1
|
Liu WJ, Xu DQ, Cui DX, Fu RJ, Jing H, Li XQ, Cao W, Tang YP. The structural features and anti-inflammatory properties of a glucogalactan from Holotrichia diomphalia Bates (Qi Cao). JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118948. [PMID: 39419304 DOI: 10.1016/j.jep.2024.118948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried larvae of Holotrichia diomphalia Bates, named Qi Cao, is a traditional Chinese medicine treat for liver diseases and arthritis. Polysaccharides is a principal component in Qi Cao, which exhibiting antioxidant and anti-inflammatory effects. However, the structural characteristics and underlying mechanisms of the polysaccharides remain inadequately elucidated. AIM OF THE STUDY To analyze the primary structure and elucidate the molecular anti-inflammatory mechanisms of the active polysaccharide in Qi Cao. MATERIALS AND METHODS The total polysaccharide was extracted by water extraction and alcohol precipitation, and further isolated and purified by DEAE Sephadex A-25 column and Sephadex G-100 column. The anti-inflammatory properties of four major fractions (HDPS-1, HDPS-2, HDPS-3, HDPS-4) and the pure homogeneous polysaccharides (HDPS-1I and HDPS-1II) were assessed using a RAW 264.7 cell model induced by lipopolysaccharide (LPS), and HDPS-1II was identified as the polysaccharide exhibiting significant anti-inflammatory activity in Qi Cao. The structural characteristics of HDPS-1II were subsequently analyzed using high-performance size-exclusion chromatography (HPSEC), fourier-transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The TLR4, NF-κB, COX-2 and iNOS expressions were determined by Western blot analysis to investigate the anti-inflammatory mechanism of HDPS-1II in vitro. Finally, the in vivo anti-inflammatory activity of HDPS-1II were evaluated by measuring the serum levels of pro-inflammatory factors, inflammatory cell infiltration and organelle damage in the lung tissues of sepsis model mice. RESULTS A homogeneous polysaccharide (HDPS-1II) with molecular weight of 1.7 × 104 Da was isolated from Holotrichia diomphalia Bates. HDPS-1II contains a backbone of α-T-Glcp-(1 → 6)-α-Glcp-(1 → 4)-α-Galp-(1 → 4)-α-Galp-(1 → 6)-α-Galp-(1 → 3)-α-Galp-(1 → . It inhibited activation of the TLR4/NF-κB signaling and reduced pro-inflammatory factors and NO in LPS-stimulated macrophage. Moreover, HDPS-1II increased the survival rate, inhibited inflammatory cells infiltration, and ameliorated the lung tissue damage in septic mice. CONCLUSIONS HDPS-1II exhibits anti-inflammatory effects in vitro and in vivo, which is the active polysaccharide components of the anti-inflammatory activity of Qi Cao.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hui Jing
- College of Pharmacy, Xi'an Medical University, Shaanxi, Xi'an, 710021, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
2
|
Tang W, Luo X, Fan F, Sun X, Jiang X, Li P, Ding J, Lin Q, Zhao S, Cheng Y, Fang Y. Zein and gum arabic nanoparticles: potential enhancers of immunomodulatory functional activity of selenium-containing peptides. Food Funct 2024; 15:9972-9982. [PMID: 39268750 DOI: 10.1039/d4fo02572e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food-derived nanomaterials optimizing bioactive peptides is an emerging route in the functional food field. Zein and gum arabic (GA) possess favorable encapsulation properties for controlled release, targeted delivery and stabilization of food bioactive ingredients, and thus are considered as promising carriers for delivery systems. In order to improve the bioavailability of rice selenium-containing peptide TSeMMM (T), the nanoparticles (ZTGNs) containing peptide T, zein and GA have been previously prepared. This study focused on evaluating the immunomodulatory capacity of ZTGNs. The results showed that ZTGNs significantly alleviated cyclophosphamide-induced reduction in immune organ indices and liver glutathione content of mice. There was a significant upregulation observed in the levels of immune-related cytokines IL-6, TNF-α, and IFN-γ as well as their mRNA expression. Moreover, ZTGNs enriched the diversity of the intestinal flora and promoted the proportion of beneficial bacteria. In conclusion, ZTGNs have potential as immunomodulatory enhancers for food bioactive ingredients, providing prospects for further optimization of dietary supplements.
Collapse
Affiliation(s)
- Wenqian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
3
|
Cheng M, Shi Y, Cheng Y, Hu H, Liu S, Xu Y, He L, Hu S, Lu Y, Chen F, Li J, Si H. Mulberry leaf polysaccharide improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora, enhancing immune regulation and antioxidant capacity. Front Microbiol 2024; 15:1382639. [PMID: 38577686 PMCID: PMC10991686 DOI: 10.3389/fmicb.2024.1382639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1β, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.
Collapse
Affiliation(s)
- Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yongbin Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fengmin Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Shao S, Si X, Zhang Y, Li J, Tu P, Zhang Q. Multiple fingerprint and pattern recognition analysis on polysaccharides of four edible mushrooms. Int J Biol Macromol 2024; 259:129236. [PMID: 38184032 DOI: 10.1016/j.ijbiomac.2024.129236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Quality analysis of edible mushrooms based on polysaccharides is generally difficult due to their complicated structures and hard separation. Here, multiple fingerprint analysis of polysaccharides based on chromatographic and spectrometric techniques were developed, and then applied in comparative analysis of Auricularia heimuer (AH), Auricularia cornea (AC), Auricularia cornea 'Yu Muer' (ACY) and Tremella fuciformis (TF). Firstly, polysaccharides were obtained with the molecular weights between 1.783 × 106 and 6.774 × 106 Da. Then, complete hydrolysis by TFA and enzyme digestion by cellulase were employed and subsequently analyzed by HPLC-UV, GC-MS, HILIC-HPLC-ELSD and HILIC-HPLC-ESI--HCD-MS/MS, and ATR-FT-IR were used to characterize the functional groups of intact polysaccharides. By chemometric analysis, differential markers of d-xyl, l-fuc, l-arb, d-glc, disaccharide and hexasaccharide were selected, and AC and ACY were proved to be same species from the viewpoint of polysaccharides firstly. Furthermore, the structures of oligomers with DPs of 2-8 and →4)-β-d-Glcp-(1→ unit with different contents were inferred by combinatory analysis of ESI--MS/MS, glycosidic linkage, monosaccharide compositions and functional groups. In conclusion, the combinatory method of multiple fingerprint and pattern recognition is powerful not only for structural elucidation of polysaccharides, but also for quality analysis and species differentiation of edible mushrooms from the perspective of biological polysaccharides.
Collapse
Affiliation(s)
- Shuangyu Shao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Xiali Si
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Yingtao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Qingying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
5
|
Kim H, Hong JY, Lee J, Yeo C, Jeon WJ, Lee YJ, Ha IH. Immune-boosting effect of Yookgong-dan against cyclophosphamide-induced immunosuppression in mice. Heliyon 2024; 10:e24033. [PMID: 38293434 PMCID: PMC10826668 DOI: 10.1016/j.heliyon.2024.e24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Immune responses must be strictly regulated to prevent autoimmune and infectious diseases and to protect against infectious agents. As people age, their immunity wanes, leading to a decrease in lymphocyte production in bone marrow and thymus and a decline in the efficacy of mature lymphocytes in secondary lymphoid organs. This study explores the immune-boosting potential of Yookgong-dan (YGD) in enhancing the immune system by activating immune cells. In our in vitro experiments, cyclophosphamide (Cy) treatment led to a significant decrease in primary splenocyte viability. However, subsequent treatment with YGD significantly improved cell viability, with doses ranging between 1 and 25 μg/mL in Cy-treated splenocytes. Flow cytometry analysis demonstrated that the Cy group exhibited reduced positivity of CD3+ T cells and CD45+ leukocytes compared to the blank group. In contrast, treatment with YGD led to a notable, dose-responsive increase in these immune cell types. In our in vivo experiments, YGD was orally administered to Cy-induced immunosuppressed mice at 20 and 100 mg/kg doses for 10 days. The results indicated a dose-dependent elevation in immunoglobulin (Ig)G and IgM levels in the serum, emphasizing the immunostimulatory effect of YGD. Furthermore, the Cy-treated group showed decreased T cells, B (CD19+) cells, and leukocytes in the total splenocyte population. Yet, YGD treatment resulted in a dose-dependent reversal of this pattern, suggesting its ability to counter immunosuppression. Notably, YGD was found to effectively stimulate T (CD4+ and CD8+) lymphocyte subsets and natural killer cells, along with enhancing Th1/Th2 cytokines in immunosuppressed conditions. These outcomes correlated with the modulation of BCL-2 and BAX expression, which are critical for apoptosis. In conclusion, YGD has the potential to bolster immune functionality through the activation of immune cells, thereby enhancing the immune system's capacity to combat diseases and improve overall health and wellness.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| |
Collapse
|
6
|
Kim JW, Kim JH, Kim CY, Jeong JS, Ko JW, Kim TW. Green tea extract improves cyclophosphamide-induced immunosuppression in mouse spleen and enhances the immune activity of RAW 264.7 cells. Heliyon 2023; 9:e22062. [PMID: 38034622 PMCID: PMC10682678 DOI: 10.1016/j.heliyon.2023.e22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cyclophosphamide (CP) is mainly used to treat autoimmune diseases and cancer; however, it damages normal immune cells. Therefore, the effects of chemotherapy on CP are limited. Notably, green tea has been reported to effectively modulate immune function. Here, given the pharmacological properties of green tea, we evaluated the ability of green tea extract (GTE) to restore immunity suppressed by CP in vivo and to activate macrophages in vitro. GTE significantly improved the suppressed immune function, including spleen index and proliferation of spleen T lymphocytes, as revealed by histopathological examination and flow cytometry analysis. Moreover, GTE effectively activated RAW 264.7, as represented by the induction of nitric oxide, reactive oxygen species, and cytokine levels. GTE also increased the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B in RAW 264.7 cells. In conclusion, GTE ameliorated CP-induced immunosuppression in mice and stimulated immune activity in RAW 264.7 cells, possibly by activating the MAPK signaling pathway. These findings suggest that GTE has the potential to be used as a supplementary agent in chemotherapy for CP.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| |
Collapse
|
7
|
Kim JS, Lee EB, Choi JH, Jung J, Jeong UY, Bae UJ, Jang HH, Park SY, Cha YS, Lee SH. Antioxidant and Immune Stimulating Effects of Allium cepa Skin in the RAW 264.7 Cells and in the C57BL/6 Mouse Immunosuppressed by Cyclophosphamide. Antioxidants (Basel) 2023; 12:antiox12040892. [PMID: 37107267 PMCID: PMC10135734 DOI: 10.3390/antiox12040892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Allium cepa L. (onion) has been reported to have various pharmacological effects, such as preventing heart disease, and improving antimicrobial activity and immunological effects. The Republic of Korea produced 1,195,563 tons of onions (2022). The flesh of onion is used as food while the onion skin (OS) is thrown away as an agro-food by-product and is considered to induce environmental pollution. Thus, we hypothesize that increasing usage of OS as functional food material could help protect from the environment pollution. The antioxidant effects and immune-enhancing effects of OS were evaluated as functional activities of OS. In this study, OS showed high 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and xanthine oxidase (XO) inhibitory activity. The antioxidant activities increased in a dose-dependent manner. The IC50 values of DPPH, ABTS radical scavenging activity, and XO inhibitory activity were 954.9 μg/mL, 28.0 μg/mL, and 10.7 μg/mL, respectively. Superoxide dismutase and catalase activities of OS in RAW 264.7 cells were higher than those of the media control. There was no cytotoxicity of OS found in RAW 264.7 cells. Nitric oxide and cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) concentrations in RAW 264.7 cells significantly increased in a dose dependent manner. Immune-stimulating effects of OS were evaluated in immunosuppressed mice induced by cyclophosphamide. White blood cell count and the B cell proliferation of splenocytes were higher in OS100 (OS extract 100 mg/kg body weight) and OS200 (OS extract 200 mg/kg body weight) groups than in the negative control (NC) group. Serum IgG and cytokine (IL-1β and IFN-γ) levels were also higher in OS100 and OS200 groups than in the NC group. OS treatment increased NK cell activity compared with the NC group. The results suggested that OS can improve antioxidant and immune stimulating effects. The use of OS as functional supplement can reduce the agro-food by-product and it may contribute to carbon neutrality.
Collapse
Affiliation(s)
- Ji-Su Kim
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Eun-Byeol Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji-Hye Choi
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jieun Jung
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Un-Yul Jeong
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ui-Jin Bae
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hwan-Hee Jang
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Shin-Young Park
- Fermented and Processed Food Science Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| | - Sung-Hyen Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
8
|
Lee HS, Kim SM, Jung JI, Lim J, Woo M, Kim EJ. Immune-enhancing effect of hydrolyzed and fermented Platycodon grandiflorum extract in cyclophosphamide-induced immunosuppressed BALB/c mice. Nutr Res Pract 2023; 17:206-217. [PMID: 37009135 PMCID: PMC10042709 DOI: 10.4162/nrp.2023.17.2.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES The immunomodulatory effect of Platycodon grandiflorum (PG) has been reported, but studies on its mechanism are still lacking. This study was undertaken to confirm whether the hydrolyzed and fermented PG extract (HFPGE) obtained by adding hydrolysis and fermentation to the extraction process has an immune-enhancing effect in the in vivo system. MATERIALS/METHODS Five-week-old BALB/c mice were divided into 4 groups: normal control group (NOR), control group (CON), 150 mg/kg body weight (BW)/day HFPGE-treated group (T150), and 300 mg/kg BW/day HFPGE-treated group (T300). The mice were administered HFPGE for 4 weeks and intraperitoneally injected with cyclophosphamide (CPA, 80 mg/kg BW/day) on day 6, 7, and 8, respectively, to induce immunosuppression. The levels of immunoglobulins (Igs) and cytokines were measured in the serum. In splenocytes, proliferation and cytokine levels were measured. RESULTS Serum IgA, IgG, and IgM levels were observed to decrease after CPA treatment, which was recovered by HFPGE administration. The levels of serum interleukin (IL)-12, tumor necrosis factor (TNF)-α, IL-8, and transforming growth factor (TGF)-β were also decreased after exposure to CPA but increased after HFPGE administration. Decreased splenocyte proliferation was seen in CPA-treated mice, but was observed to increase in the T150 and T300 groups as compared to the NOR group. Compared to the CON group, splenocyte proliferation stimulated with concanavalin A (ConA) or lipopolysaccharide (LPS) in the HFPGE-treated groups was significantly increased. The cytokines secreted by ConA-stimulated splenocytes (IL-2, IL-12, interferon-γ, TNF-α) were increased in the T150 and T300 groups, and cytokines secreted by LPS-stimulated splenocytes (IL-4, IL-8, TGF-β) were also increased by HFPGE administration. CONCLUSION These results suggest that HFPGE stimulates the immunity in immunosuppressed conditions, thereby enhancing the immune response. Therefore, it is expected that HFPGE has the potential to be used as functional food and medicine for immune recovery in various immunocompromised situations.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science and Nutrition, Dongseo University, Busan 47011, Korea
| | - So Mi Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Jae In Jung
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| | - Jihoon Lim
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Moonjea Woo
- R&D Center, World Food Services Co. Ltd., Gangneung 25451, Korea
| | - Eun Ji Kim
- Regional Strategic Industry Innovation Center, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
9
|
Tran THM, Mi XJ, Huh JE, Aditi Mitra P, Kim YJ. Cirsium japonicum var. maackii fermented with Pediococcus pentosaceus induces immunostimulatory activity in RAW 264.7 cells, splenocytes and CTX-immunosuppressed mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
10
|
Han Y, Huang J, Zhao C, Zhang F, Gu Y, Wang C, Jin E. Hericium erinaceus polysaccharide improves the microstructure, immune function, proliferation and reduces apoptosis of thymus and spleen tissue cells of immunosuppressed mice. Biosci Biotechnol Biochem 2023; 87:279-289. [PMID: 36494196 DOI: 10.1093/bbb/zbac198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
In order to study the effect of Hericium erinaceus polysaccharide (HEP) on the immune and antioxidation functions of immunosuppressed mice. The control group received distilled water orally and the model and experimental groups I, II, and III received 0, 80, 160, and 320 mg/kg HEP respectively for a fortnight after re-molding with cyoclphosphnalide (CTX). Compared with the control group, the secretion of IL-2, IL-4, and IFN-γ, the activity or content of T-AOC, T-SOD, and GSH-PX, and the expression of PCNA mRNA in the thymus and spleen were reduced in immunosuppressed mice (P < .05 or P < .01). Compared with immunosuppressed mice, the levels of IL-2, IFN-γ, and GSH-PX and the PCNA mRNA expression of spleen and thymus were increased (P < .05 or P < .01), and the microstructure were also obviously improved in the experimental group III. Overall, 320 mg/kg of HEP significantly improved the immune and antioxidant functions.
Collapse
Affiliation(s)
- Yujiao Han
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Jialiang Huang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China.,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, China
| | - Chenfang Wang
- College of life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China.,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, China
| |
Collapse
|
11
|
Chimonanthus nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6208680. [PMID: 36846714 PMCID: PMC9946750 DOI: 10.1155/2023/6208680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
To investigate the immunomodulatory activities of Chimonanthus nitens Oliv polysaccharides (COP1), an immunosuppressive mouse model was generated by cyclophosphamide (CY) administration and then treated with COP1. The results demonstrated that COP1 ameliorated the body weight and immune organ (spleen and thymus) index of mice and improved the pathological changes of the spleen and ileum induced by CY. COP1 strongly stimulated the production of inflammatory cytokines (IL-10, IL-12, IL-17, IL-1β, and TNF-α) of the spleen and ileum by promoting the mRNA expressions. Furthermore, COP1 had immunomodulatory activity by increasing several transcription factors (JNK, ERK, and P38) in the mitogen-activated protein kinase (MAPK) signaling pathway. Related to the above immune stimulatory effects, COP1 positively affected the production of short-chain fatty acids (SCFAs) and the expression of ileum tight junction (TJ) protein (ZO-1, Occludin-1, and Claudin-1), upregulated the level of secretory immunoglobulin A (SIgA) in the ileum and microbiota diversity and composition, and improved intestinal barrier function. This study suggests that COP1 may provide an alternative strategy for alleviating chemotherapy-induced immunosuppression.
Collapse
|
12
|
Meng M, Sun Y, Bai Y, Xu J, Sun J, Han L, Sun H, Han R. A polysaccharide from Pleurotus citrinopileatus mycelia enhances the immune response in cyclophosphamide-induced immunosuppressed mice via p62/Keap1/Nrf2 signal transduction pathway. Int J Biol Macromol 2023; 228:165-177. [PMID: 36543297 DOI: 10.1016/j.ijbiomac.2022.12.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The manuscript aimed to study the immunoregulatory activity and the mechanism of the polysaccharide (CMP) from Pleurotus citrinopileatus mycelia. The mice were divided into normal group, model group, different dosage of CMP (50, 100 and 200 mg/kg, respectively) groups and levamisole hydrochloride treated group. The results showed that, compared with the model group, CMP could significantly improve the auricle swelling rate, half hemolysis value and phagocytic index in mice. The indices of immune organs were raised, and tissue damage of spleen was relieved. Splenic Th1 cells were decreased, while Th2 cells were increased, furthermore the proliferation of splenic lymphocytes and the cytotoxicity of NK cells were increased. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in spleen were decreased, while interleukin-4 (IL-4) and interleukin-10 (IL-10) were increased. In serum and spleen, the levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities were increased, while the level of malondialdehyde (MDA) was decreased. And the levels of Immunoglobulin were also increased. Western blot showed that CMP had immunoregulatory activity by activating Nrf2, Keap1, p62, HO-1, and NQO1 in the p62/Keap1/Nrf2 signaling pathway. The study proved that CMP could be used as a biological Immune regulating agent.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ying Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yuhe Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jin Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jingge Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
13
|
Yao S, Yang X, Wu W, Jiang Q, Deng S, Zheng B, Chen L, Chen Y, Xiang X. Effect of Paecilomyces cicadae polysaccharide Pc0-1 on cyclophosphamide-induced immunosuppression and regulation of intestinal flora in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Zhao M, Shi W, Chen X, Liu Y, Yang Y, Kong X. Regulatory effects of Auricularia cornea var. Li. polysaccharides on immune system and gut microbiota in cyclophosphamide-induced mice. Front Microbiol 2022; 13:1056410. [PMCID: PMC9666785 DOI: 10.3389/fmicb.2022.1056410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
The immuno-regulating potential of edible fungus polysaccharides has gained more and more attention. However, there is little information about the study of Auricularia cornea var. Li. polysaccharides regulating immunomodulatory activity. The objective of this work to analyze the immunomodulatory activity and the mechanism of A. cornea var. Li. polysaccharides supplementation in an immunosuppressed mice model induced by cyclophosphamide. The effects of A. cornea var. Li. polysaccharides on immune system including immune organ indices, immunoglobulin contents, and inflammation cytokines in immunosuppressed mice were determined. In addition, the regulatory effects of A. cornea var. Li. polysaccharides on the gut microbiota and their metabolites were analyzed. Results showed that A. cornea var. Li. polysaccharides significantly elevated immune organ indexes, remarkably enhanced the levels of immunoglobulin A (IgA), IgG and IgM in serum and secretory IgA (sIgA) in the intestinal mucosa, conspicuously stimulated the levels of tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-4, and IL-10 in the serum. A. cornea var. Li. polysaccharides also could restore gut microbiota to the pattern that is similar with that of the control group with increase of the relative abundances of short-chain fatty acids (SCFAs)-producing bacteria. Furthermore, the content of SCFAs were increased after A. cornea var. Li. polysaccharides supplementation. This study provides useful information for applications of A. cornea var. Li. polysaccharides in immune-regulated foods and medicine.
Collapse
Affiliation(s)
- Ming Zhao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Wei Shi
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, Nanjing, China,*Correspondence: Wei Shi,
| | - Xijun Chen
- China Technology Optimization (Heilongjiang) Technology Industry Co., Ltd., Harbin, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China,Xianghui Kong,
| |
Collapse
|
15
|
rhCNB Improves Cyclophosphamide-Induced Immunodeficiency in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4891399. [PMID: 36204132 PMCID: PMC9532092 DOI: 10.1155/2022/4891399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Background This study aims to explore the immunomodulatory effect of rhCNB on mice with cyclophosphamide (CTX)-induced immunodeficiency through TLR4/MAPK pathway. Methods BALB/c mice were randomly divided into three groups: a negative control group, an immunosuppression model group, and a rhCNB treatment group. Tail vein injection of cyclophosphamide (40 mg/kg) was used to establish a mouse immunosuppression model. Intraperitoneal injection of rhCNB (20 mg/kg) was administered to the treatment group, whereas equal quantities of normal saline were given to the control group and model group. Perform peripheral blood routine of CD4, CD8, and CD19 lymphocyte subsets and peripheral blood Th1/Th2 cell subsets 24 hours after the last administration. RT-PCR was used to detect mRNA levels of TLR4, P38, JNK, T-bet, and GATA3, the spleen immune organ index was measured, and the histopathological status of the spleen and thymus was observed. Results The results showed that compared with the control group, WBC, PLT, LYM, NEU, immune organ index, CD4+/CD8+ and CD19+ subgroup ratio, and peripheral blood Th1/Th2 cell subgroups decreased in the model group. The mRNA levels of TLR4, P38, JNK, T-bet, and GATA3 decreased compared with the model group, while they increased in the treatment group. Conclusions rhCNB has an immunomodulatory effect by regulating the expression of Th1/Th2 cytokine balance through the TLR4/MAPK signaling pathway and promoting the differentiation and proliferation of lymphocytes, thereby improving the immune function.
Collapse
|
16
|
Yang HJ, Jeong SJ, Ryu MS, Ha G, Jeong DY, Park YM, Lee HY, Bae JS. Protective effect of traditional Korean fermented soybean foods ( doenjang) on a dextran sulfate sodium-induced colitis mouse model. Food Funct 2022; 13:8616-8626. [PMID: 35894596 DOI: 10.1039/d2fo01347a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective: The cause of ulcerative colitis (UC) is unknown, and the use of anti-inflammatory and immunosuppressive drugs with certain side effects is currently replacing treatment. Therefore, it is important to find new healthy foods or ingredients that exhibit potential protective and anti-inflammatory effects on UC. This study investigated the potential protective effect of doenjang on dextran sulfate sodium (DSS)-induced colitis in a mouse model. Materials and methods: Four doenjang samples (TCD21-51-1, TCD21-55-1, TMD21-16-1, and TFD21-1-1) were used. To examine the effects of the four doenjang samples on UC caused by DSS in a mouse model, the clinical symptoms of UC, such as body weight, disease activity index (DAI), and colon macroscopic damage index (CMDI) were analyzed. Moreover, immune-related blood cell counts, serum levels and protein expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and nitric oxide (NO) production were measured in DSS-induced UC in mice for analysis. Results: The four doenjang samples increased the colon length shortened by DSS, reduced DAI (diarrhea and hemoccult), CMDI (ulceration, inflammation, and hemorrhage) and the content of immune-related cells in the blood. Moreover, the levels of TNF-α, IL-6, and NO increased by DSS were decreased by doenjang, and tissue damage was significantly reduced. Conclusions: These findings confirmed that doenjang exerts protective effects against UC, suggesting its possible use in developing therapeutic strategies or functional products.
Collapse
Affiliation(s)
- Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Young Mi Park
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan, Jeonbuk, 54538, Korea.
| |
Collapse
|
17
|
Yuan H, Dong L, Zhang Z, He Y, Ma X. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
|
19
|
Park YM, Lee HY, Shin DY, Kim DS, Yoo JJ, Yang HJ, Kim MJ, Bae JS. Immune-Enhancing Effects of Co-treatment With Kalopanax pictus Nakai Bark and Nelumbo nucifera Gaertner Leaf Extract in a Cyclophosphamide-Induced Immunosuppressed Rat Model. Front Nutr 2022; 9:898417. [PMID: 35662944 PMCID: PMC9161550 DOI: 10.3389/fnut.2022.898417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Immune system disorders can result in various pathological conditions, such as infections and cancer. Identifying therapies that enhance the immune response might be crucial for immunocompromised individuals. Therefore, we assessed the immune-enhancing effect of co-treatment with Kalopanax pictus Nakai Bark and Nelumbo nucifera Gaertner leaf extract (KPNN) in a cyclophosphamide (Cy)-induced immunosuppressed rat model. Materials and Methods For in vitro studies, macrophages and splenocytes were treated with various KPNN doses in the presence or absence of Cy. Macrophage viability, nitric oxide production, splenocyte viability, cytokine production and natural killer (NK) cell activity were analyzed. For in vivo studies, analysis of weekly body weight, dietary intake, tissue weight, immune-related blood cell count, cytokine levels, and spleen biopsy was performed in a Cy-induced immunocompromised animal model. Results KPNN significantly increased phospho-NF-κB and phospho-ERK protein levels and cell viability in macrophages. KPNN significantly increased the NK cell activity in splenocytes compared to that in the control. Cy treatment decreased tumor necrosis factor (TNF)-α, interleukin (IL)-6, and interferon-γ production. In the Cy-induced immunosuppression rat model, KPNN-treated rats had significantly higher body weights and tissue weights than the Cy-treated rats. Additionally, KPNN treatment restored the immune-related factors, such as total leukocyte, lymphocyte, and intermediate cell contents, to their normal levels in the blood. The blood cytokines (TNF-α and IL-6) were increased, and spleen tissue damage was significantly alleviated. Conclusions Collectively, KPNN exerts an immune-enhancing effect suggesting their potential as an immunostimulatory agent or functional food.
Collapse
Affiliation(s)
| | | | | | - Dae Sung Kim
- Central Research and Development, Hanpoong Pharm & Foods Co., Ltd., Wanju-gun, South Korea
| | - Jin Joo Yoo
- Central Research and Development, Hanpoong Pharm & Foods Co., Ltd., Wanju-gun, South Korea
| | | | - Min Jung Kim
- Korea Food Research Institute, Wanju-gun, South Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| |
Collapse
|
20
|
Immunoenhancement Effects of the Herbal Formula Hemomine on Cyclophosphamide-Induced Immunosuppression in Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemomine is an herbal blend comprising Angelicae Gigantis Radix and other herbs known to have immunomodulatory effects. We examined the immunopotentiating effect of this herbal blend on cyclophosphamide (CPA)-induced immunosuppression. Male mice were assigned to one of six groups: the intact control and five CPA treatment groups (one control, one reference (β-glucan), and three with the application of hemomine at different concentrations; 4, 2, or 1 mL/kg; n = 10 per group). Mice were injected with CPA to induce myelosuppression and immunosuppression, after which they received one of the experimental treatments. In immunosuppressed mice, hemomine treatment alleviated the noticeable reductions in body, spleen, and submandibular lymph node weights caused by CPA; caused changes in hematological markers; induced the reduced levels of serum IFN-γ and spleen TNF-α, IL-1β, and IL-10 by CPA; improved natural killer cell activities in the spleen and peritoneal cavity; and also improved lymphoid organ atrophy in a dose-dependent manner. We demonstrate that hemomine, a mixture of six immunomodulatory herbs, is an effective immunomodulatory agent, with the potential to enhance immunity.
Collapse
|
21
|
Liu L, Yang X, Yuan P, Cai S, Bao J, Zhao Y, Aimaier A, Aipire A, Lu J, Li J. In Vitro and In Vivo Dendritic Cell Immune Stimulation Effect of Low Molecular Weight Fucoidan from New Zealand Undaria pinnatifida. Mar Drugs 2022; 20:197. [PMID: 35323496 PMCID: PMC8949674 DOI: 10.3390/md20030197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
Low molecular weight fucoidan (LMWF) has been reported to have immunomodulation effects through the increase of the activation and function of macrophages. In this study, the regulating effect of LMWF from Undaria pinnatifida grown in New Zealand on dendritic cells (DCs) was investigated. We discovered that LMWF could stimulate DCs' maturation and migration, as well as CD4+ and CD8+ T cells' proliferation in vitro. We proved that this immune promoting activity is activated through TLR4 and its downstream MAPK and NF-κB signaling pathways. Further in vivo (mouse model) investigation showed that LMWF has a strong immunological boosting effect, such as facilitating the proliferation of immune cells and increasing the index of immune organs. These findings suggest that LMWF has a positive immunomodulatory effect and is a promising candidate to supplement cancer immunotherapy.
Collapse
Affiliation(s)
- Litong Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand;
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Shanshan Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Jing Bao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Yanan Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand;
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (P.Y.); (S.C.); (J.B.); (Y.Z.); (A.A.); (A.A.)
| |
Collapse
|
22
|
Khan AI, Rehman AU, Farooqui NA, Siddiqui NZ, Ayub Q, Ramzan MN, Wang L, Xin Y. Effects of Shrimp Peptide Hydrolysate on Intestinal Microbiota Restoration and Immune Modulation in Cyclophosphamide-Treated Mice. Molecules 2022; 27:molecules27051720. [PMID: 35268821 PMCID: PMC8911659 DOI: 10.3390/molecules27051720] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is important in regulating host metabolism, maintaining physiology, and protecting immune homeostasis. Gut microbiota dysbiosis affects the development of the gut microenvironment, as well as the onset of various external systemic diseases and metabolic syndromes. Cyclophosphamide (CTX) is a commonly used chemotherapeutic drug that suppresses the host immune system, intestinal mucosa inflammation, and dysbiosis of the intestinal flora. Immunomodulators are necessary to enhance the immune system and prevent homeostasis disbalance and cytotoxicity caused by CTX. In this study, shrimp peptide hydrolysate (SPH) was evaluated for immunomodulation, intestinal integration, and microbiota in CTX-induced immunosuppressed mice. It was observed that SPH would significantly restore goblet cells and intestinal mucosa integrity, modulate the immune system, and increase relative expression of mRNA and tight-junction associated proteins (Occludin, Zo-1, Claudin-1, and Mucin-2). It also improved gut flora and restored the intestinal microbiota ecological balance by removing harmful microbes of various taxonomic groups. This would also increase the immune organs index, serum levels of cytokines (IFN-ϒ, IL1β, TNF-α, IL-6), and immunoglobin levels (IgA, IgM). The Firmicutes/Bacteroidetes proportion was decreased in CTX-induced mice. Finally, SPH would be recommended as a functional food source with a modulatory effect not only on intestinal microbiota, but also as a potential health-promoting immune function regulator.
Collapse
Affiliation(s)
- Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Qamar Ayub
- College of Clinical Laboratory Sciences, Dalian Medical University, Dalian 116044, China;
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
- Correspondence: (L.W.); (Y.X.); Tel.: +86-411-83635963-2169 (L.W.); +86-411-86110295 (Y.X.)
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
- Correspondence: (L.W.); (Y.X.); Tel.: +86-411-83635963-2169 (L.W.); +86-411-86110295 (Y.X.)
| |
Collapse
|
23
|
Khan TJ, Xu X, Xie X, Dai X, Sun P, Xie Q, Zhou X. Tremella fuciformis Crude Polysaccharides Attenuates Steatosis and Suppresses Inflammation in Diet-Induced NAFLD Mice. Curr Issues Mol Biol 2022; 44:1224-1234. [PMID: 35723304 PMCID: PMC8947202 DOI: 10.3390/cimb44030081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder characterized by an enhanced accumulation of lipids, which affects around 40% of the world's population. The T. fuciformis fungus possesses immunomodulatory activity and other beneficial properties that may alleviate steatosis through a different mechanism. The present study was designed to evaluate the effect T. fuciformis crude polysaccharides (TFCP) on inflammatory and lipid metabolism gene expression, oxidative stress, and lipid profile. Mice were divided into groups receiving (a) a normal chow diet (NCD), (b) a methionine-choline-deficient (MCD) diet, and (c) a MCD diet with TFCP. Liver histopathology was performed, and the hepatic gene expression levels were estimated using qRT-PCR. The lipid profiles, ALT, AST, and efficient oxidative enzymes were analyzed using ELISA. The TFCP administration in the MCD-fed mice suppressed hepatic lipid accumulation, lipid metabolism-associated genes (HMGCR, FABP, SREBP, ACC, and FAS), and inflammation-associated genes (IL-1β, TLR4, TNF-α, and IL-6) whilst enhancing the expression of HNF4α genes. TFCP mitigated against oxidative stress and normalized healthy lipid profiles. These results highlighted that TFCP prevents NAFLD through the inhibition of oxidative stress and inflammation, suggesting TFCP would potentially be an effective therapeutic agent against NAFLD progression.
Collapse
Affiliation(s)
- Tariq Jamal Khan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaofei Xu
- Geometry Cell Biology Research Center, Dongguan 523808, China
| | - Xiaoling Xie
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Ximing Dai
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Qingdong Xie
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
24
|
Cheng L, Rao Q, Zhang Q, Song W, Guan S, Jiang Z, Wu T, Zhao Z, Song W. The immunotoxicity of decabromodiphenyl ether (BDE-209) on broiler chicks by transcriptome profiling analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113284. [PMID: 35149409 DOI: 10.1016/j.ecoenv.2022.113284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Decabromodiphenyl ether (BDE-209) has drawn significant attention due to its suppression of immune functions in animals and even humans. In order to explore the mechanism through which BDE-209 affects the immune system, broiler chicks were fed a diet containing various concentrations of BDE-209 (0, 0.004, 0.04, 0.4, and 4 g/kg) for 42 days. Histopathological observations of immune organs found damaged and necrotic lymphocytes in the spleen and bursa, and losses of lymphoid cells in thymic gland. The activities of catalase, glutathione, glutathione peroxidase, and superoxide dismutase in both the spleen and serum were affected by BDE-209. Obvious bioaccumulation effect was found in spleen tissues (high to 1339 ± 181.9 μg/kg). Furthermore, transcriptome sequencing analyses of the spleen identified 424 upregulated and 301 downregulated DEGs, and the cytokine-cytokine receptor interaction signal pathway was most significantly enriched based on the Kyoto Encyclopedia of Genes and Genomes database. Quantitative real-time PCR affirmed the decreased expressions of interleukin IL18, IL18R1, IL18RAP, IL21, as well as interferon gamma IFNG and tumor necrosis factor superfamily members TNFSF8, indicating significant interference to immunomodulation function and possible disease progression in inflammatory effects resulting from BDE-209 exposure. The immunotoxicity of BDE-209 may cause the suppression of immune and physiological functions of spleen cells, leading to inflammation and apoptosis and ultimately spleen atrophy.
Collapse
Affiliation(s)
- Lin Cheng
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qinxiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qicai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Wei Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Shuhui Guan
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Zhilin Jiang
- College of Agriculture and Forestry, Puer University, Yunnan 665000, China
| | - Tian Wu
- College of Agriculture and Forestry, Puer University, Yunnan 665000, China
| | - Zhihui Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
| |
Collapse
|
25
|
Nam JH, Choi J, Monmai C, Rod-in W, Jang AY, You S, Park WJ. Immune-Enhancing Effects of Crude Polysaccharides from Korean Ginseng Berries on Spleens of Mice with Cyclophosphamide-Induced Immunosuppression. J Microbiol Biotechnol 2022; 32:256-262. [PMID: 34949747 PMCID: PMC9628850 DOI: 10.4014/jmb.2110.10021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Panax ginseng C. A. Meyer is well known as traditional herbal medicine, and ginseng berries are known to exhibit potential immune-enhancing functions. However, little is known about the in vivo immunomodulatory activity of Korean ginseng berries. In this study, crude Korean ginseng berries polysaccharides (GBP) were isolated and their immunomodulatory activities were investigated using cyclophosphamide (CY)-induced immunosuppressive BALB/c mice. In CY-treated mice, oral administration of GBP (50-500 mg/kg BW) remarkably increased their spleen sizes and spleen indices and activated NK cell activities. GBP also resulted in the proliferation of splenic lymphocytes (coordinating with ConA: plant mitogen which is known to stimulate T-cell or LPS: endotoxin which binds receptor complex in B cells to promote the secretion of pro-inflammatory cytokines) in a dose-dependent manner. In addition, GBP significantly stimulated mRNA expression levels of immune-associated genes including interleukin-1β (IL-1β), IL-2, IL-4, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4), and cyclooxygenase-2 (COX-2) in CY-treated mice. These results indicate that GBP is involved in immune effects against CY-induced immunosuppression. Thus, GBP could be developed as an immunomodulation agent for medicinal or functional food application.
Collapse
Affiliation(s)
- Ju Hyun Nam
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - JeongUn Choi
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - A-yeong Jang
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - SangGuan You
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Corresponding author Phone: +82-33-640-2857 Fax: +82-33-640-2850 E-mail:
| |
Collapse
|
26
|
The Immunomodulatory Effects of Phellodendri Cortex Polysaccharides on Cyclophosphamide-Induced Immunosuppression in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3027708. [PMID: 34840584 PMCID: PMC8616698 DOI: 10.1155/2021/3027708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Cyclophosphamide is a commonly used anticancer drug, and immunosuppression is one of the most common side effects. How to recover the immunological function is important for cyclophosphamide-treated patients. In the present study, Phellodendri Cortex polysaccharides (CPP) could enhance the proliferation of mouse spleen lymphocytes in vitro. The immunoregulatory function of CPP was then investigated in cyclophosphamide-induced immunosuppressed mice. In CPP-treated groups, mice were orally treated with CPP at doses of 1, 0.5, and 0.25 g/kg bodyweight from 1 to 11 d, respectively. The cyclophosphamide was administrated in CPP and cyclophosphamide groups from 12 to 14 d. In the cyclophosphamide and normal control groups, the mice received equal volume of saline from 1 to 14 d. The results showed that CPP (1 g/kg) could significantly increase the bodyweight of mice, even during cyclophosphamide treatment. The organ coefficients of the spleen and thymus were recovered by CPP treatment. CPP upregulated the contents of cytokines (IL-2, IL-6, IFN-γ, and TNF-α) in serum, which were downregulated by cyclophosphamide. The mRNA levels of these cytokines were also elevated by CPP treatment in the spleen. Cyclophosphamide upregulated the expressions of NF-κB p65, TLR4, and MyD88, suggesting that the NF-κB signaling pathway was activated by cyclophosphamide. After CPP treatment, it was recovered to normal level. These results indicated that CPP alleviated the cyclophosphamide-induced immunosuppression.
Collapse
|
27
|
Jhang SY, Lee SH, Lee EB, Choi JH, Bang S, Jeong M, Jang HH, Kim HJ, Lee HJ, Jeong HC, Lee SJ. Effects of Platycodon grandiflorum on Gut Microbiome and Immune System of Immunosuppressed Mouse. Metabolites 2021; 11:metabo11120817. [PMID: 34940575 PMCID: PMC8707369 DOI: 10.3390/metabo11120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Platycodon grandiflorum (PG) is a perennial plant that has been used as a traditional remedy to control immune-related diseases. PG was steamed and dried to improve its taste (PGS). The aim of the study was to investigate the effects of PG and PGS (PG-diets) on the gut microbiome and immune system. We treated PG-diets to immunosuppressed mice via cyclophosphamide (CPA) injection. After two weeks of the supplement, we evaluated specific genera related to body weight and serum immunoglobulin levels and analyzed 16S rRNA sequencing and metagenomics statistical analysis. PG-diets groups showed an increased abundance of microorganisms in immunodeficient mice compared to the control group (NC). Moreover, Akkermansia significantly decreased in response to the CPA in the NC group at the genus level, whereas its abundance increased in the PG-diets groups. We also found that the modulation of the gut microbiome by PG-diets was correlated with body weight, IgA, and IgM levels. The results demonstrate that PG-diets may improve the health benefits of immunosuppressed mice by altering the gut microbiome, though not much difference was found between PG and PGS treatments. Finally, this is the first study showing the effects of PGS-diets on the gut microbiome and immune system as a potential nourishing immunity supplement.
Collapse
Affiliation(s)
- So-Yun Jhang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul 08826, Korea;
| | - Sung-Hyen Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-Gun 55365, Korea; (E.-B.L.); (J.-H.C.); (H.-H.J.)
- Correspondence:
| | - Eun-Byeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-Gun 55365, Korea; (E.-B.L.); (J.-H.C.); (H.-H.J.)
| | - Ji-Hye Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-Gun 55365, Korea; (E.-B.L.); (J.-H.C.); (H.-H.J.)
| | - Sohyun Bang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | | | - Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-Gun 55365, Korea; (E.-B.L.); (J.-H.C.); (H.-H.J.)
| | - Hyun-Ju Kim
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Korea;
| | - Hyun-Cheol Jeong
- Food R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon, Ansan 15407, Korea; (H.-C.J.); (S.-J.L.)
| | - Sung-Jin Lee
- Food R&D Center, Hyundai Bioland Co., Ltd., Manhae-ro, Danwon, Ansan 15407, Korea; (H.-C.J.); (S.-J.L.)
| |
Collapse
|
28
|
Yu X, Zhang Y, Xu F, Dong D, Wang W, Wu X. Screening of immune-enhancing Lactobacillus in mice by using a cell-line. J Microbiol Methods 2021; 192:106380. [PMID: 34813868 DOI: 10.1016/j.mimet.2021.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
In this study, we found that it is possible to screen Lactobacillus strains that enhance the immune function of mice using HCT-8 cells. Lactobacillus were co-incubated with intestinal epithelial HCT-8 cells to detect and screen the strains that induced more interleukin-6 (IL-6) in the culture supernatant. Simultaneously, a mouse model of low immunity was established to administer the screened lactobacilli by gavage. After 4 weeks of continuous gavage, related cytokines in blood and immune cell indexes in organs were detected to comprehensively evaluate the feasibility of in vitro cell culture model for screening immune-enhancing strains. The content of IL-6 in the culture supernatant of HCT-8 cells induced by the three tested strains increased approximately 5, 8 and 15 fold compared with that of the control group. IL-6 content in serum of mice was significantly higher than that of the control group provided with cyclophosphamide (CTX). Lactobacillus paracasei ZLPC01 presented a higher ability to protect against the immune damage of CTX by decreasing the serum IgG level, increasing the transformation of mouse splenocytes, and the activity of NK cells. Furthermore, L. paracasei ZLPC01 increased cytokine content in serum (IL-6, IL-2, TNF-α and IFN-γ) and colon (IL-6 and TNF-α) in CTX-treated mice. Screening strains that enhance immunity via an in vitro cell-line is simple in operation, and the results are well correlated with those of animal experiments, which is feasible and effective in practice. In addition, L. paracasei ZLPC01 could have the potential to enhance the immunity of mice effectively through inducing intestinal cells to produce IL-6, TNF-α and other cytokines.
Collapse
Affiliation(s)
- Xiaomin Yu
- Jiangxi-Oai Joint Research institute, College of Basic Medicine, Nanchang University, Nanchang 330047, PR China
| | - Yu Zhang
- Jiangxi-Oai Joint Research institute, College of Basic Medicine, Nanchang University, Nanchang 330047, PR China
| | - Feng Xu
- Jiangxi-Oai Joint Research institute, College of Basic Medicine, Nanchang University, Nanchang 330047, PR China
| | - Degang Dong
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China State
| | - Wanchun Wang
- College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China State.
| | - Xiaoli Wu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China State.
| |
Collapse
|
29
|
Xiang XW, Zheng HZ, Wang R, Chen H, Xiao JX, Zheng B, Liu SL, Ding YT. Ameliorative Effects of Peptides Derived from Oyster ( Crassostrea gigas) on Immunomodulatory Function and Gut Microbiota Structure in Cyclophosphamide-Treated Mice. Mar Drugs 2021; 19:md19080456. [PMID: 34436295 PMCID: PMC8401037 DOI: 10.3390/md19080456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
The intestinal flora is recognized as a significant contributor to the immune system. In this research, the protective effects of oyster peptides on immune regulation and intestinal microbiota were investigated in mice treated with cyclophosphamide. The results showed that oyster peptides restored the indexes of thymus, spleen and liver, stimulated cytokines secretion and promoted the relative mRNA levels of Th1/Th2 cytokines (IL-2, IFN-γ, IL-4 and IL-10). The mRNA levels of Occludin, Claudin-1, ZO-1, and Mucin-2 were up-regulated, and the NF-κB signaling pathway was also activated after oyster peptides administration. Furthermore, oyster peptides treatment reduced the proportion of Firmicutes/Bacteroidetes, increased the relative abundance of Alistipes, Lactobacillus, Rikenell and the content of short-chain fatty acids, and reversed the composition of intestinal microflora similar to that of normal mice. In conclusion, oyster peptides effectively ameliorated cyclophosphamide-induced intestinal damage and modified gut microbiota structure in mice, and might be utilized as a beneficial ingredient in functional foods for immune regulation.
Collapse
Affiliation(s)
- Xing-Wei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hui-Zhen Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Jin-Xing Xiao
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
- Correspondence: (J.-X.X.); (Y.-T.D.); Tel.: +86-159-0680-1306 (J.-X.X.); +86-139-0650-1671 (Y.-T.D.)
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Shu-Lai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Yu-Ting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (J.-X.X.); (Y.-T.D.); Tel.: +86-159-0680-1306 (J.-X.X.); +86-139-0650-1671 (Y.-T.D.)
| |
Collapse
|
30
|
Liang Q, Dong J, Wang S, Shao W, Ahmed AF, Zhang Y, Kang W. Immunomodulatory effects of Nigella sativa seed polysaccharides by gut microbial and proteomic technologies. Int J Biol Macromol 2021; 184:483-496. [PMID: 34166694 DOI: 10.1016/j.ijbiomac.2021.06.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CTX) was used to establish the immunosuppressive mice model. The immune organ viscera index, phagocytes vitality, the levels of cytokines in serum, the oxidative stress resistance, proteomics and intestinal flora in mice were investigated to evaluate the effect of immune regulation of Nigella sativa seed polysaccharide (NSSP). The results showed that the high-dose NSSP group could significantly increase the thymus and spleen index. The levels of ACP, LDH, T-AOC, SOD, IL-2, IL-4 and IL-6 were significantly increased and the levels of TNF-α and MDA were reduced. All evidences indicated that NSSP could improve the immune effects of the immunosuppressed mice. Proteomics investigation showed that NSSP could improve the immune by regulating the differential proteins of PI3K and PTEN, and regulating the metabolism-related pathways such as autoimmune diseases and PI3K-Akt signaling pathway. of Gut microbes analysis showed that NSSP could exert immunomodulatory effects by improving the structure of the intestinal flora, increasing the diversity of the flora, and regulating metabolic pathways such as lipid metabolism, polysaccharide synthesis and signal transduction by the prediction of flora metabolic functions. In addition, NSSP could regulate intestinal environment by regulating the content of short chain fatty acids.
Collapse
Affiliation(s)
- Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China
| | - Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China
| | - Senye Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China
| | - Wenjing Shao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China
| | - Adel F Ahmed
- Medicinal and Aromatic Plants Researches Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Shijiazhuang 050227, Hebei, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050227, Hebei, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, Henan, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, Henan, China.
| |
Collapse
|
31
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
32
|
Ma X, Yang M, He Y, Zhai C, Li C. A review on the production, structure, bioactivities and applications of Tremella polysaccharides. Int J Immunopathol Pharmacol 2021; 35:20587384211000541. [PMID: 33858263 PMCID: PMC8172338 DOI: 10.1177/20587384211000541] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tremella polysaccharide is known to be structurally unique and biologically
active natural products, abundant and versatile in activities and applications
in food industry, daily chemical industry and medicine industry. In order to
improve the industrialisation of Tremella polysaccharide, the limitations of
preparation and structure-activity relationship of Tremella polysaccharide were
reviewed in this paper. The research progress of Tremella polysaccharide in the
past 20 years was summarized from the sources, preparation methods, molecular
structure, activity and application, and the research trend in the future was
also prospected. The application prospect of Tremella polysaccharide in against
multiple sub-health states was worth expecting.
Collapse
Affiliation(s)
- Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China.,State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Shanghai, China
| | - Meng Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chuntao Zhai
- Laibo Pharmaceutical Technology (Shanghai) Co. Ltd, Shanghai, China
| | - Chengliang Li
- Laibo Pharmaceutical Technology (Shanghai) Co. Ltd, Shanghai, China
| |
Collapse
|
33
|
Jiang Y, Zhou W, Zhang X, Wang Y, Yang D, Li S. Protective Effect of Blood Cora Polysaccharides on H9c2 Rat Heart Cells Injury Induced by Oxidative Stress by Activating Nrf2/HO-1 Signal Pathway. Front Nutr 2021; 8:632161. [PMID: 33738296 PMCID: PMC7960668 DOI: 10.3389/fnut.2021.632161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/10/2021] [Indexed: 01/14/2023] Open
Abstract
The protective effect of blood cora polysaccharides (BCP) on H9c2 rat heart cells under oxidative stress was explored with the use of a H9c2 cell oxidative stress model. The ability of BCP to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl radicals and its reducing power were measured in vitro, indicating a more powerful antioxidant effect of BCP compared to a similar concentration of vitamin C. The cellular metabolic activity was tested through the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] assay. Additionally, the relevant oxidation indicator level within the cell supernatant and cells was tested with reagent kits, and mRNA and protein expression levels in the cells were tested through quantitative polymerase chain reaction (qPCR) and western blot. The chemical composition of BCP was determined through high performance liquid chromatography (HPLC). The results show that compared with the normal group, the model group's cell survival rate (28.75 ± 2.56%) decreased, lactate dehydrogenase (LDH) leakage and the malondialdehyde (MDA) content increased, and superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels decreased. The results of qPCR and western blot show that compared with the normal group, the model group's Bcl-2 associated X protein (Bax), caspase-3, nuclear factor erythroid-2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression, NAD(P)H:quinoneoxidoreductase 1 (NQO1), and cytochrome c (Cyt C) decreased, and B-cell lymphoma-2 (Bcl-2) expression was increased, with significant statistical differences. Compared with the model group, the cell survival rate for each BCP-treated group increased, the LDH leakage decreased, the SOD, CAT, and GSH levels in the cells increased, the MDA content decreased, the Bax, caspase-3, Nrf2, HO-1, NQO1, and Cyt C expression was weakened, and the Bcl-2 expression was strengthened. BCP inhibited the reduction of mitochondrial membrane potential caused by H2O2 treatment. According to the component analysis, BCP mainly consist of mannitol, ribose, glucosum anhydricum, galactose, and xylose. It was observed that the Nrf2/HO-1 signaling pathway can be activated, regulated, and controlled by functional BCP to protect H9c2 cells injured by oxidative stress.
Collapse
Affiliation(s)
- Yong Jiang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xin Zhang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Dingyi Yang
- Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Shujie Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
34
|
Han NR, Kim HJ, Lee JS, Kim HY, Moon PD, Kim HM, Jeong HJ. The immune-enhancing effect of anthocyanin-fucoidan nanocomplex in RAW264.7 macrophages and cyclophosphamide-induced immunosuppressed mice. J Food Biochem 2021; 45:e13631. [PMID: 33528053 DOI: 10.1111/jfbc.13631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
Aronia, a healthy fruit well known as black chokeberry, has health-promoting effects on hypertension, oxidative stress, and diabetes. Despite many reports of bioactivities of aronia, there is little scientific research on the potential for immune-enhancement. So, anthocyanin-fucoidan nanocomplex (AFNC, a nanocomplex of aronia extract and fucoidan) has been developed to improve immune-enhancement. This study aimed to identify immunomodulatory effects and underlying mechanisms of AFNC using RAW264.7 macrophages and cyclophosphamide-induced immunosuppressed mice. As a result, AFNC-treated RAW264.7 macrophages elevated the production of IL-2, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO). AFNC-enhanced inducible NO synthase expression via nuclear factor-κB signaling pathways. AFNC dose-dependently increased levels of IL-2, IL-6, TNF-α, IL-10, IL-12, interferon-γ, or IL-4 in the serum and spleen of immunosuppressed mice. Taken together, AFNC encourages the immune-enhancing activity through immunostimulatory cytokine production by activation of macrophage. Therefore, these results suggest that AFNC is useful for immunodeficiency-related disorders. PRACTICAL APPLICATIONS: In these days of prevalence of infectious diseases, individual immunity is very important. AFNC has the immune-enhancing effects through immunostimulatory cytokine production by activation of macrophage. Therefore, AFNC could be widely applied to ameliorate a variety of diseases caused by immunosuppression such as infectious diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyeong-Jin Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jin Soo Lee
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, 31499, Republic of Korea.,Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
35
|
Plackett–Burman Combined with Box–Behnken to Optimize the Medium of Fermented Tremella Polysaccharide and Compare the Characteristics before and after Optimization. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8896454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to improve the yield of fermented Tremella polysaccharide (FTP) by optimizing the medium and to explore the effect of optimization on the structure. In this paper, the Plackett–Burman design and response surface method were used to optimize the fermentation medium of Tremella spore GT2# for FTP production. The results of the Plackett–Burman design showed that potato extract, glucose, and peptone were the main factors. The Box–Behnken experiment and regression analysis determined that the optimal concentrations of potato extract, glucose, and peptone were 22.01%, 29.38 g/L, and 2.61 g/L, respectively. After optimization, the fermentation period shortened from 5 days to 3 days, and the yield of FTP increased from 10.75 g/L to 12.50 g/L, which was in good agreement with the predicted value (12.36 g/L). Characterization of FTP obtained before and after optimization was carried out, and the results showed that medium optimization had significant effects on the primary structure of FTP, including molecular weight, monosaccharide composition, and proportion. After optimization, the content of acid polysaccharide increased, and the glycoside bonds changed from a-configuration to ß-configuration.
Collapse
|
36
|
LI Y, CHEN J, LAI P, TANG B, WU L. Influence of drying methods on the physicochemical properties and nutritional composition of instant Tremella fuciformis. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.20519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Junchen CHEN
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Pufu LAI
- Fujian Academy of Agricultural Sciences, China
| | - Baosha TANG
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Li WU
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| |
Collapse
|
37
|
Immunostimulatory Activity of Black Rice Bran in Cyclophosphamide-Induced Immunosuppressed Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20934919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Black rice bran extract (BRBE), containing various biologically active compounds, such as anthocyanin, has antioxidant activity and numerous pharmacological effects. Here, we aimed to confirm the immunostimulatory effects of BRBE in cyclophosphamide (CP)-induced immunosuppressed cells. Our results confirmed that BRBE exerted an immunostimulatory effect. In vitro, BRBE treatment enhanced cell proliferation, activity of natural killer cells and cytotoxic T lymphocytes, and production of CP-repressed cytokines, such as tumor necrosis factor-α, interferon-γ, interleukin (IL)-2, and IL-12, and immunoglobulins G and A in isolated splenocytes. Additionally, in vivo, BRBE treatment increased the number of immune cells, such as white blood cells, lymphocyte counts, mid-range absolute counts, and neutrophils in CP-induced immunosuppressed rats. Furthermore, BRBE increased the serum levels of abovementioned inflammatory cytokines and immunoglobulins in CP-induced immunosuppressed rats. In addition, BRBE protected against CP-mediated spleen and thymic tissue damage. Our findings suggest that BRBE could be potentially used as a component of functional food for immunity enhancement.
Collapse
|
38
|
Gao Y, Ji H, Peng L, Gao X, Jiang S. Development of PLGA-PEG-PLGA Hydrogel Delivery System for Enhanced Immunoreaction and Efficacy of Newcastle Disease Virus DNA Vaccine. Molecules 2020; 25:molecules25112505. [PMID: 32481518 PMCID: PMC7321080 DOI: 10.3390/molecules25112505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The highly contagious Newcastle disease virus (NDV) continues to threaten poultry all over the world. The NDV DNA vaccine is a promising solution to the current Newcastle disease (ND) challenges, and thus an efficient delivery system should be developed to facilitate the efficacy of DNA vaccines. In this study, we developed a DNA vaccine delivery system consisting of a triblock copolymer of poly(lactide co-glycolide acid) and polyethylene glycol (PLGA-PEG-PLGA) hydrogel in which the recombinant NDV hemagglutinin-neuraminidase (HN) plasmid was encapsulated. Its characteristics, security, immune responses, and efficacy against highly virulent NDV were detected. The results showed that the plasmids were gradually released in a sustained manner from the hydrogel, which improved the biological stability of the plasmids and demonstrated a high biocompatibility. The plasmids, when they were incorporated into the hydrogel delivery system, enhanced immune activation and provided 100% protection against the highly virulent NDV strain. Furthermore, we proved that this NDV DNA hydrogel vaccine could improve the lymphocyte proliferation and increase the immunological cytokine production via the PI3K/Akt pathway. These results indicate that the PLGA-PEG-PLGA thermosensitive hydrogel could be a promising delivery system for the NDV DNA vaccine in order to achieve a sustained supply of plasmids and induce potent immune responses.
Collapse
|
39
|
Noh EM, Kim JM, Lee HY, Song HK, Joung SO, Yang HJ, Kim MJ, Kim KS, Lee YR. Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide-induced immunosuppressed rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:322. [PMID: 31752816 PMCID: PMC6868875 DOI: 10.1186/s12906-019-2724-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022]
Abstract
Background Platycodon grandiflorum is a flowering plant that is used in traditional medicine for treating pulmonary and respiratory disorders. It exerts various pharmacological effects, including immunomodulatory and anti-cancer activities. The purpose of this study was to confirm the in vitro and in vivo immune-enhancing effects of P. grandiflorum extract (PGE) on splenocytes isolated from cyclophosphamide (CP)-induced immunosuppressed rats. Methods For in vitro analysis, splenocytes were treated with PGE at various doses along with CP. Cell viability was measured by a WST-1 assay, and NK cell activity and cytotoxic T lymphocyte (CTL) activity was also examined. In addition, immunoglobulin A (IgA), IgG, and cytokine levels were measured. For in vivo analysis, Sprague Dawley rats were treated with various doses of PGE along with CP. Complete blood count (CBC) was performed, and plasma levels of IgA, IgG, TNF-α, IFN-γ, IL-2, and IL-12 were quantified. Additionally, tissue damage was assessed through histological analyses of the thymus and spleen. Results PGE treatment enhanced cell viability and natural killer cell and cytotoxic T lymphocyte activity, and increased the production of CP-induced inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA) in splenocytes. In addition, in CP-treated rats, PGE treatment induced the recovery of white blood cell, neutrophil, and lymphocyte counts, along with mid-range absolute counts, and increased the serum levels of inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA). Moreover, PGE attenuated CP-induced spleen and thymic damage. Conclusions Our results confirmed that PGE exerts an immune-enhancing effect both in vitro and in vivo, suggesting that PGE may have applications as a component of immunostimulatory agents or as an ingredient in functional foods.
Collapse
|
40
|
Chu Q, Zhang Y, Chen W, Jia R, Yu X, Wang Y, Li Y, Liu Y, Ye X, Yu L, Zheng X. Apios americana Medik flowers polysaccharide (AFP) alleviate Cyclophosphamide-induced immunosuppression in ICR mice. Int J Biol Macromol 2019; 144:829-836. [PMID: 31734373 DOI: 10.1016/j.ijbiomac.2019.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Immunosuppression refers to the suppression of the immune response. The immune function of immunocompromised people is not enough to resist bacterial, viral, fungal and other infections, leading to a series of diseases. A large number of experimental data show that polysaccharide compounds are immune modulators, which can enhance the body immunity with little toxic. Meanwhile, it can reduce the side effects of commonly used immunosuppressants, such as cytotoxicity, decreased ability of the body to fight infection, and inhibition of the reproduction of bone marrow hematopoietic cells. It can be used as oral or injectable drugs. In this study, a purified polysaccharide was primarily extracted from the flowers of Apios americana Medik (AAM), which can improve the immunosuppression induced by cyclophosphamide (CTX). The immunoenhancement effect of AFP was evaluated by measuring the body weight, immune organ index, cytokine secretion and antibody generated levels of CTX-induced mice. Our results showed that AFP could significantly improve the above immune indexes, which indicated AFP could alleviate immunosuppression induced by CTX. The study provided a theoretical basis for the promotion, development and application of AAM as a newly introduced food material.
Collapse
Affiliation(s)
- Qiang Chu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yiru Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lushuang Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Protective effect of Ganoderma atrum polysaccharide on acrolein-induced macrophage injury via autophagy-dependent apoptosis pathway. Food Chem Toxicol 2019; 133:110757. [DOI: 10.1016/j.fct.2019.110757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023]
|
42
|
Polysaccharides from the flowers of tea (Camellia sinensis L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103470] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
43
|
Wang Z, Li Y, Wang C, Xia H, Liang Y, Li Z. Oral administration of Urtica macrorrhiza Hand.-Mazz. polysaccharides to protect against cyclophosphamide-induced intestinal immunosuppression. Exp Ther Med 2019; 18:2178-2186. [PMID: 31410170 PMCID: PMC6676156 DOI: 10.3892/etm.2019.7792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
As a strategy to prevent the well-known immunosuppressant effects of cyclophosphamide (CY), the immunomodulatory activity of the polysaccharide isolated from Urtica macrorrhiza Hand.-Mazz. (UMHMPS) was investigated in the present study. The chemical properties of UMHMPS, including total carbohydrates, uronic acid, protein contents, monosaccharide compositions, molecular weight and structural confirmation, were investigated. The immunomodulatory activity of UMHMPS was evaluated using a CY-induced immunosuppression mouse model. The results revealed that UMHMPS, which is composed of rhamnose, gluconic acid, galactose acid, galactose and xylose, exhibited potent immunomodulatory activity and low toxicity in mice. It increased the secretions of secretory immunoglobulin A, interferon (IFN)-γ and interleukin (IL)-4, and maintained the balance of the ratios of IFN-γ/IL-4 and cluster of differentiation (CD)3+/CD19+ cells in Peyer's patches. Furthermore, it increased the expression of Toll-like receptor (TLR)-4, indicating that TLR4 may be one of the receptors of UMHMPS. Therefore, the present study provides evidence for the potential use of UMHMPS as an immune enhancement drug in chemotherapy.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Yanhua Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Chongjing Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Hongying Xia
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Yueqin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| | - Zhongkun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, P.R. China
| |
Collapse
|
44
|
Meng M, Guo M, Feng C, Wang R, Cheng D, Wang C. Water-soluble polysaccharides from Grifola Frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal transduction pathways. Food Funct 2019; 10:4998-5007. [PMID: 31355400 DOI: 10.1039/c8fo02062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Grifola Frondosa, the king of mushrooms, is one of the most valued traditional medicines and has been used as a health food for a long time in China, Japan, and other Asian countries. The present study was designed to evaluate the immune-modulating effects of water-soluble polysaccharides from the Grifola Frondosa fruiting body (GFP) by using mouse peritoneal macrophage and cytoxan (CTX) induced immunosuppression models. Compared with CTX-induced immunosuppressive mice, the spleen and thymus indexes in mice with GFP orally administrated were significantly increased, body weight loss was alleviated, and the natural killer (NK) cytotoxicity and the proliferative activities of lymphocytes were elevated. Furthermore, levels of interleukin-2 (IL-2), interferon-6 (IL-6) and tumor necrosis factor-α (TNF-α) were notably reduced by CTX, while GFP abolished these effects. GFP also effectively increased total antioxidant capacity and superoxidase dismutase, catalase and glutathione peroxidase activities, and inhibited an increase in the malondialdehyde level. Histopathological analysis of spleens revealed the protective effect of GFP against CTX-induced immunosuppression. Western blotting results showed that GFP possessed immunomodulatory activity by up-regulating transcription factors (p-JAK2/JAK2, p-STAT3/STAT3 and SOCS3) in JAK2/STAT3/SOCS signaling pathways. This study suggested that GFP may provide an alternative strategy for lessening chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | | | |
Collapse
|
45
|
Wang D, Wang D, Yan T, Jiang W, Han X, Yan J, Guo Y. Nanostructures assembly and the property of polysaccharide extracted from Tremella Fuciformis fruiting body. Int J Biol Macromol 2019; 137:751-760. [PMID: 31254577 DOI: 10.1016/j.ijbiomac.2019.06.198] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
Polysaccharides from fungi are good free radical scavengers. However, there are no enzymes digesting these polysaccharides in the human body, which limits the use of fungal polysaccharides. Therefore, it is of great significance to study the preparation methods of fungal polysaccharides to improve the utilization rate of fungal polysaccharides. In this paper, the acidic polysaccharide of Tremella fuciformis was extracted by boiling and precipitated by ethanol. The total sugar content obtained by freeze-drying after ion exchange chromatography purification was 93.6%. It is mainly composed of mannose, glucuronic acid, xylose and fucose. According to the peak area, the mass ratio of the substance is about 6.8:1:1.5:0.6, which indicates that TFP is a polysaccharide with mannose as its main chain and glucuronic acid, fucose and xylose as well as a small amount of glucose as the branch chain. Molecular weight is 1.86 × 106 Da. The existence of glucuronic acid endows polysaccharides with negative charge in aqueous solution and can be assembled into nanostructures with chitosan. By measuring the swelling property in aqueous, it shows the TFP separated from Tremella fuciformis fruits is suitable for drug controlled release.
Collapse
Affiliation(s)
- Deqiang Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China.
| | - Deguo Wang
- Department of Gerontology, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Tingxuan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Weifeng Jiang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Jvfen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| | - Yanrong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243032, China
| |
Collapse
|
46
|
Improved Antitumor Efficacy of Combined Vaccine Based on the Induced HUVECs and DC-CT26 Against Colorectal Carcinoma. Cells 2019; 8:cells8050494. [PMID: 31121964 PMCID: PMC6562839 DOI: 10.3390/cells8050494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is essential for the development, growth, and metastasis of solid tumors. Vaccination with viable human umbilical vein endothelial cells (HUVECs) has been used for antitumor angiogenesis. However, the limited immune response induced by HUVECs hinders their clinical application. In the present study, we found that HUVECs induced by a tumor microenvironment using the supernatant of murine CT26 colorectal cancer cells exerted a better antiangiogenic effect than HUVECs themselves. The inhibitory effect on tumor growth in the induced HUVEC group was significantly better than that of the HUVEC group, and the induced HUVEC group showed a strong inhibition in CD31-positive microvessel density in the tumor tissues. Moreover, the level of anti-induced HUVEC membrane protein antibody in mouse serum was profoundly higher in the induced HUVEC group than in the HUVEC group. Based on this, the antitumor effect of a vaccine with a combination of induced HUVECs and dendritic cell-loading CT26 antigen (DC-CT26) was evaluated. Notably, the microvessel density of tumor specimens was significantly lower in the combined vaccine group than in the control groups. Furthermore, the spleen index, the killing effect of cytotoxic T lymphocytes (CTLs), and the concentration of interferon-γ in the serum were enhanced in the combined vaccine group. Based on these results, the combined vaccine targeting both tumor angiogenesis and tumor cells may be an attractive and effective cancer immunotherapy strategy.
Collapse
|
47
|
Wei W, Pang S, Fu X, Tan S, Wang Q, Wang S, Sun D. The role of PERK and IRE1 signaling pathways in excessive fluoride mediated impairment of lymphocytes in rats' spleen in vivo and in vitro. CHEMOSPHERE 2019; 223:1-11. [PMID: 30763911 DOI: 10.1016/j.chemosphere.2019.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Fluoride is capable of inducing immunotoxicity, but its molecular mechanisms remain elusive. This study aimed to explore the roles of Protein kinase receptor-like ER kinase (PERK) and inositol requiring enzyme 1 (IRE1) signaling pathways in excessive fluoride-induced immunotoxicity, focusing on the regulatory roles of these two pathways in cell division and apoptosis. Firstly, we assessed the changes in cell division and apoptosis in rats exposed to 0, 50, or 100 mg/L fluoride, and detected the expression of PERK and IRE1 signaling-related proteins in spleen. Additionally, to validate the role of these two pathways, we evaluated the changes in cell division and apoptosis of primary lymphocytes from rat's spleen to 4 mM fluoride after knockdown of PERK and IRE1 in vitro. In vivo results confirmed that fluoride inhibited cell division, promoted the apoptosis and resulted in histological and ultrastructural abnormalities of rat spleen. In addition, fluoride induced activation of the PERK and IRE1 signalings and the associated apoptosis. Moreover, the in vitro results further verified the findings in vivo that fluoride activated these two signalings in B lymphocytes. Importantly, after knockdown of PERK and IRE1 in lymphocytes, the cell division ability was restored, and apoptosis decreased in fluoride-treated lymphocytes; the results correlated well with the expression of PERK and IRE1 signaling-related proteins, thus confirming the pivotal role of these pathways in immunosuppression by excessive fluoride. This study indicates that the mechanisms underlying the deleterious effects of fluoride on immune system are related to activation of the PERK and IRE1 signaling pathways.
Collapse
Affiliation(s)
- Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shujuan Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyan Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiwen Tan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qian Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shize Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China; Institution of Environmentally Related Diseases, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
48
|
Liu X, Hou R, Yan J, Xu K, Wu X, Lin W, Zheng M, Fu J. Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice. Int J Biol Macromol 2019; 129:41-49. [DOI: 10.1016/j.ijbiomac.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 02/08/2023]
|
49
|
Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, Liu SX, Li SS, Sun YS. A Comparative Study on the Effects of Different Parts of Panax ginseng on the Immune Activity of Cyclophosphamide-Induced Immunosuppressed Mice. Molecules 2019; 24:E1096. [PMID: 30897728 PMCID: PMC6470474 DOI: 10.3390/molecules24061096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 01/07/2023] Open
Abstract
The objective of the present study was to compare the effects of the immunological activity of various parts (root/stem/leaf/flower/seed) of five-year-old ginseng on the immune system of immunosuppressive mice. Immunosuppression was induced by cyclophosphamide (CTX) in the mouse model, whereas levamisole hydrochloride tablet (LTH) was used for the positive control group. We found that ginseng root (GRT), ginseng leaf (GLF), and ginseng flower (GFR) could relieve immunosuppression by increased viability of NK cells, enhanced immune organ index, improved cell-mediated immune response, increased content of CD4⁺ and ratio of CD4⁺/CD8⁺, and recovery of macrophage function, including carbon clearance, phagocytic rate, and phagocytic index, in immunodeficient mice. However, ginseng stem (GSM) and ginseng seed (GSD) could only enhance the thymus indices, carbon clearance, splenocyte proliferation, NK cell activities, and the level of IL-4 in immunosuppressed mice. In CTX-injected mice, GRT and GFR remarkably increased the protein expression of Nrf2, HO-1, NQO1, SOD1, SOD2, and CAT in the spleen. As expected, oral administration of GRT and GFR markedly enhanced the production of cytokines, such as IL-1β, IL-4, IL-6, IFN-γ, and TNF-α, compared with the CTX-induced immunosuppressed mice, and GRT and GFR did this relatively better than GSM, GLF, and GSD. This study provides a theoretical basis for further study on different parts of ginseng.
Collapse
Affiliation(s)
- Li-Xue Chen
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yu-Li Qi
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Kun Gao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui-Ze Gong
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Zi-Jun Shao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Song-Xin Liu
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Shan-Shan Li
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yin-Shi Sun
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
50
|
Preventive Effect of the Herbal Preparation, HemoHIM, on Cisplatin-Induced Immune Suppression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3494806. [PMID: 31015850 PMCID: PMC6446088 DOI: 10.1155/2019/3494806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/28/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
We determined the functional effect of the herbal preparation, HemoHIM, on the immune system, by examining the immunomodulatory activities of HemoHIM using immunocompromised mice. In this study, to examine the effect on the restoration of immune cells and balance in the immune system, we utilized a cisplatin-induced immunosuppression mouse model. Mice were injected intraperitoneally with cisplatin, an immunosuppressive anticancer, and then received oral doses of 100, 250, and 500 mg/kg of HemoHIM for 14 days. The HemoHIM prevented the cisplatin-induced loss of body and organ weight. In terms of innate immunity, natural killer (NK) cell activity and phagocytosis increased in the HemoHIM group compared to the cisplatin control group. The HemoHIM group also showed a significantly higher expression of Th1-mediated cytokines (interferon gamma (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α)) and inhibited the production of Th2-mediated cytokine interleukin-4 (IL-4) compared to cisplatin control group. These findings indicate that HemoHIM enhances immune activity by modulating immune cell activity and cytokine secretion in immune-suppressed mice.
Collapse
|