1
|
Zheng HZ, Dai W, Xu MH, Lin YY, Zhu XL, Long H, Tong LL, Xu XG. Intraspecific Differentiation of Styrax japonicus (Styracaceae) as Revealed by Comparative Chloroplast and Evolutionary Analyses. Genes (Basel) 2024; 15:940. [PMID: 39062719 PMCID: PMC11275416 DOI: 10.3390/genes15070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Styrax japonicus is a medicinal and ornamental shrub belonging to the Styracaceae family. To explore the diversity and characteristics of the chloroplast genome of S. japonicus, we conducted sequencing and comparison of the chloroplast genomes of four naturally distributed S. japonicus. The results demonstrated that the four chloroplast genomes (157,914-157,962 bp) exhibited a typical quadripartite structure consisting of a large single copy (LSC) region, a small single copy (SSC) region, and a pair of reverse repeats (IRa and IRb), and the structure was highly conserved. DNA polymorphism analysis revealed that three coding genes (infA, psbK, and rpl33) and five intergene regions (petA-psbJ, trnC-petN, trnD-trnY, trnE-trnT, and trnY-trnE) were identified as mutation hotspots. These genetic fragments have the potential to be utilized as DNA barcodes for future identification purposes. When comparing the boundary genes, a small contraction was observed in the IR region of four S. japonicus. Selection pressure analysis indicated positive selection for ycf1 and ndhD. These findings collectively suggest the adaptive evolution of S. japonicus. The phylogenetic structure revealed conflicting relationships among several S. japonicus, indicating divergent evolutionary paths within this species. Our study concludes by uncovering the genetic traits of the chloroplast genome in the differentiation of S. japonicus variety, offering fresh perspectives on the evolutionary lineage of this species.
Collapse
Affiliation(s)
- Hao-Zhi Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Wei Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Meng-Han Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Yu-Ye Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Xing-Li Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Hui Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Li-Li Tong
- School of Horticulture & Landscape Architecture, Jinling Institute of Technology, Nanjing 210038, China;
| | - Xiao-Gang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| |
Collapse
|
2
|
Li S, Tian C, Hu H, Yang Y, Ma H, Liu Q, Liu L, Li Z, Wu Z. Characterization and Comparative Analysis of Complete Chloroplast Genomes of Four Bromus (Poaceae, Bromeae) Species. Genes (Basel) 2024; 15:815. [PMID: 38927750 PMCID: PMC11202509 DOI: 10.3390/genes15060815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Bromus (Poaceae Bromeae) is a forage grass with high adaptability and ecological and economic value. Here, we sequenced Bromus ciliatus, Bromus benekenii, Bromus riparius, and Bromus rubens chloroplast genomes and compared them with four previously described species. The genome sizes of Bromus species ranged from 136,934 bp (Bromus vulgaris) to 137,189 bp (Bromus ciliates, Bromus biebersteinii), with a typical quadripartite structure. The studied species had 129 genes, consisting of 83 protein-coding, 38 tRNA-coding, and 8 rRNA-coding genes. The highest GC content was found in the inverted repeat (IR) region (43.85-44.15%), followed by the large single-copy (LSC) region (36.25-36.65%) and the small single-copy (SSC) region (32.21-32.46%). There were 33 high-frequency codons, with those ending in A/U accounting for 90.91%. A total of 350 simple sequence repeats (SSRs) were identified, with single-nucleotide repeats being the most common (61.43%). A total of 228 forward and 141 palindromic repeats were identified. No reverse or complementary repeats were detected. The sequence identities of all sequences were very similar, especially with respect to the protein-coding and inverted repeat regions. Seven highly variable regions were detected, which could be used for molecular marker development. The constructed phylogenetic tree indicates that Bromus is a monophyletic taxon closely related to Triticum. This comparative analysis of the chloroplast genome of Bromus provides a scientific basis for species identification and phylogenetic studies.
Collapse
Affiliation(s)
- Shichao Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunyu Tian
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Haihong Hu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Huiling Ma
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Lemeng Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
| |
Collapse
|
3
|
Zhao M, Wu Y, Ren Y. Complete Chloroplast Genome Sequence Structure and Phylogenetic Analysis of Kohlrabi ( Brassica oleracea var. gongylodes L.). Genes (Basel) 2024; 15:550. [PMID: 38790180 PMCID: PMC11120933 DOI: 10.3390/genes15050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.
Collapse
Affiliation(s)
- Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Yanxun Wu
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Xining 810016, China
- Qinghai Provincial Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| |
Collapse
|
4
|
Javaid N, Ramzan M, Jabeen S, Shah MN, Danish S, Hirad AH. Genomic exploration of Sesuvium sesuvioides: comparative study and phylogenetic analysis within the order Caryophyllales from Cholistan desert, Pakistan. BMC PLANT BIOLOGY 2023; 23:658. [PMID: 38124056 PMCID: PMC10731703 DOI: 10.1186/s12870-023-04670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The Aizoaceae family's Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides. RESULTS The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales' 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ. CONCLUSION The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family's monophyletic origin. This study's highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University Bahawalpur, Bahawalpur, Punjab, Pakistan.
| | - Shagufta Jabeen
- Government Associate College for Women Ahmedpur East, Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shah
- Department of Agriculture, Government College University Lahore, Lahore, Punjab, Pakistan
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, Florida, USA
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Chen J, Wang F, Zhao Z, Li M, Liu Z, Peng D. Complete Chloroplast Genomes and Comparative Analyses of Three Paraphalaenopsis (Aeridinae, Orchidaceae) Species. Int J Mol Sci 2023; 24:11167. [PMID: 37446345 DOI: 10.3390/ijms241311167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Paraphalaenopsis, a genus of perennial herbs from the family Orchidaceae, contains a number of ornamental species. However, there is no information on the chloroplast genomes of Paraphalaenopsis, which limits our studies of this genus. In this study, we reported the chloroplast genomes of three species of Paraphalaenopsis (P. labukensis, P. denevel, and P. laycockii 'Semi-alba') and performed comprehensive comparative analysis. These three chloroplast genomes showed a typical quadripartile structure. Their lengths ranged from 147,311 bp to 149,240 bp. Each genome contained 120 unique genes, including 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Comparative analysis revealed major differences in sequence divergence in the three chloroplast genomes. In addition, six hypervariable regions were identified (psbM-trnDGUC, psbB, ccsA, trnKUUU, trnSGCU-trnGUCC, rps16-trnQUUG) that can be used as DNA molecular markers. Phylogenetic relationships were determined using the chloroplast genomes of 28 species from 12 genera of Aeridinae. Results suggested that Paraphalaenopsis was a clade of Aeridinae that was sister to the Holcoglossum-Vanda clade, with 100% bootstrap support within Aeridinae. The findings of this study provided the foundation for future studies on the phylogenetic analysis of Aeridinae.
Collapse
Affiliation(s)
- Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minghe Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Peng L, Li Y, Tan W, Wu S, Hao Q, Tong N, Wang Z, Liu Z, Shu Q. Combined genome-wide association studies and expression quantitative trait locus analysis uncovers a genetic regulatory network of floral organ number in a tree peony ( Paeonia suffruticosa Andrews) breeding population. HORTICULTURE RESEARCH 2023; 10:uhad110. [PMID: 37577399 PMCID: PMC10419549 DOI: 10.1093/hr/uhad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Great progress has been made in our understanding of floral organ identity determination and its regulatory network in many species; however, the quantitative genetic basis of floral organ number variation is far less well understood for species-specific traits from the perspective of population variation. Here, using a tree peony (Paeonia suffruticosa Andrews, Paeoniaceae) cultivar population as a model, the phenotypic polymorphism and genetic variation based on genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) analysis were analyzed. Based on 24 phenotypic traits of 271 representative cultivars, the transcript profiles of 119 cultivars were obtained, which indicated abundant genetic variation in tree peony. In total, 86 GWAS-related cis-eQTLs and 3188 trans-eQTL gene pairs were found to be associated with the numbers of petals, stamens, and carpels. In addition, 19 floral organ number-related hub genes with 121 cis-eQTLs were obtained by weighted gene co-expression network analysis, among which five hub genes belonging to the ABCE genes of the MADS-box family and their spatial-temporal co-expression and regulatory network were constructed. These results not only help our understanding of the genetic basis of floral organ number variation during domestication, but also pave the way to studying the quantitative genetics and evolution of flower organ number and their regulatory network within populations.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yang Li
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wanqing Tan
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangwei Wu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Tong
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhanying Wang
- Peony Research Institute, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471000, China
| | - Zheng’an Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Alshegaihi RM, Mansour H, Alrobaish SA, Al Shaye NA, Abd El-Moneim D. The First Complete Chloroplast Genome of Cordia monoica: Structure and Comparative Analysis. Genes (Basel) 2023; 14:genes14050976. [PMID: 37239336 DOI: 10.3390/genes14050976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cordia monoica is a member of the Boraginaceae family. This plant is widely distributed in tropical regions and has a great deal of medical value as well as economic importance. In the current study, the complete chloroplast (cp) genome of C. monoica was sequenced, assembled, annotated, and reported. This circular chloroplast genome had a size of 148,711 bp, with a quadripartite structure alternating between a pair of repeated inverted regions (26,897-26,901 bp) and a single copy region (77,893 bp). Among the 134 genes encoded by the cp genome, there were 89 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 1387 tandem repeats were detected, with the hexanucleotides class making up 28 percent of the repeats. Cordia monoica has 26,303 codons in its protein-coding regions, and leucine amino acid was the most frequently encoded amino acid in contrast to cysteine. In addition, 12 of the 89 protein-coding genes were found to be under positive selection. The phyloplastomic taxonomical clustering of the Boraginaceae species provides further evidence that chloroplast genome data are reliable not only at family level but also in deciphering the phylogeny at genus level (e.g., Cordia).
Collapse
Affiliation(s)
- Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Shouaa A Alrobaish
- Department of Biology, College of Science, Qassim University, Buraydah 52377, Saudi Arabia
| | - Najla A Al Shaye
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| |
Collapse
|
8
|
Zhang H, Si Y, Zhao R, Sheng Q, Zhu Z. Complete chloroplast genome and phylogenetic relationship of Nymphaea nouchali (Nymphaeaceae), a rare species of water lily in China. Gene 2023; 858:147139. [PMID: 36621658 DOI: 10.1016/j.gene.2022.147139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Nymphaea nouchali is a native species of Chinese water lily with important ornamental, economical, and medicinal purposes. However, due to the serious disturbance by alien biological invasion and human factors, N. nouchali is in an endangered state in China and urgently needs to be protected. Here, we reported the complete chloroplast genome of N. nouchali for the first time, and we found that its plastome is 159 978 bp long, comprising large and small single copies and two inverted repeats (90 001, 19 603, and 50 374 bp, respectively), indicating a typical tetrad structure. In total, 130 genes were identified, including 85 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNAs. Additionally, 136 simple sequence repeat sites were identified, composed mainly of single nucleotide (46.32%) and trinucleotide (47.05%) sequences. Five highly variable sites (psaI, rps19, ndhF, rps15, and ycf1) with a high Pi value were identified as potential molecular markers. Phylogenetic analysis showed that N. nouchali and N. ampla are closely related, and further validated previous water lily classification results based on morphological characteristics, which divided water lilies into five subgenera: Nymphaea, Brachyceras, Anecphya, Hydrocallis, and Lotos. These results are valuable for the identification and the formulation of protection strategies of N. nouchali, as well as contributing to understanding the evolutionary relationships among Nymphaeaceae species.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Si
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Runan Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Art & Design, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis. DIVERSITY 2023. [DOI: 10.3390/d15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indosasa lipoensis, an ornamental garden plant, belongs to the Indosasa genus of the subfamily Bambooaceae within Poaceae. Indosasa lipoensis is endangered and requires protection owing to its relatively narrow distribution area. Chloroplast (cp) genome offers a novel awareness of the evolutionary and genetic variation of higher plants. Herein, we assembled and elucidated the complete cp genome of I. lipoensis, and compared it with four previously published cp genomes from this genus. The I. lipoensis cp genome was 139,655 bp in size, with a typical quadripartite structure, encompassing a large single-copy region (LSC, 83,256 bp), a small single-copy region (SSC, 12,809 bp), and a pair of inverted repeat regions (IR, 21,795 bp). The cp genome consisted of 130 genes with 84 protein-coding genes (CDS), 38 tRNA genes, and 8 rRNA genes. The plastomes were highly conservative, compared to other bamboo species, and exhibited similar patterns of codon usage, number of repeat sequences, and expansion and contraction of the IR boundary. Five hypervariable hotspots were identified as potential DNA barcodes, namely rbcL, petA, petB, trnL-UAG, and ndhE-ndhI, respectively. Phylogenetic analysis based on the complete cp genomes revealed, with high resolution, that I. lipoensis and I. gigantea were most closely related. Overall, these results provided valuable characterization for the future conservation, genetic evaluation, and the breeding of I. lipoensis.
Collapse
|
10
|
Li Y, Guo L, Wang Z, Zhao D, Guo D, Carlson JE, Yin W, Hou X. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony ( Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. HORTICULTURE RESEARCH 2023; 10:uhac263. [PMID: 36793754 PMCID: PMC9926158 DOI: 10.1093/hr/uhac263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Tree peony is a unique traditional flower in China, with large, fragrant, and colorful flowers. However, a relatively short and concentrated flowering period limits the applications and production of tree peony. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of flowering phenology traits and ornamental phenotypes in tree peony. A diverse panel of 451 tree peony accessions was phenotyped for 23 flowering phenology traits and 4 floral agronomic traits over 3 years. Genotyping by sequencing (GBS) was used to obtain a large number of genome-wide single-nucleotide polymorphisms (SNPs) (107 050) for the panel genotypes, and 1047 candidate genes were identified by association mapping. Eighty-two related genes were observed during at least 2 years for flowering, and seven SNPs repeatedly identified for multiple flowering phenology traits over multiple years were highly significantly associated with five genes known to regulate flowering time. We validated the temporal expression profiles of these candidate genes and highlighted their possible roles in the regulation of flower bud differentiation and flowering time in tree peony. This study shows that GWAS based on GBS can be used to identify the genetic determinants of complex traits in tree peony. The results expand our understanding of flowering time control in perennial woody plants. Identification of markers closely related to these flowering phenology traits can be used in tree peony breeding programs for important agronomic traits.
Collapse
Affiliation(s)
| | | | - Zhanying Wang
- Luoyang Academy of Agricultural and Forestry Sciences, Luoyang, Henan, 471000, China
| | - Dehui Zhao
- College of Agronomy/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - John E. Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Weilun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
11
|
Chen Z, Jin C, Wang X, Deng Y, Tian X, Li X, Zhang Q, Zeng Y, Liao J, Zhang L. Characterization of the Complete Chloroplast Genome of Four Species in Callerya. J AOAC Int 2022; 106:146-155. [PMID: 35972336 DOI: 10.1093/jaoacint/qsac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Callerya reticulata (Bentham) Schot, Callerya dielsiana (Harms) P.K. Loc ex Z. Wei & Pedley, Callerya nitida var. hirsutissima (Z. Wei) X.Y. Zhu, and Callerya nitida (Bentham) R. Geesink, which belongs to the Leguminosae family, are important medicinal plants in China. The genus Callerya includes 26 species, 18 species are distributed in China, and the vine stems of some species are used as traditional medicinal herbs because they have important pharmacological activity. Due to the high similarity of appearance, it is difficult to identify them in the market by appearance alone. Therefore, circulating of Callerya-related materia medica on the market is confusing, sometimes even leading to drug safety problems. It is urgent to develop molecular methods for their identification. OBJECTIVE To sequence and analyze the complete chloroplast (cp) genomes of C. reticulata, C. dielsiana, C. nitida var. hirsutissima, and C. nitida and to analyze their cp genome differences as a basis for seeking easier DNA barcoding for their identification. METHOD After using Illumina high-throughput sequencing and nanopore sequencing to obtain the genome data, some bioinformatics software was used to assembly and analyze the molecular structure of cp genomes. RESULTS The complete cp genomes of the four species were circular molecules, which ranged from 130 435 to 132 546 bp, and GC contents ranged from 33.89% to 34.89%. Each of them includes a large single-copy region, a small single-copy region, and without large inverted repeat regions. CONCLUSIONS These results suggested that highly variable regions of the four cp genomes would provide useful plastid markers, which could be used as a potential genomic resource to resolve phylogenetic questions and provide a reference for mining specific DNA barcodes of these species. HIGHLIGHTS Our study provided highly effective molecular markers for subsequent phylogenetic analysis, species identification, and biogeographic analysis of Callerya.
Collapse
Affiliation(s)
- Zhi Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Chen Jin
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiaoyun Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yaqiong Deng
- School of Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004 China
| | - Xiaodan Tian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xunxun Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qinxi Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yanli Zeng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jiawei Liao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Ling Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
12
|
Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nat Commun 2022; 13:7328. [PMID: 36443323 PMCID: PMC9705720 DOI: 10.1038/s41467-022-35063-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Tree peony (Paeonia ostii) is an economically important ornamental plant native to China. It is also notable for its seed oil, which is abundant in unsaturated fatty acids such as α-linolenic acid (ALA). Here, we report chromosome-level genome assembly (12.28 Gb) of P. ostii. In contrast to monocots with giant genomes, tree peony does not appear to have undergone lineage-specific whole-genome duplication. Instead, explosive LTR expansion in the intergenic regions within a short period (~ two million years) may have contributed to the formation of its giga-genome. In addition, expansion of five types of histone encoding genes may have helped maintain the giga-chromosomes. Further, we conduct genome-wide association studies (GWAS) on 448 accessions and show expansion and high expression of several genes in the key nodes of fatty acid biosynthetic pathway, including SAD, FAD2 and FAD3, may function in high level of ALAs synthesis in tree peony seeds. Moreover, by comparing with cultivated tree peony (P. suffruticosa), we show that ectopic expression of class A gene AP1 and reduced expression of class C gene AG may contribute to the formation of petaloid stamens. Genomic resources reported in this study will be valuable for studying chromosome/genome evolution and tree peony breeding.
Collapse
|
13
|
An R, Niu M, Lou X, Huang H, Lin E. The complete chloroplast genome of Rhododendron huadingense (Ericaceae). Mitochondrial DNA B Resour 2022; 7:1910-1912. [PMCID: PMC9629095 DOI: 10.1080/23802359.2022.2135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ran An
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingyue Niu
- Huading Forestry Farm, Tiantai, Zhejiang, China
| | - Xiongzhen Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Erpei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|
15
|
Comparative Analysis of Complete Chloroplast Genomes of Nine Species of Litsea (Lauraceae): Hypervariable Regions, Positive Selection, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13091550. [PMID: 36140718 PMCID: PMC9498446 DOI: 10.3390/genes13091550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Litsea is a group of evergreen trees or shrubs in the laurel family, Lauraceae. Species of the genus are widely used for a wide range of medicinal and industrial aspects. At present, most studies related to the gene resources of Litsea are restricted to morphological analyses or features of individual genomes, and currently available studies of select molecular markers are insufficient. In this study, we assembled and annotated the complete chloroplast genomes of nine species in Litsea, carried out a series of comparative analyses, and reconstructed phylogenetic relationships within the genus. The genome length ranged from 152,051 to 152,747 bp and a total of 128 genes were identified. High consistency patterns of codon bias, repeats, divergent analysis, single nucleotide polymorphisms (SNP) and insertions and deletions (InDels) were discovered across the genus. Variations in gene length and the presence of the pseudogene ycf1Ψ, resulting from IR contraction and expansion, are reported. The hyper-variable gene rpl16 was identified for its exceptionally high Ka/Ks and Pi values, implying that those frequent mutations occurred as a result of positive selection. Phylogenetic relationships were recovered for the genus based on analyses of full chloroplast genomes and protein-coding genes. Overall, both genome sequences and potential molecular markers provided in this study enrich the available genomic resources for species of Litsea. Valuable genomic resources and divergent analysis are also provided for further research of the evolutionary patterns, molecular markers, and deeper phylogenetic relationships of Litsea.
Collapse
|
16
|
Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Leymus (Triticodae, Poaceae). Genes (Basel) 2022; 13:genes13081425. [PMID: 36011336 PMCID: PMC9408388 DOI: 10.3390/genes13081425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Leymus is a perennial genus that belongs to the tribe Triticeae (Poaceae) which has an adaptive capacity to ecological conditions and strong resistance to cold, drought, and salinity. Most Leymus species are fine herbs that can be used for agriculture, conservation, and landscaping. Due to confusion taxonomy within genera, the complete chloroplast (cp) genome of 13 Leymus species was sequenced, assembled, and compared with those of three other previously published Leymus species (Leymus condensatus, Leymus angustus, and Leymus mollis) to clarify the issue. Overall, the whole cp genome size ranged between 135,057 (L. condensatus) and 136,906 bp (Leymus coreanus) and showed a typical quadripartite structure. All studied species had 129 genes, including 83 protein-coding genes, 38 transfer RNAs, and 8 ribosomal RNAs. In total, 800 tandem repeats and 707 SSR loci were detected, most of which were distributed in the large single-copy region, followed by the inverted repeat (IR) and small single-copy regions. The sequence identity of all sequences was highly similar, especially concerning the protein-coding and IR regions; in particular, the protein-coding regions were significantly similar to those in the IR regions, regardless of small sequence differences in the whole cp genome. Moreover, the coding regions were more conserved than the non-coding regions. Comparisons of the IR boundaries showed that IR contraction and expansion events were reflected in different locations of rpl22, rps19, ndhH, and psbA genes. The close phylogenetic relationship of Leymus and Psathyrostachys indicated that Psathyrostachys possibly is the donor of the Ns genome sequence identified in Leymus. Altogether, the complete cp genome sequence of Leymus will lay a solid foundation for future population genetics and phylogeography studies, as well as for the analysis of the evolution of economically valuable plants.
Collapse
|
17
|
Feng JL, Wu LW, Wang Q, Pan YJ, Li BL, Lin YL, Yao H. Comparison Analysis Based on Complete Chloroplast Genomes and Insights into Plastid Phylogenomic of Four Iris Species. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2194021. [PMID: 35937412 PMCID: PMC9348943 DOI: 10.1155/2022/2194021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Iris species, commonly known as rainbow flowers because of their attractive flowers, are extensively grown in landscape gardens. A few species, including Belamcanda chinensis, the synonym of I. domestica and I. tectorum, are known for their medicinal properties. However, research on the genomes and evolutionary relationships of Iris species is scarce. In the current study, the complete chloroplast (CP) genomes of I. tectorum, I. dichotoma, I. japonica, and I. domestica were sequenced and compared for their identification and relationship. The CP genomes of the four Iris species were circular quadripartite with similar lengths, GC contents, and codon usages. A total of 113 specific genes were annotated, including the ycf1 pseudogene in all species and rps19 in I. japonica alone. All the species had mononucleotide (A/T) simple sequence repeats (SSRs) and long forward and palindromic repeats in their genomes. A comparison of the CP genomes based on mVISTA and nucleotide diversity (Pi) identified three highly variable regions (ndhF-rpl32, rps15-ycf1, and rpl16). Phylogenetic analysis based on the complete CP genomes concluded that I. tectorum is a sister of I. japonica, and the subgenus Pardanthopsis with several I. domestica clustered into one branch is a sister of I. dichotoma. These findings confirm the feasibility of superbarcodes (complete CP genomes) for Iris species authentication and could serve as a resource for further research on Iris phylogeny.
Collapse
Affiliation(s)
- Jing-lu Feng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li-wei Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Qing Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yun-jia Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bao-li Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu-lin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
18
|
Guo S, Liao X, Chen S, Liao B, Guo Y, Cheng R, Xiao S, Hu H, Chen J, Pei J, Chen Y, Xu J, Chen S. A Comparative Analysis of the Chloroplast Genomes of Four Polygonum Medicinal Plants. Front Genet 2022; 13:764534. [PMID: 35547259 PMCID: PMC9084321 DOI: 10.3389/fgene.2022.764534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Polygonum is a generalized genus of the Polygonaceae family that includes various herbaceous plants. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Polygonum at the chloroplast (cp) genome-scale level, we sequenced and annotated the complete chloroplast genomes of four Polygonum species using next-generation sequencing technology and CpGAVAS. Then, repeat sequences, IR contractions, and expansion and transformation sites of chloroplast genomes of four Polygonum species were studied, and a phylogenetic tree was built using the chloroplast genomes of Polygonum. The results indicated that the chloroplast genome construction of Polygonum also displayed characteristic four types of results, comparable to the published chloroplast genome of recorded angiosperms. The chloroplast genomes of the four Polygonum plants are highly consistent in genome size (159,015 bp-163,461 bp), number of genes (112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes), gene types, gene order, codon usage, and repeat sequence distribution, which identifies the high preservation among the Polygonum chloroplast genomes. The Polygonum phylogenetic tree was recreated by a full sequence of the chloroplast genome, which illustrates that the P. bistorta, P. orientale, and P. perfoliatum are divided into the same branch, and P. aviculare belongs to Fallopia. The precise system site of lots base parts requires further verification, but the study would provide a basis for developing the available genetic resources and evolutionary relationships of Polygonum.
Collapse
Affiliation(s)
- Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Guo
- Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangjin Chen
- Department of City and Regional Planning, Nanjing University, Nanjing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Comparative Chloroplast Genome Analysis of Wax Gourd (Benincasa hispida) with Three Benincaseae Species, Revealing Evolutionary Dynamic Patterns and Phylogenetic Implications. Genes (Basel) 2022; 13:genes13030461. [PMID: 35328015 PMCID: PMC8954987 DOI: 10.3390/genes13030461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Benincasa hispida (wax gourd) is an important Cucurbitaceae crop, with enormous economic and medicinal importance. Here, we report the de novo assembly and annotation of the complete chloroplast genome of wax gourd with 156,758 bp in total. The quadripartite structure of the chloroplast genome comprises a large single-copy (LSC) region with 86,538 bp and a small single-copy (SSC) region with 18,060 bp, separated by a pair of inverted repeats (IRa and IRb) with 26,080 bp each. Comparison analyses among B. hispida and three other species from Benincaseae presented a significant conversion regarding nucleotide content, genome structure, codon usage, synonymous and non-synonymous substitutions, putative RNA editing sites, microsatellites, and oligonucleotide repeats. The LSC and SSC regions were found to be much more varied than the IR regions through a divergent analysis of the species within Benincaseae. Notable IR contractions and expansions were observed, suggesting a difference in genome size, gene duplication and deletion, and the presence of pseudogenes. Intronic gene sequences, such as trnR-UCU–atpA and atpH–atpI, were observed as highly divergent regions. Two types of phylogenetic analysis based on the complete cp genome and 72 genes suggested sister relationships between B. hispida with the Citrullus, Lagenaria, and Cucumis. Variations and consistency with previous studies regarding phylogenetic relationships are discussed. The cp genome of B. hispida provides valuable genetic information for the detection of molecular markers, research on taxonomic discrepancies, and the inference of the phylogenetic relationships of Cucurbitaceae.
Collapse
|
20
|
Zhang Z, Tao M, Shan X, Pan Y, Sun C, Song L, Pei X, Jing Z, Dai Z. Characterization of the complete chloroplast genome of Brassica oleracea var. italica and phylogenetic relationships in Brassicaceae. PLoS One 2022; 17:e0263310. [PMID: 35202392 PMCID: PMC8870505 DOI: 10.1371/journal.pone.0263310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Broccoli (Brassica oleracea var. italica) is an important B. oleracea cultivar, with high economic and agronomic value. However, comparative genome analyses are still needed to clarify variation among cultivars and phylogenetic relationships within the family Brassicaceae. Herein, the complete chloroplast (cp) genome of broccoli was generated by Illumina sequencing platform to provide basic information for genetic studies and to establish phylogenetic relationships within Brassicaceae. The whole genome was 153,364 bp, including two inverted repeat (IR) regions of 26,197 bp each, separated by a small single copy (SSC) region of 17,834 bp and a large single copy (LSC) region of 83,136 bp. The total GC content of the entire chloroplast genome accounts for 36%, while the GC content in each region of SSC,LSC, and IR accounts for 29.1%, 34.15% and 42.35%, respectively. The genome harbored 133 genes, including 88 protein-coding genes, 37 tRNAs, and 8 rRNAs, with 17 duplicates in IRs. The most abundant amino acid was leucine and the least abundant was cysteine. Codon usage analyses revealed a bias for A/T-ending codons. A total of 35 repeat sequences and 92 simple sequence repeats were detected, and the SC-IR boundary regions were variable between the seven cp genomes. A phylogenetic analysis suggested that broccoli is closely related to Brassica oleracea var. italica MH388764.1, Brassica oleracea var. italica MH388765.1, and Brassica oleracea NC_0441167.1. Our results are expected to be useful for further species identification, population genetics analyses, and biological research on broccoli.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Meiqi Tao
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Xi Shan
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Yongfei Pan
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Chunqing Sun
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Lixiao Song
- Department of Vegetables, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuli Pei
- College of Agriculture and Life Science, Kunming University, Kunming, China
| | - Zange Jing
- College of Agriculture and Life Science, Kunming University, Kunming, China
| | - Zhongliang Dai
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| |
Collapse
|
21
|
Wang N, Chen S, Xie L, Wang L, Feng Y, Lv T, Fang Y, Ding H. The complete chloroplast genomes of three Hamamelidaceae species: Comparative and phylogenetic analyses. Ecol Evol 2022; 12:e8637. [PMID: 35222983 PMCID: PMC8848467 DOI: 10.1002/ece3.8637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022] Open
Abstract
Hamamelidaceae is an important group that represents the origin and early evolution of angiosperms. Its plants have many uses, such as timber, medical, spice, and ornamental uses. In this study, the complete chloroplast genomes of Loropetalum chinense (R. Br.) Oliver, Corylopsis glandulifera Hemsl., and Corylopsis velutina Hand.-Mazz. were sequenced using the Illumina NovaSeq 6000 platform. The sizes of the three chloroplast genomes were 159,402 bp (C. glandulifera), 159,414 bp (C. velutina), and 159,444 bp (L. chinense), respectively. These chloroplast genomes contained typical quadripartite structures with a pair of inverted repeat (IR) regions (26,283, 26,283, and 26,257 bp), a large single-copy (LSC) region (88,134, 88,146, and 88,160 bp), and a small single-copy (SSC) region (18,702, 18,702, and 18,770 bp). The chloroplast genomes encoded 132-133 genes, including 85-87 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. The coding regions were composed of 26,797, 26,574, and 26,415 codons, respectively, most of which ended in A/U. A total of 37-43 long repeats and 175-178 simple sequence repeats (SSRs) were identified, and the SSRs contained a higher number of A + T than G + C bases. The genome comparison showed that the IR regions were more conserved than the LSC or SSC regions, while the noncoding regions contained higher variability than the gene coding regions. Phylogenetic analyses revealed that species in the same genus tended to cluster together. Chunia Hung T. Chang, Mytilaria Lecomte, and Disanthus Maxim. may have diverged early and Corylopsis Siebold & Zucc. was closely related to Loropetalum R. Br. This study provides valuable information for further species identification, evolution, and phylogenetic studies of Hamamelidaceae plants.
Collapse
Affiliation(s)
- NingJie Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - ShuiFei Chen
- Research Center for Nature Conservation and BiodiversityState Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi MountainsState Environmental Protection Key Laboratory on BiosafetyNanjing Institute of Environmental Sciences, Ministry of Ecology and EnvironmentNanjingChina
| | - Lei Xie
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - Lu Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - YueYao Feng
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - Ting Lv
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - YanMing Fang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - Hui Ding
- Research Center for Nature Conservation and BiodiversityState Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi MountainsState Environmental Protection Key Laboratory on BiosafetyNanjing Institute of Environmental Sciences, Ministry of Ecology and EnvironmentNanjingChina
| |
Collapse
|
22
|
Han C, Ding R, Zong X, Zhang L, Chen X, Qu B. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae. BMC Genomics 2022; 23:84. [PMID: 35086477 PMCID: PMC8796522 DOI: 10.1186/s12864-022-08319-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Tulotis has been classified into the genus Platanthera in the present taxonomic studies since the morphological characteristics of this genus is very similar to that of Platanthera. Platanthera ussuriensis, formerly named as Tulotis ussuriensis, is a small terrestrial orchid species and has been listed as wild plant under State protection (category II) in China. An improved understanding of the genomic information will enable future applications of conservation strategy as well as phylogenetic studies for this rare orchid species. The objective of this research was to characterize and compare the chloroplast genome of P. ussuriensis with other closely related species of Orchidaceae. RESULTS The chloroplast genome sequence of P. ussuriensis is 155,016 bp in length, which included a pair of inverted repeats (IRs) of 26,548 bp that separated a large single copy (LSC) region of 83,984 bp and a small single copy (SSC) region of 17,936 bp. The annotation contained a total of 132 genes, including 86 protein-coding genes, 38 tRNA genes and 8 rRNA genes. The simple sequence repeat (SSR) analysis showed that there were 104 SSRs in the chloroplast genome of P. ussuriensis. RNA editing sites recognition indicated 72 RNA editing events occurred, and all codon changes were C to T conversions. Comparative genomics showed that the chloroplast sequence of Platanthera related species were relatively conserved, while there were still some high variation regions that could be used as molecular markers. Moreover, Platanthera related species showed similar IR/SSC and IR/LSC borders. The phylogenetic analysis suggested that P. ussuriensis had a closer evolutionary relationship with P. japonica followed by the remaining Platanthera species. CONCLUSION Orchidaceae is a key group of biodiversity protection and also a hot spot group in the plant taxonomy and evolution studies due to their characteristics of high specialization and rapid evolution. This research determined the complete chloroplast genome of P. ussuriensis for the first time, and compared the sequence with other closely related orchid species. These results provide a foundation for future genomic and molecular evolution of the Orchidaceae species, and provide insights into the development of conservation strategy for Platanthera species.
Collapse
Affiliation(s)
- Chenyang Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiaoyan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lijie Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
23
|
Luo X, Sun D, Wang S, Luo S, Fu Y, Niu L, Shi Q, Zhang Y. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. HORTICULTURE RESEARCH 2021; 8:235. [PMID: 34719694 PMCID: PMC8558324 DOI: 10.1038/s41438-021-00666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 06/02/2023]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a popular ornamental plant in China due to its showy and colorful flowers. However, yellow-colored flowers are rare in both wild species and domesticated cultivars. The molecular mechanisms underlying yellow pigmentation remain poorly understood. Here, petal tissues of two tree peony cultivars, "High Noon" (yellow flowers) and "Roufurong" (purple-red flowers), were sampled at five developmental stages (S1-S5) from early flower buds to full blooms. Five petal color indices (brightness, redness, yellowness, chroma, and hue angle) and the contents of ten different flavonoids were determined. Compared to "Roufurong," which accumulated abundant anthocyanins at S3-S5, the yellow-colored "High Noon" displayed relatively higher contents of tetrahydroxychalcone (THC), flavones, and flavonols but no anthocyanin production. The contents of THC, flavones, and flavonols in "High Noon" peaked at S3 and dropped gradually as the flower bloomed, consistent with the color index patterns. Furthermore, RNA-seq analyses at S3 showed that structural genes such as PsC4Hs, PsDFRs, and PsUFGTs in the flavonoid biosynthesis pathway were downregulated in "High Noon," whereas most PsFLSs, PsF3Hs, and PsF3'Hs were upregulated. Five transcription factor (TF) genes related to flavonoid biosynthesis were also upregulated in "High Noon." One of these TFs, PsMYB111, was overexpressed in tobacco, which led to increased flavonols but decreased anthocyanins. Dual-luciferase assays further confirmed that PsMYB111 upregulated PsFLS. These results improve our understanding of yellow pigmentation in tree peony and provide a guide for future molecular-assisted breeding experiments in tree peony with novel flower colors.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| |
Collapse
|
24
|
Chen J, Zang Y, Shang S, Liang S, Zhu M, Wang Y, Tang X. Comparative Chloroplast Genomes of Zosteraceae Species Provide Adaptive Evolution Insights Into Seagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:741152. [PMID: 34630493 PMCID: PMC8495015 DOI: 10.3389/fpls.2021.741152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 05/29/2023]
Abstract
Seagrasses are marine flowering plants found in tropical and sub-tropical areas that live in coastal regions between the sea and land. All seagrass species evolved from terrestrial monocotyledons, providing the opportunity to study plant adaptation to sea environments. Here, we sequenced the chloroplast genomes (cpGenomes) of three Zostera species, then analyzed and compared their cpGenome structures and sequence variations. We also performed a phylogenetic analysis using published seagrass chloroplasts and calculated the selection pressure of 17 species within seagrasses and nine terrestrial monocotyledons, as well as estimated the number of shared genes of eight seagrasses. The cpGenomes of Zosteraceae species ranged in size from 143,877 bp (Zostera marina) to 152,726 bp (Phyllospadix iwatensis), which were conserved and displayed similar structures and gene orders. Additionally, we found 17 variable hotspot regions as candidate DNA barcodes for Zosteraceae species, which will be helpful for studying the phylogenetic relationships and interspecies differences between seagrass species. Interestingly, nine genes had positive selection sites, including two ATP subunit genes (atpA and atpF), two ribosome subunit genes (rps4 and rpl20), two DNA-dependent RNA polymerase genes (rpoC1 and rpoC2), as well as accD, clpP, and ycf2. These gene regions may have played key roles in the seagrass adaptation to diverse environments. The Branch model analysis showed that seagrasses had a higher rate of evolution than terrestrial monocotyledons, suggesting that seagrasses experienced greater environmental pressure. Moreover, a branch-site model identified positively selected sites (PSSs) in ccsA, suggesting their involvement in the adaptation to sea environments. These findings are valuable for further investigations on Zosteraceae cpGenomes and will serve as an excellent resource for future studies on seagrass adaptation to sea environments.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Complete Chloroplast Genome Sequence and Comparative and Phylogenetic Analyses of the Cultivated Cyperus esculentus. DIVERSITY 2021. [DOI: 10.3390/d13090405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cyperus esculentus produces large amounts of oil as one of the main oil storage reserves in underground tubers, making this crop species not only a promising resource for edible oil and biofuel in food and chemical industry, but also a model system for studying oil accumulation in non-seed tissues. In this study, we determined the chloroplast genome sequence of the cultivated C. esculentus (var. sativus Boeckeler). The results showed that the complete chloroplast genome of C. esculentus was 186,255 bp in size, and possessed a typical quadripartite structure containing one large single copy (100,940 bp) region, one small single copy (10,439 bp) region, and a pair of inverted repeat regions of 37,438 bp in size. Sequence analyses indicated that the chloroplast genome encodes 141 genes, including 93 protein-coding genes, 40 transfer RNA genes, and 8 ribosomal RNA genes. We also identified 396 simple-sequence repeats and 49 long repeats, including 15 forward repeats and 34 palindromes within the chloroplast genome of C. esculentus. Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with those of the other four Cyperus species indicated that both the large single copy and inverted repeat regions were more divergent than the small single copy region, with the highest variation found in the inverted repeat regions. In the phylogenetic trees based on the complete chloroplast genomes of 13 species, all five Cyperus species within the Cyperaceae formed a clade, and C. esculentus was evolutionarily more related to C. rotundus than to the other three Cyperus species. In summary, the chloroplast genome sequence of the cultivated C. esculentus provides a valuable genomic resource for species identification, evolution, and comparative genomic research on this crop species and other Cyperus species in the Cyperaceae family.
Collapse
|
26
|
Wu Y, Li L, Yuan W, Hu J, Lv Z. Application of GC × GC coupled with TOF–MS for the trace analysis of chemical components and exploration the characteristic aroma profile of essential oils obtained from two tree peony species (Paeonia rockii and Paeonia ostii). Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Liu XJ, Wang XR, Tang HR, Chen Q. The complete chloroplast genome sequence of a hybrid blackberry ( Rubus spp.) cultivar. Mitochondrial DNA B Resour 2021; 6:2103-2104. [PMID: 34250230 PMCID: PMC8245066 DOI: 10.1080/23802359.2020.1751003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Blackberry (Rubus spp.) is an important hybrid fruit crop popular in the US Pacific Northwest and the European region with complex origins. In this study, we report the complete chloroplast genome sequence of a hybrid blackberry cultivar 'Arapohol' using next-generation sequencing technology. The complete chloroplast genome size is 156,621 bp. The genome contains 134 genes, including 40 tRNA genes, 86 protein-coding genes, and 8 rRNA genes. Phylogenetic analysis based on 11 complete chloroplast genomes revealed that taxa is closely related to Rubus niveus. The complete chloroplast genome of this Rubus sp. provides valuable information for understanding the origination of this crop species.
Collapse
Affiliation(s)
- Xun-Ju Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Li J, Tang J, Zeng S, Han F, Yuan J, Yu J. Comparative plastid genomics of four Pilea (Urticaceae) species: insight into interspecific plastid genome diversity in Pilea. BMC PLANT BIOLOGY 2021; 21:25. [PMID: 33413130 PMCID: PMC7792329 DOI: 10.1186/s12870-020-02793-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pilea is a genus of perennial herbs from the family Urticaceae, and some species are used as courtyard ornamentals or for medicinal purposes. At present, there is no information about the plastid genome of Pilea, which limits our understanding of this genus. Here, we report 4 plastid genomes of Pilea taxa (Pilea mollis, Pilea glauca 'Greizy', Pilea peperomioides and Pilea serpyllacea 'Globosa') and performed comprehensive comparative analysis. RESULTS The four plastid genomes all have a typical quartile structure. The lengths of the plastid genomes ranged from 150,398 bp to 152,327 bp, and each genome contained 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Comparative analysis showed a rather high level of sequence divergence in the four genomes. Moreover, eight hypervariable regions were identified (petN-psbM, psbZ-trnG-GCC, trnT-UGU-trnL-UAA, accD-psbI, ndhF-rpl32, rpl32-trnL-UAG, ndhA-intron and ycf1), which are proposed for use as DNA barcode regions. Phylogenetic relationships based on the plastid genomes of 23 species of 14 genera of Urticaceae resulted in the placement of Pilea in the middle and lower part of the phylogenetic tree, with 100% bootstrap support within Urticaceae. CONCLUSION Our results enrich the resources concerning plastid genomes. Comparative plastome analysis provides insight into the interspecific diversity of the plastid genome of Pilea. The identified hypervariable regions could be used for developing molecular markers applicable in various research areas.
Collapse
Affiliation(s)
- Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jianmin Tang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Siyuan Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Fang Han
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jing Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400716, China.
| |
Collapse
|
29
|
Li C, Zheng Y, Huang P. Molecular markers from the chloroplast genome of rose provide a complementary tool for variety discrimination and profiling. Sci Rep 2020; 10:12188. [PMID: 32699274 PMCID: PMC7376030 DOI: 10.1038/s41598-020-68092-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
The rose is one of the most important ornamental woody plants because of its extensive use and high economic value. Herein, we sequenced a complete chloroplast genome of the miniature rose variety Rosa 'Margo Koster' and performed comparative analyses with sequences previously published for other species in the Rosaceae family. The chloroplast genome of Rosa 'Margo Koster', with a size of 157,395 bp, has a circular quadripartite structure typical of angiosperm chloroplast genomes and contains a total of 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Conjunction regions in the chloroplast genome of Rosa 'Margo Koster' were verified and manually corrected by Sanger sequencing. Comparative genome analysis showed that the IR contraction and expansion events resulted in rps19 and ycf1 pseudogenes. The phylogenetic analysis within the Rosa genus showed that Rosa 'Margo Koster' is closer to Rosa odorata than to other Rosa species. Additionally, we identified and screened highly divergent sequences and cpSSRs and compared their power to discriminate rose varieties by Sanger sequencing and capillary electrophoresis. The results showed that 15 cpSSRs are polymorphic, but their discriminating power is only moderate among a set of rose varieties. However, more than 150 single nucleotide variations (SNVs) were discovered in the flanking region of cpSSRs, and the results indicated that these SNVs have a higher divergence and stronger power for profiling rose varieties. These findings suggest that nucleotide mutations in the chloroplast genome may be an effective and powerful tool for rose variety discrimination and DNA profiling. These molecular markers in the chloroplast genome sequence of Rosa spp. will facilitate population and phylogenetic studies and other related studies of this species.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
30
|
Characterization and Comparative Analysis of Two Rheum Complete Chloroplast Genomes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6490164. [PMID: 32685515 PMCID: PMC7327605 DOI: 10.1155/2020/6490164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/05/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
Rheum species present a significant economic value. Traditional Chinese medicine rhubarb is an important medicinal material in China. It has a long history of use, with a record of use as early as two thousand years ago. Here, we determined the complete chloroplast genome sequences of Rheum nobile and Rheum acuminatum and comprehensively compared them to two other available Rheum cp genomes at the genome scale. The results revealed cp genomes ranging in size from 159,051 to 161,707 bp with a similar typical quadripartite and circular structure. The genome organization, gene numbers, gene order, and GC contents of these four Rheum cp genomes were similar to those of many angiosperm cp genomes. Repeats and microsatellites were detected in the R. nobile and R. acuminatum cp genomes. The Mauve alignment revealed that there were no rearrangements in the cp genomes of the four Rheum species. Thirteen mutational hotspots for genome divergence were identified, which could be utilized as potential markers for phylogenetic studies and the identification of Rheum species. The phylogenetic relationships of the four species showed that the members of Rheum cluster into a single clade, indicating their close relationships. Our study provides valuable information for the taxonomic, phylogenetic, and evolutionary analysis of Rheum.
Collapse
|
31
|
Xu J, Shen X, Liao B, Xu J, Hou D. Comparing and phylogenetic analysis chloroplast genome of three Achyranthes species. Sci Rep 2020; 10:10818. [PMID: 32616875 PMCID: PMC7331806 DOI: 10.1038/s41598-020-67679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the chloroplast genome sequencing of the Achyranthes longifolia, Achyranthes bidentata and Achyranthes aspera were performed by Next-generation sequencing technology. The results revealed that there were a length of 151,520 bp (A. longifolia), 151,284 bp (A. bidentata), 151,486 bp (A. aspera), respectively. These chloroplast genome have a highly conserved structure with a pair of inverted repeat (IR) regions (25,150 bp; 25,145 bp; 25,150 bp), a large single copy (LSC) regions (83,732 bp; 83,933 bp; 83,966 bp) and a small single copy (SSC) regions (17,252 bp; 17,263 bp; 17,254 bp) in A. bidentate, A. aspera and A. longifolia. There were 127 genes were annotated, which including 8 rRNA genes, 37 tRNA genes and 82 functional genes. The phylogenetic analysis strongly revealed that Achyranthes is monophyletic, and A. bidentata was the closest relationship with A. aspera and A. longifolia. A. bidentata and A. longifolia were clustered together, the three Achyranthes species had the same origin, then the gunes of Achyranthes is the closest relative to Alternanthera, and that forms a group with Alternanthera philoxeroides. The research laid a foundation and provided relevant basis for the identification of germplasm resources in the future.
Collapse
Affiliation(s)
- Jingya Xu
- Agricultural College, Henan University of Science and Technology, Luoyang, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-Di Herbs, Luoyang, China
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dianyun Hou
- Agricultural College, Henan University of Science and Technology, Luoyang, China.
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-Di Herbs, Luoyang, China.
| |
Collapse
|
32
|
Guo L, Guo S, Liu G, Hou X. Structure and phylogenetic analysis of Paeonia lactiflora ‘Lv He’ chloroplast genome. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1749156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Lili Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, China
| | - Gaixiu Liu
- National Peony Gene Bank of Luoyang, Luoyang, Henan, China
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
33
|
Wang C, Guo S, Fan M, Guo L, Hou X. Phylogeny analysis of a wild species of Paeonia lactiflora from Henan province based on the complete chloroplast genome. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1749157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Can Wang
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shuai Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mingyue Fan
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lili Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
34
|
Yin X, Liao B, Guo S, Liang C, Pei J, Xu J, Chen S. The chloroplasts genomic analyses of Rosa laevigata, R. rugosa and R. canina. Chin Med 2020; 15:18. [PMID: 32082412 PMCID: PMC7020376 DOI: 10.1186/s13020-020-0298-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Many species of the genus Rosa have been used as ornamental plants and traditional medicines. However, industrial development of roses is hampered due to highly divergent characteristics. METHODS We analyzed the chloroplast (cp) genomes of Rosa laevigata, R. rugosa and R. canina, including the repeat sequences, inverted-repeat (IR) contractions and expansions, and mutation sites. RESULTS The size of the cp genome of R. laevigata, R. rugosa and R. canina was between 156 333 bp and 156 533 bp, and contained 113 genes (30 tRNA genes, 4 rRNA genes and 79 protein-coding genes). The regions with a higher degree of variation were screened out (trnH-GUU, trnS-GCU, trnG-GCC, psbA-trnH, trnC-GCA,petN, trnT-GGU, psbD, petA, psbJ, ndhF, rpl32,psaC and ndhE). Such higher-resolution loci lay the foundation of barcode-based identification of cp genomes in Rosa genus. A phylogenetic tree of the genus Rosa was reconstructed using the full sequences of the cp genome. These results were largely in accordance with the current taxonomic status of Rosa. CONCLUSIONS Our data: (i) reveal that cp genomes can be used for the identification and classification of Rosa species; (ii) can aid studies on molecular identification, genetic transformation, expression of secondary metabolic pathways and resistant proteins; (iii) can lay a theoretical foundation for the discovery of disease-resistance genes and cultivation of Rosa species.
Collapse
Affiliation(s)
- Xianmei Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130 China
| | - Baosheng Liao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shuai Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Conglian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130 China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
35
|
Zhang M, Li Y, Gao J, Chen Y, Yan Y, Zhang Y, Luo Y, Zhang G. Complete plastid genome of the Chinese medicinal herb Paeonia obovata subsp. Willmottiae (Paeoniaceae): characterization and phylogeny. Mitochondrial DNA B Resour 2020; 5:845-847. [PMID: 33366778 PMCID: PMC7748467 DOI: 10.1080/23802359.2020.1716641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 11/07/2022] Open
Abstract
The plastid genome (plastome) of the endemic Chinese medicinal herb Paeonia obovata subsp. Willmottiae (Paeoniaceae) was sequenced and investigated in this study. The complete plastome is 152,713 bp in length with the typical quadripartite structure, which consists of a large single-copy region (LSC, 84,419 bp), a small single-copy region (SSC, 16,982 bp), and a pair of inverted repeat regions (IRs, 25,656 bp). The overall GC content is 33.2%, and the IR regions are more GC rich (43.2%) than the LSC (36.7%) and SSC (32.8%) regions. A total of 114 unique genes, including 79 protein-coding genes, 31 tRNAs, and four rRNAs were identified. Phylogenetic reconstruction based on complete plastome sequences demonstrated that P. obovata subsp. Willmottiae is phylogenetically closest to P. obovata.
Collapse
Affiliation(s)
- Mingying Zhang
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yimin Li
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Jing Gao
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Ying Chen
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yonggang Yan
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yuqu Zhang
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yang Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| | - Gang Zhang
- College of Pharmacy, Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
36
|
Vu HT, Tran N, Nguyen TD, Vu QL, Bui MH, Le MT, Le L. Complete Chloroplast Genome of Paphiopedilum delenatii and Phylogenetic Relationships among Orchidaceae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E61. [PMID: 31906501 PMCID: PMC7020410 DOI: 10.3390/plants9010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.
Collapse
Affiliation(s)
- Huyen-Trang Vu
- Faculty of Biotechnology, Nguyen Tat Thanh University, District 4, Hochiminh City 72820, Vietnam; (H.-T.V.); (T.-D.N.); (M.-H.B.)
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
| | - Ngan Tran
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
| | - Thanh-Diem Nguyen
- Faculty of Biotechnology, Nguyen Tat Thanh University, District 4, Hochiminh City 72820, Vietnam; (H.-T.V.); (T.-D.N.); (M.-H.B.)
| | - Quoc-Luan Vu
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Dalat 670000, Vietnam;
| | - My-Huyen Bui
- Faculty of Biotechnology, Nguyen Tat Thanh University, District 4, Hochiminh City 72820, Vietnam; (H.-T.V.); (T.-D.N.); (M.-H.B.)
| | - Minh-Tri Le
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
| | - Ly Le
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
- Vingroup Big Data Institute, Hai Ba Trung District, Hanoi 100000, Vietnam
| |
Collapse
|
37
|
Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One 2019; 14:e0226865. [PMID: 31860647 PMCID: PMC6924677 DOI: 10.1371/journal.pone.0226865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.
Collapse
Affiliation(s)
- Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | | | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| |
Collapse
|
38
|
Liu XF, Zhu GF, Li DM, Wang XJ. Complete chloroplast genome sequence and phylogenetic analysis of Spathiphyllum 'Parrish'. PLoS One 2019; 14:e0224038. [PMID: 31644545 PMCID: PMC6808432 DOI: 10.1371/journal.pone.0224038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/03/2019] [Indexed: 11/18/2022] Open
Abstract
Spathiphyllum is a very important tropical plant used as a small, potted, ornamental plant in South China, with an annual output value of hundreds of millions of yuan. In this study, we sequenced and analyzed the complete nucleotide sequence of the Spathiphyllum 'Parrish' chloroplast genome. The whole chloroplast genome is 168,493 bp in length, and includes a pair of inverted repeat (IR) regions (IRa and IRb, each 31,600 bp), separated by a small single-copy (SSC, 15,799 bp) region and a large single-copy (LSC, 89,494 bp) region. Our annotation revealed that the S. 'Parrish' chloroplast genome contained 132 genes, including 87 protein coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. In the repeat structure analysis, we detected 281 simple sequence repeats (SSRs) which included mononucleotides (223), dinucleotides (28), trinucleotides (12), tetranucleotides (11), pentanucleotides (6), and hexanucleotides (1), in the S. 'Parrish' chloroplast genome. In addition, we identified 50 long repeats, comprising 18 forward repeats, 13 reverse repeats, 17 palindromic repeats, and 2 complementary repeats. Single nucleotide polymorphism (SNP) and insertion/deletion (indel) analyses of the chloroplast genome of the S. 'Parrish' relative S. cannifolium revealed 962 SNPs in S. 'Parrish'. There were 158 indels (90 insertions and 68 deletions) in the S. 'Parrish' chloroplast genome relative to the S. cannifolium chloroplast genome. Phylogenetic analysis of five species found S. 'Parrish' to be more closely related to S. kochii than to S. cannifolium. This study identified the characteristics of the S. 'Parrish' chloroplast genome, which will facilitate species identification and phylogenetic analysis within the genus Spathiphyllum.
Collapse
Affiliation(s)
- Xiao-Fei Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, Guangdong, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiao-Jing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Gichira AW, Avoga S, Li Z, Hu G, Wang Q, Chen J. Comparative genomics of 11 complete chloroplast genomes of Senecioneae (Asteraceae) species: DNA barcodes and phylogenetics. BOTANICAL STUDIES 2019; 60:17. [PMID: 31440866 PMCID: PMC6706487 DOI: 10.1186/s40529-019-0265-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Majority of the species within Senecioneae are classified in Senecio, making it the tribe's largest genus. Certain intergeneric relationships within the tribe are vaguely defined, with the genus Senecio being partly linked to this ambiguity. Infrageneric relationships within Senecio remain largely unknown and consequently, the genus has undergone continuous expansion and contraction over the recent past due to addition and removal of taxa. Dendrosenecio, an endemic genus in Africa, is one of its segregate genera. To heighten the understanding of species divergence and phylogeny within the tribe, the complete chloroplast genomes of the first five Senecio and six Dendrosenecio species were sequenced and analyzed in this study. RESULTS The entire length of the complete chloroplast genomes was ~ 150 kb and ~ 151 kb in Dendrosenecio and Senecio respectively. Characterization of the 11 chloroplast genomes revealed a significant degree of similarity particularly in their organization, gene content, repetitive sequence composition and patterns of codon usage. The chloroplast genomes encoded an equal number of unique genes out of which 80 were protein-coding genes, 30 transfer ribonucleic acid, and four ribosomal ribonucleic acid genes. Based on comparative sequence analyses, the level of divergence was lower in Dendrosenecio. A total of 331 and 340 microsatellites were detected in Senecio and Dendrosenecio, respectively. Out of which, 25 and five chloroplast microsatellites (cpSSR) were identified as potentially valuable molecular markers. Also, through whole chloroplast genome comparisons and DNA polymorphism tests, ten divergent hotspots were identified. Potential primers were designed creating genomic tools to further molecular studies within the tribe. Intergeneric relationships within the tribe were firmly resolved using genome-scale dataset in partitioned and unpartitioned schemes. Two main clades, corresponding to two subtribes within the Senecioneae, were formed with the genus Ligularia forming a single clade while the other had Dendrosenecio, Pericallis, Senecio and Jacobaea. A sister relationship was revealed between Dendrosenecio and Pericallis whereas Senecio, and Jacobaea were closely placed in a different clade. CONCLUSION Besides emphasizing on the potential of chloroplast genome data in resolving intergeneric relationships within Senecioneae, this study provides genomic resources to facilitate species identification and phylogenetic reconstructions within the respective genera.
Collapse
Affiliation(s)
- Andrew Wanyoike Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Sheila Avoga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qingfeng Wang
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
40
|
Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus bawanglingensis Huang, Li et Xing, a Vulnerable Oak Tree in China. FORESTS 2019. [DOI: 10.3390/f10070587] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quercus bawanglingensis Huang, Li et Xing, an endemic evergreen oak of the genus Quercus (Fagaceae) in China, is currently listed in the Red List of Chinese Plants as a vulnerable (VU) plant. No chloroplast (cp) genome information is currently available for Q. bawanglingensis, which would be essential for the establishment of guidelines for its conservation and breeding. In the present study, the cp genome of Q. bawanglingensis was sequenced and assembled into double-stranded circular DNA with a length of 161,394 bp. Two inverted repeats (IRs) with a total of 51,730 bp were identified, and the rest of the sequence was separated into two single-copy regions, namely, a large single-copy (LSC) region (90,628 bp) and a small single-copy (SSC) region (19,036 bp). The genome of Q. bawanglingensis contains 134 genes (86 protein-coding genes, 40 tRNAs and eight rRNAs). More forward (29) than inverted long repeats (21) are distributed in the cp genome. A simple sequence repeat (SSR) analysis showed that the genome contains 82 SSR loci, involving 84.15% A/T mononucleotides. Sequence comparisons among the nine complete cp genomes, including the genomes of Q. bawanglingensis, Q. tarokoensis Hayata (NC036370), Q. aliena var. acutiserrata Maxim. ex Wenz. (KU240009), Q. baronii Skan (KT963087), Q. aquifolioides Rehd. et Wils. (KX911971), Q. variabilis Bl. (KU240009), Fagus engleriana Seem. (KX852398), Lithocarpus balansae (Drake) A. Camus (KP299291) and Castanea mollissima Bl. (HQ336406), demonstrated that the diversity of SC regions was higher than that of IR regions, which might facilitate identification of the relationships within this extremely complex family. A phylogenetic analysis showed that Fagus engleriana and Trigonobalanus doichangensis form the basis of the produced evolutionary tree. Q. bawanglingensis and Q. tarokoensis, which belong to the group Ilex, share the closest relationship. The analysis of the cp genome of Q. bawanglingensis provides crucial genetic information for further studies of this vulnerable species and the taxonomy, phylogenetics and evolution of Quercus.
Collapse
|
41
|
Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Aster tataricus. Molecules 2018; 23:molecules23102426. [PMID: 30248930 PMCID: PMC6222381 DOI: 10.3390/molecules23102426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
We sequenced and analyzed the complete chloroplast genome of Aster tataricus (family Asteraceae), a Chinese herb used medicinally to relieve coughs and reduce sputum. The A. tataricus chloroplast genome was 152,992 bp in size, and harbored a pair of inverted repeat regions (IRa and IRb, each 24,850 bp) divided into a large single-copy (LSC, 84,698 bp) and a small single-copy (SSC, 18,250 bp) region. Our annotation revealed that the A. tataricus chloroplast genome contained 115 genes, including 81 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. In addition, 70 simple sequence repeats (SSRs) were detected in the A. tataricus chloroplast genome, including mononucleotides (36), dinucleotides (1), trinucleotides (23), tetranucleotides (1), pentanucleotides (8), and hexanucleotides (1). Comparative chloroplast genome analysis of three Aster species indicated that a higher similarity was preserved in the IR regions than in the LSC and SSC regions, and that the differences in the degree of preservation were slighter between A. tataricus and A. altaicus than between A. tataricus and A. spathulifolius. Phylogenetic analysis revealed that A. tataricus was more closely related to A. altaicus than to A. spathulifolius. Our findings offer valuable information for future research on Aster species identification and selective breeding.
Collapse
|
42
|
Li X, Li Y, Zang M, Li M, Fang Y. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus acutissima. Int J Mol Sci 2018; 19:ijms19082443. [PMID: 30126202 PMCID: PMC6121628 DOI: 10.3390/ijms19082443] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023] Open
Abstract
Quercus acutissima, an important endemic and ecological plant of the Quercus genus, is widely distributed throughout China. However, there have been few studies on its chloroplast genome. In this study, the complete chloroplast (cp) genome of Q. acutissima was sequenced, analyzed, and compared to four species in the Fagaceae family. The size of the Q. acutissima chloroplast genome is 161,124 bp, including one large single copy (LSC) region of 90,423 bp and one small single copy (SSC) region of 19,068 bp, separated by two inverted repeat (IR) regions of 51,632 bp. The GC content of the whole genome is 36.08%, while those of LSC, SSC, and IR are 34.62%, 30.84%, and 42.78%, respectively. The Q. acutissima chloroplast genome encodes 136 genes, including 88 protein-coding genes, four ribosomal RNA genes, and 40 transfer RNA genes. In the repeat structure analysis, 31 forward and 22 inverted long repeats and 65 simple-sequence repeat loci were detected in the Q. acutissima cp genome. The existence of abundant simple-sequence repeat loci in the genome suggests the potential for future population genetic work. The genome comparison revealed that the LSC region is more divergent than the SSC and IR regions, and there is higher divergence in noncoding regions than in coding regions. The phylogenetic relationships of 25 species inferred that members of the Quercus genus do not form a clade and that Q. acutissima is closely related to Q. variabilis. This study identified the unique characteristics of the Q. acutissima cp genome, which will provide a theoretical basis for species identification and biological research.
Collapse
Affiliation(s)
- Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yongfu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Mingyue Zang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd., Nanjing 210014, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
43
|
Zhao J, Xu Y, Xi L, Yang J, Chen H, Zhang J. Characterization of the Chloroplast Genome Sequence of Acer miaotaiense: Comparative and Phylogenetic Analyses. Molecules 2018; 23:E1740. [PMID: 30018192 PMCID: PMC6099587 DOI: 10.3390/molecules23071740] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Acer miaotaiense is an endangered species within the Aceraceae family, and has only a few small natural distributions in China's Qingling Mountains and Bashan Mountains. Comparative analyses of the complete chloroplast genome could provide useful knowledge on the diversity and evolution of this species in different environments. In this study, we sequenced and compared the chloroplast genome of Acer miaotaiense from five ecological regions in the Qingling and Mashan Regions of China. The size of the chloroplast genome ranged from 156,260 bp to 156,204 bp, including two inverted repeat regions, a small single-copy region, and a large single-copy region. Across the whole chloroplast genome, there were 130 genes in total, and 92 of them were protein-coding genes. We observed four genes with non-synonymous mutations involving post-transcriptional modification (matK), photosynthesis (atpI), and self-replication (rps4 and rpl20). A total of 415 microsatellite loci were identified, and the dominant microsatellite types were composed of dinucleotide and trinucleotide motifs. The dominant repeat units were AT and AG, accounting for 37.92% and 31.16% of the total microsatellite loci, respectively. A phylogenetic analysis showed that samples with the same altitude (Xunyangba, Ningshan country, and Zhangliangmiao, Liuba country) had a strong bootstrap value (88%), while the remaining ones shared a similar longitude. These results provided clues about the importance of longitude/altitude for the genetic diversity of Acer miaotaiense. This information will be useful for the conservation and improved management of this endangered species.
Collapse
Affiliation(s)
- Jiantao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yao Xu
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Linjie Xi
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Junwei Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Hongwu Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
44
|
Liu X, Zhou B, Yang H, Li Y, Yang Q, Lu Y, Gao Y. Sequencing and Analysis of Chrysanthemum carinatum Schousb and Kalimeris indica. The Complete Chloroplast Genomes Reveal Two Inversions and rbcL as Barcoding of the Vegetable. Molecules 2018; 23:E1358. [PMID: 29874832 PMCID: PMC6099409 DOI: 10.3390/molecules23061358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/28/2023] Open
Abstract
Chrysanthemum carinatum Schousb and Kalimeris indica are widely distributed edible vegetables and the sources of the Chinese medicine Asteraceae. The complete chloroplast (cp) genome of Asteraceae usually occurs in the inversions of two regions. Hence, the cp genome sequences and structures of Asteraceae species are crucial for the cp genome genetic diversity and evolutionary studies. Hence, in this paper, we have sequenced and analyzed for the first time the cp genome size of C. carinatum Schousb and K. indica, which are 149,752 bp and 152,885 bp, with a pair of inverted repeats (IRs) (24,523 bp and 25,003) separated by a large single copy (LSC) region (82,290 bp and 84,610) and a small single copy (SSC) region (18,416 bp and 18,269), respectively. In total, 79 protein-coding genes, 30 distinct transfer RNA (tRNA) genes, four distinct rRNA genes and two pseudogenes were found not only in C. carinatum Schousb but also in the K. indica cp genome. Fifty-two (52) and fifty-nine (59) repeats, and seventy (70) and ninety (90) simple sequence repeats (SSRs) were found in the C. carinatum Schousb and K. indica cp genomes, respectively. Codon usage analysis showed that leucine, isoleucine, and serine are the most frequent amino acids and that the UAA stop codon was the significantly favorite stop codon in both cp genomes. The two inversions, the LSC region ranging from trnC-GCA to trnG-UCC and the whole SSC region were found in both of them. The complete cp genome comparison with other Asteraceae species showed that the coding area is more conservative than the non-coding area. The phylogenetic analysis revealed that the rbcL gene is a good barcoding marker for identifying different vegetables. These results give an insight into the identification, the barcoding, and the understanding of the evolutionary model of the Asteraceae cp genome.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Boyang Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Hongyuan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Qian Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yuzhuo Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yu Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| |
Collapse
|
45
|
Ge J, Cai L, Bi GQ, Chen G, Sun W. Characterization of the Complete Chloroplast Genomes of Buddleja colvilei and B. sessilifolia: Implications for the Taxonomy of Buddleja L. Molecules 2018; 23:E1248. [PMID: 29882896 PMCID: PMC6100213 DOI: 10.3390/molecules23061248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022] Open
Abstract
Buddleja colvilei Hook.f. & Thomson (Scrophulariaceae) is a threatened alpine plant with a distribution throughout the Himalayas, also used as an ornamental plant. The name Buddleja sessilifolia B.S. Sun ex S.Y. Pao was assigned in 1983 to a plant distributed throughout the Gaoligong Mountains, but the name was later placed in synonymy with B. colvilei in the Flora of China. In this study we sequenced the complete chloroplast (cp) genomes of two individuals of B. colvilei and three individuals of B. sessilifolia from across the range. Both molecular and morphological analysis support the revision of B. sessilifolia. The phylogenetic analysis constructed with the whole cp genomes, the large single-copy regions (LSC), small single-copy regions (SSC), inverted repeat (IR) and the nuclear genes 18S/ITS1/5.8S/ITS2/28S all supported B. sessilifolia as a distinct species. Additionally, coalescence-based species delimitation methods (bGMYC, bPTP) using the whole chloroplast datasets also supported B. sessilifolia as a distinct species. The results suggest that the B. sessilifolia lineage was early diverging among the Asian Buddleja species. Overall gene contents were similar and gene arrangements were found to be highly conserved in the two species, however, fixed differences were found between the two species. A total of 474 single nucleotide polymorphisms (SNPs) were identified between the two species. The Principal Coordinate Analysis of the morphological characters resolved two groups and supported B. sessilifolia as a distinct species. Discrimination of B. colvilei and B. sessilifolia using morphological characters and the redescription of B. sessilifolia are detailed here.
Collapse
Affiliation(s)
- Jia Ge
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gui-Qi Bi
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao 266100, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China.
| | - Gao Chen
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
46
|
Liu X, Li Y, Yang H, Zhou B. Chloroplast Genome of the Folk Medicine and Vegetable Plant Talinum paniculatum (Jacq.) Gaertn.: Gene Organization, Comparative and Phylogenetic Analysis. Molecules 2018; 23:E857. [PMID: 29642545 PMCID: PMC6017404 DOI: 10.3390/molecules23040857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/10/2023] Open
Abstract
The complete chloroplast (cp) genome of Talinum paniculatum (Caryophyllale), a source of pharmaceutical efficacy similar to ginseng, and a widely distributed and planted edible vegetable, were sequenced and analyzed. The cp genome size of T. paniculatum is 156,929 bp, with a pair of inverted repeats (IRs) of 25,751 bp separated by a large single copy (LSC) region of 86,898 bp and a small single copy (SSC) region of 18,529 bp. The genome contains 83 protein-coding genes, 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes and four pseudogenes. Fifty one (51) repeat units and ninety two (92) simple sequence repeats (SSRs) were found in the genome. The pseudogene rpl23 (Ribosomal protein L23) was insert AATT than other Caryophyllale species by sequence alignment, which located in IRs region. The gene of trnK-UUU (tRNA-Lys) and rpl16 (Ribosomal protein L16) have larger introns in T. paniculatum, and the existence of matK (maturase K) genes, which usually located in the introns of trnK-UUU, rich sequence divergence in Caryophyllale. Complete cp genome comparison with other eight Caryophyllales species indicated that the differences between T. paniculatum and P. oleracea were very slight, and the most highly divergent regions occurred in intergenic spacers. Comparisons of IR boundaries among nine Caryophyllales species showed that T. paniculatum have larger IRs region and the contraction is relatively slight. The phylogenetic analysis among 35 Caryophyllales species and two outgroup species revealed that T. paniculatum and P. oleracea do not belong to the same family. All these results give good opportunities for future identification, barcoding of Talinum species, understanding the evolutionary mode of Caryophyllale cp genome and molecular breeding of T. paniculatum with high pharmaceutical efficacy.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Street, TEDA, Tianjin 300457, China.
| | - Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Street, TEDA, Tianjin 300457, China.
| | - Hongyuan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Street, TEDA, Tianjin 300457, China.
| | - Boyang Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Street, TEDA, Tianjin 300457, China.
| |
Collapse
|
47
|
Saina JK, Li ZZ, Gichira AW, Liao YY. The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus altissima (Mill.) (Sapindales: Simaroubaceae), an Important Pantropical Tree. Int J Mol Sci 2018; 19:E929. [PMID: 29561773 PMCID: PMC5979363 DOI: 10.3390/ijms19040929] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp) in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA) genes respectively and also 4 ribosomal RNA genes (rRNA) with overall GC content of 37.6%. Microsatellite marker detection identified A/T mononucleotides as majority SSRs in all the seven analyzed genomes. Repeat analyses of seven Sapindales revealed a total of 49 repeats in A. altissima, Rhus chinensis, Dodonaea viscosa, Leitneria floridana, while Azadirachta indica, Boswellia sacra, and Citrus aurantiifolia had a total of 48 repeats. The phylogenetic analysis using protein coding genes revealed that A. altissima is a sister to Leitneria floridana and also suggested that Simaroubaceae is a sister to Rutaceae family. The genome information reported here could be further applied for evolution and invasion, population genetics, and molecular studies in this plant species and family.
Collapse
Affiliation(s)
- Josphat K Saina
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Yi-Ying Liao
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| |
Collapse
|