
Collapse
Affiliation(s)
| | - Yun Jin Kim
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Qian Linchao
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| |
Collapse
|
11
|
Li X, Liu Y, Song H, Zhao M, Song Q. Antioxidant, antibacterial, and anti-inflammatory Periplaneta americana remnant chitosan/polysaccharide composite film: In vivo wound healing application evaluation. Int J Biol Macromol 2023; 237:124068. [PMID: 36934824 DOI: 10.1016/j.ijbiomac.2023.124068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Periplaneta americana (P. americana), which is widely used for wound healing in China, produces a large amount of solid waste (P. americana remnant) after pharmaceutical production extraction. P. americana remnant chitosan (PAC) has a low molecular weight, low crystallinity, and easily modifiable structural properties. In this study, PAC and P. americana remnant polysaccharide (PAP) were used as raw materials to prepare a composite film (PAPCF). The good biocompatibility of the composite film was verified by cell proliferation assays and protein adsorption assays. The bioactivity of the composite film was assessed by antibacterial and in vivo/vitro antioxidant assays to evaluate its potential as a wound dressing. The wound healing experiment revealed that PAPCF improved wound closure and collagen deposition, decreased reactive oxygen species levels, and attenuated the inflammatory response, enabling rapid wound healing from the inflammatory phase to the proliferative phase in mice. Additionally, PAPCF was administered only once, reducing the chance of infection from multiple deliveries. In summary, this paper presents an easy-to-administer, cost-effective, and effective dressing candidate for wound treatment based on the environmental concept of resource reuse.
Collapse
Affiliation(s)
- Xuehua Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yali Liu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Hongrong Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Meiting Zhao
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qin Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China.
| |
Collapse
|
12
|
Zhang E, Ji X, Ouyang F, Lei Y, Deng S, Rong H, Deng X, Shen H. A minireview of the medicinal and edible insects from the traditional Chinese medicine (TCM). Front Pharmacol 2023; 14:1125600. [PMID: 37007003 PMCID: PMC10060509 DOI: 10.3389/fphar.2023.1125600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Entomoceuticals define a subset of pharmaceuticals derived from insects. The therapeutic effect of insect-derived drugs has been empirically validated by the direct use of various folk medicines originating from three sources in particular: the glandular secretions of insects (e.g., silk, honey, venom), the body parts of the insect or the whole used live or by various processing (e.g., cooked, toasted, ground), and active ingredients extracted from insects or insect-microbe symbiosis. Insects have been widely exploited in traditional Chinese medicine (TCM) relative to other ethnomedicines, especially in the prospect of insect species for medicinal uses. It is noticeable that most of these entomoceuticals are also exploited as health food for improving immune function. In addition, some edible insects are rich in animal protein and have high nutritional value, which are used in the food field, such as insect wine, health supplements and so on. In this review, we focused on 12 insect species that have been widely used in traditional Chinese herbal formulae but have remained less investigated for their biological properties in previous studies. We also combined the entomoceutical knowledge with recent advances in insect omics. This review specifies the underexplored medicinal insects from ethnomedicine and shows their specific medicinal and nutritional roles in traditional medicine.
Collapse
Affiliation(s)
- Enming Zhang
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Xin Ji
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Fang Ouyang
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Yang Lei
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Shun Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Haibo Rong
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Xuangen Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Hai Shen
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| |
Collapse
|
13
|
Zhou X, Yang M, Jin J, Chen J, Li Z. Periplaneta americana (Insecta: Blattodea) and organ fibrosis: A mini review. Medicine (Baltimore) 2022; 101:e32039. [PMID: 36595847 PMCID: PMC9794353 DOI: 10.1097/md.0000000000032039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibrosis is the end stage of many chronic inflammatory diseases and eventually leads to organ failure. Periplaneta americana (P. americana) is referred to as "the product of flesh and blood" in traditional Chinese medicine and has a wide range of therapeutic effects. Owing to the growing interest in this insect for its application in the treatment of tissue injury-healing disorders that induce organ fibrosis, it has attracted the interest of researchers. A literature search was performed using core collections of electronic databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang, using the keywords given below and terms such as pharmacological and biochemical details of this insect. P. americana extracts presented a wide range of therapeutic and biological activities, including antifibrotic, antiinflammatory, antioxidative, and tissue repair activities. Emerging evidence suggests that P. americana extracts may improve scarring, pulmonary fibrosis, liver fibrosis, and kidney fibrosis through the regulation of fibroblast activation, cytokine secretion, and deposition of fibrin, indicating the potential role of P. americana as a therapeutic option for organ fibrosis. P. americana is a potential therapeutic agent for treating fibrosis. Further studies are required for a more in-depth characterization of the antifibrogenic mechanism of P. americana prior to its clinical application in the treatment of organ fibrosis. (Fig. 1).
Collapse
Affiliation(s)
- Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
- College of Integration of Traditional Chinese and Western Medicine to Southwest Medical University, Lu zhou, Sichuan, China
| | - Meng Yang
- Department of Pediatrics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu Zhou, Sichuan, China
| | - Jing Jin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Jie Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
- * Correspondence: Jie Chen, Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai 200082, China (e-mail: )
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
| |
Collapse
|
14
|
Siddiqui R, Elmashak Y, Khan NA. Cockroaches: a potential source of novel bioactive molecule(s) for the benefit of human health. APPLIED ENTOMOLOGY AND ZOOLOGY 2022; 58:1-11. [PMID: 36536895 PMCID: PMC9753028 DOI: 10.1007/s13355-022-00810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Cockroaches are one of the hardiest insects that have survived on this planet for millions of years. They thrive in unhygienic environments, are able to survive without food for up to 30 days, without air for around 45 min and being submerged under water for 30 min. Cockroaches are omnivorous and feed on a variety of foods, including cellulose and plastic, to name a few. It is intriguing that cockroaches are able to endure and flourish under conditions that are harmful to Homo sapiens. Given the importance of the gut microbiome on its' host physiology, we postulate that the cockroach gut microbiome and/or its metabolites, may be contributing to their "hardiness", which should be utilized for the discovery of biologically active molecules for the benefit of human health. Herein, we discuss the biology, diet/habitat of cockroaches, composition of gut microbiome, cellular senescence, and resistance to infectious diseases and cancer. Furthermore, current knowledge of the genome and epigenome of these remarkable species is considered. Being one of the most successful and diverse insects, as well as their extensive use in traditional and Chinese medicine, the lysates/extracts and gut microbial metabolites of cockroaches may offer a worthy resource for novel bioactive molecule(s) of therapeutic potential for the benefit of human health and may be potentially used as probiotics.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, 26666 Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Yara Elmashak
- College of Arts and Sciences, American University of Sharjah, University City, 26666 Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| |
Collapse
|
15
|
Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248882. [PMID: 36558015 PMCID: PMC9782659 DOI: 10.3390/molecules27248882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), insects from the family Blattidae have a long history of application, and their related active compounds have excellent pharmacological properties, making them a prominent concern with significant potential for medicinal and healthcare purposes. However, the medicinal potential of the family Blattidae has not been fully exploited, and many problems must be resolved urgently. Therefore, a comprehensive review of its chemical composition, pharmacological activities, current research status, and existing problems is necessary. In order to make the review clearer and more systematic, all the contents were independently elaborated and summarized in a certain sequence. Each part started with introducing the current situation or a framework and then was illustrated with concrete examples. Several pertinent conclusions and outlooks were provided after discussing relevant key issues that emerged in each section. This review focuses on analyzing the current studies and utilization of medicinal insects in the family Blattidae, which is expected to provide meaningful and valuable relevant information for researchers, thereby promoting further exploration and development of lead compounds or bioactive fractions for new drugs from the insects.
Collapse
|
16
|
Tavares PPLG, dos Santos Lima M, Pessôa LC, de Andrade Bulos RB, de Oliveira TTB, da Silva Cruz LF, de Jesus Assis D, da Boa Morte ES, Di Mambro Ribeiro CV, de Souza CO. Innovation in Alternative Food Sources: A Review of a Technological State-of-the-Art of Insects in Food Products. Foods 2022; 11:3792. [PMID: 36496600 PMCID: PMC9737383 DOI: 10.3390/foods11233792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Insects present great potential for the food industry due to their easier rearing conditions and high nutritional value, in comparison with traditional livestock. However, there is a lack of evaluation of the technological status of food products developed with edible insects. Therefore, this study aims to analyze the emergent technological and scientific applications of edible insects in the food industry through a prospective study of patent documents and research articles. Espacenet was used as a research tool, applying the terms Insect, Pupa, Larva, or Nymph and the codes A23L33 and A23V2002. A total of 1139 documents were found-341 were related to the study. Orbit® was used to evaluate technological domains and clusters of concepts. Scopus database research was performed to assess the prevalence of insect research, with the term "edible and insect*". The main insects used were silkworms, bees, beetles, mealworms, crickets, and cicadas. Protein isolates were the predominant technology, as they function as an ingredient in food products or supplements. A diverse application possibility for insects was found due to their nutritional composition. The insect market is expected to increase significantly in the next years, representing an opportunity to develop novel high-quality/sustainable products.
Collapse
Affiliation(s)
| | - Matheus dos Santos Lima
- Undergraduate Program in Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
| | - Luiggi Cavalcanti Pessôa
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
- Environment Department, Senai Cimatec University Center, Salvador 41650-010, Bahia, Brazil
| | | | | | - Larissa Farias da Silva Cruz
- Graduate Program in Food Science (PGALI), Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
| | - Denilson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
- School of Exact and Technological Sciences, Salvador University, Salvador 41820-021, Bahia, Brazil
| | - Elba Santos da Boa Morte
- Graduate Program in Food, Nutrition and Health (PPGANS), School of Nutrition, Federal University of Bahia, Salvador 40110-907, Bahia, Brazil
| | - Cláudio Vaz Di Mambro Ribeiro
- Graduate Program in Food Science (PGALI), Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
- School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science (PGALI), Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
| |
Collapse
|
17
|
Cho JL, Liu S, Wang P. Green Chemical Synthesis of Size-Controlled Gold Nanodisk Governed by Hydrophilic Protein/Peptide-Rich Aqueous Extract from American Cockroach, Periplaneta americana. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Structural determination and pro-angiogenic effect of polysaccharide from the pollen of Typha angustifolia L. Int J Biol Macromol 2022; 222:2028-2040. [DOI: 10.1016/j.ijbiomac.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
19
|
Zhang JN, Sun MZ, Liu H, Zhang HC, Xiao H, Zhao Y, Zhang C, Zhao HR. The ethanol extract of Periplaneta Americana L. improves ulcerative colitis induced by a combination of chronic stress and TNBS in rats. Acta Cir Bras 2022; 37:e370505. [PMID: 35976342 PMCID: PMC9377204 DOI: 10.1590/acb370505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate the effects of Periplaneta americana L. on ulcerative colitis (UC) induced by a combination of chronic stress (CS) and 2,4,6-trinitrobenzene sulfonic acid enema (TNBS) in rats. Methods: The experiment UC model with CS was established in rats by a combination of chronic restraint stress, excess failure, improper, and TNBS. The body weight, disease activity index (DAI), colonic mucosal injury index (CMDI), histopathological score (HS) and pro-inflammatory mediators were measured. The content of corticotropin-releasing hormone (CRH) in hypothalamus or adrenocorticotropic hormone (ACTH) and corticosteroids (CORT) in plasma were evaluated by enzyme-linked immunosorbent assay. The proportion of T lymphocyte subsets was detected by flow cytometry, and gut microbiota was detected by 16S rDNA amplicon sequencing. Results: Weight loss, DAI, CMDI, HS and proinflammatory mediators were reversed in rats by P. americana L. treatment after UC with CS. Increased epidermal growth factor (EGF) was observed in P. americana L. groups. In addition, P. americana L. could reduce the content of CRH and ACTH and regulate the ratio of CD3+, CD3+CD8+ and CD3+CD4+CD25+/CD4+ in spleen. Comparably, P. americana L. changes composition of gut microbiota. Conclusions: The ethanol extract of Periplaneta Americana L. improves UC induced by a combination of CS and TNBS in rats.
Collapse
Affiliation(s)
- Jing-Na Zhang
- MM. Dali University - The First Affiliated Hospital - Genetic Testing Center - Yunnan, China
| | - Min-Zhe Sun
- MM. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| | - Heng Liu
- PhD. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, and National-Local Joint Engineering Research Center of Entomoceutics - Yunnan, China
| | - Han-Chao Zhang
- MM. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| | - Huai Xiao
- PhD. Dali University ( - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| | - Yu Zhao
- PhD. Dali University - National-Local Joint Engineering Research Center of Entomoceutics - Yunnan, China
| | - Chenggui Zhang
- PhD. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, and National-Local Joint Engineering Research Center of Entomoceutics - Yunnan, China
| | - Hai-Rong Zhao
- PhD. Dali University - The First Affiliated Hospital - Genetic Testing Center - and Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| |
Collapse
|
20
|
Potential value and chemical characterization of gut microbiota derived nitrogen containing metabolites in feces from Periplaneta americana (L.) at different growth stages. Sci Rep 2021; 11:21191. [PMID: 34707100 PMCID: PMC8551289 DOI: 10.1038/s41598-021-00182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The American cockroach, Periplaneta americana (L.), is able to highly survive in various complicated environments around the globe, and often considered as a pest. In contrast, billions of P. americana have been massively reared in China and extensively used as a medicinal insect, due to its function for preventing and treating ulceration and heart failure. Considering the possibility that microbiota-derived metabolites could be an effective source to identify promising candidate drugs, we attempted to establish a rapid method for simultaneous determination of gut microbiota metabolites from medicinal insects. In this study, network pharmacology approach and ultra-performance liquid chromatography (UPLC) technique were employed to reveal the potential pharmacological activity and dynamics variation of nitrogen-containing metabolites (NCMs) originated from the gut microbiota of breeding P. americana at different growth stages. A metabolites-targets-diseases network showed that NCMs are likely to treat diseases such as ulceration and cancer. The analysis of NCMs' content with the growth pattern of P. americana indicated that the content of NCMs declined with P. americana aging. Both principal component analysis and orthogonal partial least squares discriminant analysis suggested that 8-hydroxy-2-quinolinecarboxylic acid and 8-hydroxy-3,4-dihydro-2(1H)-quinolinone are the potential differential metabolic markers for discriminating between nymphs and adults of P. americana. Moreover, the developed UPLC method showed an excellent linearity (R2 > 0.999), repeatability (RSD < 2.6%), intra- and inter-day precisions (RSD < 2.2%), and recovery (95.5%–99.0%). Collectively, the study provides a valuable strategy for analyzing gut microbiota metabolites from insects and demonstrates the prospects for discovering novel drug candidates from the feces of P. americana.
Collapse
|
21
|
Study on the Mechanism of Periplaneta americana Extract to Accelerate Wound Healing after Diabetic Anal Fistula Operation Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6659154. [PMID: 33777160 PMCID: PMC7969083 DOI: 10.1155/2021/6659154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Objective Using network pharmacology research methods to explore the healing mechanism of American cockroach extract to accelerate wound healing after diabetic anal fistula surgery. Method The main chemical constituents of extracts from Periplaneta americana were collected by literature retrieval. Chemical composition and targets related to diabetic anal fistula wound could be predicted based on PubChem, Swiss Target Prediction, OMIM, and GeneCards databases, and the putative targets of Periplaneta americana extraction (PAE) for diabetic anal fistula wound were obtained by Venn diagram. These common targets were predicted using the String database for protein-protein interaction (PPI) network and then screening key genes through Cytohubba. Meanwhile, the above targets were analyzed using the DAVID database for gene ontology (GO) enrichment analyses and the Kyoto Encyclopedia of Genes and Genomes (KEGG) path enrichment analyses. Results A total of 12 chemical components of PAE were obtained by literature retrieval, and 61 therapeutic targets that may accelerate the healing of diabetic anal fistula wounds were predicted by the database. According to PPI network analysis, PAE accelerates wound healing after diabetic anal fistula surgery which may be related to proteins such as AKT1, VEGFA, EGFR, CASP3, STAT3, MAPK1, TNF, JUN, ESR1, and MMP9. GO analysis results show that targets of PAE to promote wound healing were mainly involved in biological processes such as cell proliferation, macrophage differentiation, angiogenesis, and response to hypoxia. KEGG analysis showed that the target genes were mainly concentrated in the PI3K-Akt signaling pathway, HIF-1 signaling pathway, and estrogen signaling pathway. Conclusion Periplaneta americana extract regulates multiple targets and multiple pathways to promote wound healing after diabetic anal fistula surgery. PI3K-Akt signaling pathway, HIF-1 signaling pathway, and sex hormone signaling pathway may be key pathways in the process of Periplaneta americana extract promoting wound healing.
Collapse
|
22
|
Hu Q, Ke G. Intravesical Instillation of Kangfuxin Liquid Combined with Thrombin and Epidermal Growth Factor for Radiation-induced Hemorrhagic Cystitis in Patients with Cervical Cancer: A report of 34 cases. Bioengineered 2021; 12:815-820. [PMID: 33645436 PMCID: PMC8806316 DOI: 10.1080/21655979.2021.1882141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to assess the effectiveness and safety of intravesical instillation treatment of Kangfuxin liquid (KFL) combined with thrombin and epidermal growth factor (EGF) for radiation-induced hemorrhagic cystitis (HC) in patients with cervical cancer. A total of 34 patients with radiation-induced HC of grade 2–4 were treated with intravesical instillation of KFL combined with thrombin and EGF until the complete disappearance of hematuria and lower urinary tract symptoms (LUTS). Gentamicin was added if white blood cells were detected and bacterial culture was positive in the urine. All patients were followed up for 2 years to evaluate the clinical efficacy and safety of the treatment regimen. Patients with and without recurrent hematuria (n = 3, 9% and n = 31, 91%, respectively) were completely recovered from hematuria and LUTS by intravesical instillation treatment for 6–22 days. No adverse event was reported during the treatment and the 2-year follow-up for all patients. Thus, intravesical instillation of KFL combined with thrombin and EGF is an effective and safe therapeutic regimen for radiation-induced HC of grade 2–4 in patients with cervical cancer.
Collapse
Affiliation(s)
- Qin Hu
- Department of Gynecology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guihao Ke
- Department of Gynecology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
23
|
He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 2020; 167:182-192. [PMID: 33259842 DOI: 10.1016/j.ijbiomac.2020.11.168] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Conventional wound-dressing materials with structural and functional deficiencies are not effective in promoting wound healing. The development of multifunctional wound dressings is emerging as a promising strategy to accelerate blood coagulation, inhibit bacterial infection, and trigger full-thickness wound into a regenerative process. Herein, multifunctional composite sponges were developed by incorporation of traditional Chinese medicine Kangfuxin (KFX) into alginate (AG)/carboxymethyl chitosan (CMC) via green crosslinking, electrostatic interaction, and freeze-drying methods. It is demonstrated that the AG/CMC/KFX (ACK) sponges exhibit a highly interconnected and porous structure, suitable water vapor transmittance, excellent elastic properties, antibacterial behavior, cytocompatibility, and rapid hemostasis. Further, in a rat full-thickness wounds model, the ACK sponge containing 10% KFX (ACK-10) significantly facilitates wound closure compared to the AC group and ACK sponge containing 5% and 15% KFX. Thus, the multifunctional ACK-10 composite sponge has great promise for the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Yun He
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zuoxiang Dong
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Min Li
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Demeng Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co. Ltd., Qingdao 266400, China
| | - Changqing Yuan
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Peng Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
24
|
Zou Y, Zhang M, Zeng D, Ruan Y, Shen L, Mu Z, Zou J, Xie C, Yang Z, Qian Z, Xu R, Li S, Kang Q, Zou H, Zhao S, Liu L, Wang K, Wang X, Zhang X. Periplaneta americana Extracts Accelerate Liver Regeneration via a Complex Network of Pathways. Front Pharmacol 2020; 11:1174. [PMID: 32848780 PMCID: PMC7413023 DOI: 10.3389/fphar.2020.01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Successful recovery from hepatectomy is partially contingent upon the rate of residual liver regeneration. The traditional Chinese medicines known as Periplaneta americana extracts (PAEs) positively influence wound healing by promoting tissue repair. However, the effect of PAEs on liver regeneration is unknown. We used a mouse liver regeneration model after 70% partial hepatectomy (PH) and a hepatocyte culture to determine whether PAEs can promote liver regeneration as effectively as skin regeneration and establish their modes of action. L02 cells were divided into serum-starved control (NC) and three PAEs (serum starvation + 0.1 mg/ml, 0.5 mg/ml, or 1 mg/ml PAEs) groups. L02 cell proliferation was assessed at 24 h, 48 h, and 72 h by CCK-8 assay. Forty male C57 mice were randomly divided into control (NC), normal saline (NS), PAEs400 (400 mg/kg/d), and PAEs800 (800 mg/kg/d) groups (n = 10 per group). The NS and both PAEs groups were administered normal saline and PAEs, respectively, by gavage for 10 days. Two hours after the tenth gavage, the NS and both PAEs groups were subjected to 70% PH and the residual liver was harvested after 48 h. The hepatic regeneration rate was evaluated and hepatocyte proliferation was estimated by immunohistochemical (IHC) staining for Ki-67. Twelve DEG libraries (three samples per group) were prepared and sequencing was performed in an Illumina HiSeq 2000 (Mus_musculus) at the Beijing Genomics Institute. The genes expressed in the liver tissues and their expression profiles were analyzed by bioinformatics. KEGG was used to annotate, enrich, and analyze the pathways. PAEs promoted hepatocyte proliferation in vitro and in vivo and accelerated mouse liver regeneration after 70% PH. The screening criteria were fold change (FC) ≥ 2 and q-value < 0.001. We identified 1,092 known DEGs in PAEs400 and PAEs800. Of these, 153 were categorized in cellular processes. The KEGG analysis revealed that the aforementioned DEGs participated in several signaling pathways closely associated with cell proliferation including PI3K-Akt, MAPK, Apelin, Wnt, FoxO, mTOR, Ras, VEGF, ErbB, Hippo, and AMPK. It was concluded that PAEs can effectively improve liver regeneration via the synergistic activation of different signaling pathways.
Collapse
Affiliation(s)
- Yingying Zou
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China.,Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meiyan Zhang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Di Zeng
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Yonghua Ruan
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Lijuan Shen
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhihao Mu
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Jiangmeng Zou
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Chenjian Xie
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhihong Yang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhongyi Qian
- Department of Morphological Laboratory, Kunming Medical University, Kunming, China
| | - Ruobing Xu
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Zou
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Songling Zhao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lixin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Xiaowen Zhang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
Li X, He Z, Ding WF, Zhang X, Ma CJ, Feng Y. Assessment of dermal safety of oil extracted from Periplaneta americana: acute dermal toxicity, irritation, and sensitization. Cutan Ocul Toxicol 2020; 39:193-199. [DOI: 10.1080/15569527.2020.1769126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xian Li
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhao He
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Wei Feng Ding
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Xin Zhang
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Chen Jing Ma
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Ying Feng
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
26
|
Zeng C, Liao Q, Hu Y, Shen Y, Geng F, Chen L. The Role of Periplaneta americana (Blattodea: Blattidae) in Modern Versus Traditional Chinese Medicine. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 56:1522-1526. [PMID: 31265723 DOI: 10.1093/jme/tjz081] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 02/05/2023]
Abstract
The purpose of this review is to elaborate the role of Periplaneta (P.) americana L. in modern and traditional Chinese medicine (TCM) and compare the use of the species in these two forms of medical treatments. From searches on Google Scholar, PubMed, and Web of Science databases, studies were identified involving TCMs with P. americana, which have a history of use over several thousand years, and demonstrate how extracts from this insect play a role in the treatment of diseases through antibacterial, antiviral, antitumor activity, and enhancement of immune function. Extracts from P. americana have not been fully developed for clinical use because the active components have not been completely purified or their molecular mechanisms thoroughly understood. The development of extraction technology in modern Chinese medicine has revealed that many extracts from P. americana are able to play an important role in the control of diseases such as cancer. Drugs such as 'Kangfuxin Solution' and 'Xinmailong Injection' are now widely used for gastrointestinal ulcers and chronic heart failure, having achieved beneficial curative effects in clinical studies. Based on this, the information from studies of P. americana in TCM and modern medicine should be combined and their respective advantages applied. This review provides an overview of the role of P. americana in modern and TCM and thus contributes to identification of further applications and area requiring drug development.
Collapse
Affiliation(s)
- Chenjuan Zeng
- Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qi Liao
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Ye Hu
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Yongmei Shen
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Funeng Geng
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Lijuan Chen
- Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
27
|
Li QJ, Wang ZG, Xie Y, Liu Q, Hu HL, Gao YX. Mechanistic evaluation of gastro-protective effects of KangFuXinYe on indomethacin-induced gastric damage in rats. Chin J Nat Med 2020; 18:47-56. [PMID: 31955823 DOI: 10.1016/s1875-5364(20)30004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 01/30/2023]
Abstract
KangFuXinYe (KFX), the ethanol extract of the dried whole body of Periplaneta americana, is a well-known important Chinese medicine preparation that has been used to treat digestive diseases such as gastric ulcers for many years in China. However, its therapeutic effect and mechanism are not yet well understood. Thus, the aim of this study was to investigate the gastro-protective effects of KangFuXinYe (KFX) in indomethacin-induced gastric damage. Rats were randomly divided into six groups as follows: control, treated with indomethacin (35 mg·kg-1), different dosages of KFX (2.57, 5.14 and 10.28 mL·kg-1, respectively) plus indomethacin, and sucralfate (1.71 mL·kg-1) plus indomethacin. After treatment, rat serum, stomach and gastric homogenates were collected for biochemical tests and examination of histopathology firstly. Rat serum was further used for metabolomics analysis to research possible mechanisms. Our results showed that KFX treatment alleviated indomethacin-induced histopathologic damage in rat gastric mucosa. Meanwhile, its treatment significantly increased cyclooxygenase-1 (COX-1), prostaglandin E2 (PGE2) and epidermal growth factor (EGF) levels in rat serum and gastric mucosa. Moreover, KFX decreased cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) levels. Nine metabolites were identified which intensities significantly changed in gastric damage rats, including 5-hydroxyindoleacetic acid, indoxylsulfuric acid, indolelactic acid, 4-hydroxyindole, pantothenic acid, isobutyryl carnitine, 3-methyl-2-oxovaleric acid, sphingosine 1-phosphate, and indometacin. These metabolic deviations came to closer to normal levels after KFX intervention. The results indicate that KFX (10.28 mL·kg-1) exerts protective effects on indomethacin-induced gastric damage by possible mechanisms of action (regulating tryptophan metabolism, protecting the mitochondria, and adjusting lipid metabolism, and reducing excessive indomethacin).
Collapse
Affiliation(s)
- Qi-Juan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhan-Guo Wang
- Metabonomics Synergy Innovation Laboratory, School of Medicine and Nursing, Chengdu University, Chengdu 610106, China
| | - Yu Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiao Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui-Ling Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yong-Xiang Gao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
28
|
KangFuXin Liquid in the Treatment of Diabetic Foot Ulcer: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3678714. [PMID: 31975998 PMCID: PMC6954482 DOI: 10.1155/2019/3678714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Background Diabetic foot ulcer (DFU) is one of the most common complications of diabetes mellitus, with the wound not healing as expected and healing slowly. Poor control can develop into gangrene and even amputation. Currently, the existing treatments are not satisfactory enough. In China, KangFuXin liquid (KFXL) has been clinically used to treat DFU and has shown good clinical efficacy. In order to provide more reference to clinicians and experts, evidence of efficacy for it needs to be further rigorously evaluated. Methods Eight electronic databases were searched to identify eligible randomized clinical trials (RCTs) published from construction of the library to April 2019. There is no language or data restriction; 11 trials involving 889 participants met the inclusion criteria. These RCTs compared the total effective rate, cure rate, cure time, and adverse events associated with KFXL. The Cochrane Handbook guidelines were used to assess the risk of bias and to evaluate the methodological quality of eligible studies. The methodological quality of included studies was generally low. Dichotomous and continuous data were presented using risk ratios (RRs) and mean differences (MDs), respectively. Results Compared with the basic treatment, meta-analyses showed that KFXL combined with basic treatment can improve the total effective rate (RR = 1.38; 95% CI = 1.23–1.54; P < 0.00001; fixed effect model: I2 = 32%) and cure rate (RR = 1.67; 95% CI = 1.17–2.38; P=0.005; random effect model: I2 = 65%), and shorten the healing time (MD = −5.73; 95% CI = −6.95 to −4.52; P < 0.00001; random effect model). Moreover, under the same basic treatment, KFXL had a better effect than external use of pharmaceutical medications (RR = 1.95; 95% CI = 1.30–2.93; P=0.001), but the cure rate was not significantly different. Also, KFXL had nothing to do with adverse reactions. Conclusion The evidence confirms that KFXL is an effective treatment for DFU. However, further large-scale, rigorously designed trials and high-quality studies are needed to confirm the role of KFXL in the treatment of DFU.
Collapse
|
29
|
Chen Z, Hu Y, Li J, Zhang C, Gao F, Ma X, Zhang J, Fu C, Geng F. A feasible biocompatible hydrogel film embedding Periplaneta americana extract for acute wound healing. Int J Pharm 2019; 571:118707. [DOI: 10.1016/j.ijpharm.2019.118707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
|
30
|
Nasirian H, Salehzadeh A. Control of Cockroaches (Blattaria) in Sewers: A Practical Approach Systematic Review. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:181-191. [PMID: 30462285 DOI: 10.1093/jme/tjy205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 06/09/2023]
Abstract
Periplaneta americana (L.) (Blattaria: Blattidae), the American cockroach, is the most important invasive urban pest of sewer environments colonizing there with high significance of human public health and household allergens need to be controlled. Therefore this practical approach systematic review perform internationally to highlight and provide a detailed P. americana control in sewers. Of the 474 papers, 129 papers were selected to become this practical approach systematic review study of cockroach control in sewers. To control the American cockroaches, many studies have been conducted in various fields describing from an angle. The results were classified and discussed in getting cockroaches from sewers into buildings and their elimination, insecticide susceptibility, application of dust, bait and Inesfly paint insecticide formulations, biocontrol, and futuristic action categories. A recommending manner to achieve a successful P. americana cockroach control in sewers is using a combination of Integrated Pest Management (IPM) strategies resulted in significant reductions of cockroach infestations and asthma health outcomes. Use of P. americana breeding thelytoky, push-pull strategies and an automated sewer robot, and integrating health into the future buildings may be new approaches of P. americana control strategies.
Collapse
Affiliation(s)
- Hassan Nasirian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Salehzadeh
- Department of Medical Entomology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|