1
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
2
|
Rahman I, Liang B, Sajid A, Ambudkar SV, Huang HC. Photodynamic priming modulates cellular ATP levels to overcome P-glycoprotein-mediated drug efflux in chemoresistant triple-negative breast cancer. Photochem Photobiol 2024. [PMID: 38824410 DOI: 10.1111/php.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
P-glycoprotein (P-gp, ABCB1) is a well-researched ATP-binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P-gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non-toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub-cytotoxic photodynamic therapy process, can inhibit P-gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL-MDA-MB-231) and chemosensitive (MDA-MB-231) triple-negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P-gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL-MDA-MB-231 cells, but not in chemosensitive MDA-MB-231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P-gp in VBL-MDA-MB-231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P-gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR.
Collapse
Affiliation(s)
- Idrisa Rahman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Barry Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Sun Y, Wu T, Gu J. An emerging role of N-glycosylation in cancer chemoresistance. Carbohydr Res 2024; 539:109107. [PMID: 38613897 DOI: 10.1016/j.carres.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Chemoresistance poses a significant obstacle in the effective treatment of cancer, limiting the success of chemotherapy regimens. N-glycosylation, the most important post-translational modification (PTM), plays multifaceted roles in the intricate landscape of cancer progression, particularly drug resistance in cancer cells. This review explores the complex relationship between N-glycosylation and chemoresistance in cancer. Altered glycosylation patterns have been proven to impact drug efflux mechanisms in cancer cells, which can further influence the intracellular concentration of chemotherapy drugs. Moreover, N-glycosylation also plays a regulatory role in cell signaling pathways and apoptosis regulators, continuously affecting the stemness and survival of cancer cells under the selective pressure of chemotherapy. Additionally, the impact of the tumor microenvironment on glycosylation patterns adds complexity to this interplay. This review discusses current research findings, challenges, and future directions based on the roles of N-glycosylation in cancer chemoresistance, emphasizing the potential for targeted therapeutic interventions to enhance the effectiveness of chemotherapy and improve patient outcomes.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
4
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Girard SD, Julien-Gau I, Molino Y, Combes BF, Greetham L, Khrestchatisky M, Nivet E. High and low permeability of human pluripotent stem cell-derived blood-brain barrier models depend on epithelial or endothelial features. FASEB J 2023; 37:e22770. [PMID: 36688807 DOI: 10.1096/fj.202201422r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023]
Abstract
The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.
Collapse
Affiliation(s)
- Stéphane D Girard
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Yves Molino
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Louise Greetham
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Michel Khrestchatisky
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Emmanuel Nivet
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
6
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
8
|
Dey S, Fageria L, Sharma A, Mukherjee S, Pande S, Chowdhury R, Chowdhury S. Silver nanoparticle-induced alteration of mitochondrial and ER homeostasis affects human breast cancer cell fate. Toxicol Rep 2022; 9:1977-1984. [DOI: 10.1016/j.toxrep.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
9
|
Véras JH, Cardoso CG, Puga SC, de Melo Bisneto AV, Roma RR, Santos Silva RR, Teixeira CS, Chen-Chen L. Lactose-binding lectin from Vatairea macrocarpa seeds induces in vivo angiogenesis via VEGF and TNF-ɑ expression and modulates in vitro doxorubicin-induced genotoxicity. Biochimie 2021; 194:55-66. [PMID: 34973362 DOI: 10.1016/j.biochi.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/04/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
Lactose-binding lectin from Vatairea macrocarpa seeds (VML) has attracted great attention due to its interesting biological activities, such as pro-inflammatory effects and macrophage activation. This study evaluated the cytotoxicity and genotoxicity/antigenotoxicity of VML in human lymphocytes using the CometChip assay, and angiogenic activity by the chick embryo chorioallantoic membrane (CAM) assay. In genotoxicity, lymphocytes were treated with different concentrations of VML (0.5, 2 and 8 μM). In antigenotoxicity, lymphocytes were treated with the same concentrations of VML concomitant doxorubicin (90 μM DXR). To evaluate angiogenesis, all CAM were treated with different concentrations of VML (0.5, 2 and 8 μM) alone or co-treated with lactose (0.1 M). Furthermore, the levels of vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) in CAM were assessed by immunohistochemistry. The results showed that VML was cytotoxic to lymphocytes, genotoxic at the highest concentration (8 μM) and antigenotoxic at low concentrations (0.5, and 2 μM). Regarding the CAM assay and immunohistochemistry, VML was angiogenic and significantly increased VEGF and TNF-α levels. In contrast, co-treatment with lactose significantly reduced the angiogenic effect and VEGF levels. We propose that protein-carbohydrate interactions between VML and glycans in the cell membrane are probably the major events involved in these activities. It seems likely that VML elicits a pro-inflammatory response through VEGF and TNF-α expression, resulting in increased vascularization at the site of inflammation. Therefore, our results show novel information on the effects of VML on DNA, as well as provide data regarded the neovascularization process involving this lectin.
Collapse
Affiliation(s)
- Jefferson Hollanda Véras
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clever Gomes Cardoso
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sara Cristina Puga
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Renato Rodrigues Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
10
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
11
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
12
|
Hu H, Yang W, Liang Z, Zhou Z, Song Q, Liu W, Deng X, Zhu J, Xing X, Zhong B, Wang B, Wang S, Shao Z, Zhang Y. Amplification of oxidative stress with lycorine and gold-based nanocomposites for synergistic cascade cancer therapy. J Nanobiotechnology 2021; 19:221. [PMID: 34315494 PMCID: PMC8314456 DOI: 10.1186/s12951-021-00933-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite advances of surgery and neoadjuvant chemotherapy during the past few decades, the therapeutic efficacy of current therapeutic protocol for osteosarcoma (OS) is still seriously compromised by multi-drug resistance and severe side effects. Amplification of intracellular oxidative stress is considered as an effective strategy to induce cancer cell death. The purpose of this study was to develop a novel strategy that can amplify the intracellular oxidative stress for synergistic cascade cancer therapy. METHODS AND RESULTS A novel nanocomposite, composed of folic acid (FA) modified mesoporous silica-coated gold nanostar (GNS@MSNs-FA) and traditional Chinese medicine lycorine (Ly), was rationally designed and developed. Under near-infrared (NIR) irradiation, the obtained GNS@MSNs-FA/Ly could promote a high level of ROS production via inducing mitochondrial dysfunction and potent endoplasmic reticulum (ER) stress. Moreover, glutathione (GSH) depletion during ER stress could reduce ROS scavenging and further enable efficient amplification of intracellular oxidative stress. Both in vitro and in vivo studies demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation exhibited excellent antitumor efficacy without noticeable toxicity in MNNG/HOS tumor-bearing mice. CONCLUSION All these results demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation could dramatically amplify the intra-tumoral oxidative stress, exhibiting excellent antitumor ability without obvious systemic toxicity. Taken together, this promising strategy provides a new avenue for the effective cancer synergetic therapy and future clinical translation.
Collapse
Affiliation(s)
- Hongzhi Hu
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- grid.452209.8Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, 050051 China
| | - Wenbo Yang
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zihui Liang
- grid.34418.3a0000 0001 0727 9022Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed By the Province and Ministry, Hubei University, Wuhan, 430062 China
| | - Zezhu Zhou
- grid.34418.3a0000 0001 0727 9022Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed By the Province and Ministry, Hubei University, Wuhan, 430062 China
| | - Qingcheng Song
- grid.452209.8Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, 050051 China
| | - Weijian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- grid.452209.8Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, 050051 China
| | - Xiangtian Deng
- grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 China
| | - Jian Zhu
- grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 China
| | - Xin Xing
- grid.452209.8Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, 050051 China
| | - Binglong Zhong
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Baichuan Wang
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shangyu Wang
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zengwu Shao
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yingze Zhang
- grid.33199.310000 0004 0368 7223Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- grid.452209.8Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, 050051 China
| |
Collapse
|
13
|
Kyca T, Pavlíková L, Boháčová V, Mišák A, Poturnayová A, Breier A, Sulová Z, Šereš M. Insight into Bortezomib Focusing on Its Efficacy against P-gp-Positive MDR Leukemia Cells. Int J Mol Sci 2021; 22:ijms22115504. [PMID: 34071136 PMCID: PMC8197160 DOI: 10.3390/ijms22115504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors. We also observed an increase in the level of polyubiquitinated proteins (via K48-linkage) and a decrease in the gene expression of some deubiquitinases after treatment with bortezomib. Resistant cells expressed higher levels of genes encoding 26S proteasome components and the chaperone HSP90, which is involved in 26S proteasome assembly. After 4 h of preincubation, bortezomib induced a more pronounced depression of proteasome activity in S cells than in R or T cells. However, none of these changes alone or in combination sufficiently suppressed the sensitivity of R or T cells to bortezomib, which remained at a level similar to that of S cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Bortezomib/pharmacology
- Cell Cycle/drug effects
- Cell Division
- Cell Line, Tumor
- Deubiquitinating Enzymes
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Fluoresceins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, cdc/drug effects
- Humans
- Inhibitory Concentration 50
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Mice
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Proteins/metabolism
- Transcription, Genetic/drug effects
- Ubiquitinated Proteins/metabolism
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Tomáš Kyca
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Anton Mišák
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia;
| | - Alexandra Poturnayová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava 1, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| |
Collapse
|
14
|
Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021; 8:620514. [PMID: 33928116 PMCID: PMC8076597 DOI: 10.3389/fmolb.2021.620514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/β-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5–ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/β-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yichun Huang
- Clinical Medical College, Hubei University of Science and Technology, Xianning, China
| | - Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhuoya Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Junlong Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xuqun Huang
- Edong Healthcare Group, Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Janotka Ľ, Messingerová L, Šimoničová K, Kavcová H, Elefantová K, Sulová Z, Breier A. Changes in Apoptotic Pathways in MOLM-13 Cell Lines after Induction of Resistance to Hypomethylating Agents. Int J Mol Sci 2021; 22:ijms22042076. [PMID: 33669837 PMCID: PMC7923013 DOI: 10.3390/ijms22042076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
We established the following two variants of the MOLM-13 human acute myeloid leukemia (AML) cell line: (i) MOLM-13/DAC cells are resistant to 5-aza-2′-deoxycytidine (DAC), and (ii) MOLM-13/AZA are resistant to 5-azacytidine (AZA). Both cell variants were obtained through a six-month selection/adaptation procedure with a stepwise increase in the concentration of either DAC or AZA. MOLM-13/DAC cells are resistant to DAC, and MOLM-13/AZA cells are resistant to AZA (approximately 50-fold and 20-fold, respectively), but cross-resistance of MOLM-13/DAC to AZA and of MOLM-13/AZA to DAC was not detected. By measuring the cell retention of fluorescein-linked annexin V and propidium iodide, we showed an apoptotic mode of death for MOLM-13 cells after treatment with either DAC or AZA, for MOLM-13/DAC cells after treatment with AZA, and for MOLM-13/AZA cells after treatment with DAC. When cells progressed to apoptosis, via JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide) assay, we detected a reduction in the mitochondrial membrane potential. Furthermore, we characterized promoter methylation levels for some genes encoding proteins regulating apoptosis and the relation of this methylation to the expression of the respective genes. In addition, we focused on determining the expression levels and activity of intrinsic and extrinsic apoptosis pathway proteins.
Collapse
Affiliation(s)
- Ľuboš Janotka
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Lucia Messingerová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| | - Kristína Šimoničová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Helena Kavcová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Katarína Elefantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| |
Collapse
|
16
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
17
|
Seelig A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front Oncol 2020; 10:576559. [PMID: 33194688 PMCID: PMC7649427 DOI: 10.3389/fonc.2020.576559] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein or multidrug resistance protein (MDR1) is an adenosine triphosphate (ATP) binding cassette transporter (ABCB1) intensely investigated because it is an obstacle to successful pharmacotherapy of cancers. P-glycoprotein prevents cellular uptake of a large number of structurally and functionally diverse compounds, including most cancer therapeutics and in this way causes multidrug resistance (MDR). To overcome MDR, and thus improve cancer treatment, an understanding of P-glycoprotein inhibition at the molecular level is required. With this goal in mind, we propose rules that predict whether a compound is a modulator, substrate, inhibitor, or inducer of P-glycoprotein. This new set of rules is derived from a quantitative analysis of the drug binding and transport properties of P-glycoprotein. We further discuss the role of P-glycoprotein in immune surveillance and cell metabolism. Finally, the predictive power of the proposed rules is demonstrated with a set of FDA approved drugs which have been repurposed for cancer therapy.
Collapse
Affiliation(s)
- Anna Seelig
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Marker SC, King AP, Swanda RV, Vaughn B, Boros E, Qian SB, Wilson JJ. Exploring Ovarian Cancer Cell Resistance to Rhenium Anticancer Complexes. Angew Chem Int Ed Engl 2020; 59:13391-13400. [PMID: 32396709 PMCID: PMC7482417 DOI: 10.1002/anie.202004883] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Indexed: 11/09/2022]
Abstract
Rhenium tricarbonyl complexes have been recently investigated as novel anticancer agents. However, little is understood about their mechanisms of action, as well as the means by which cancer cells respond to chronic exposure to these compounds. To gain a deeper mechanistic insight into these rhenium anticancer agents, we developed and characterized an ovarian cancer cell line that is resistant to a previously studied compound [Re(CO)3 (dmphen)(ptolICN)]+ , where dmphen=2,9-dimethyl-1,10-phenanthroline and ptolICN=para-tolyl isonitrile, called TRIP. This TRIP-resistant ovarian cancer cell line, A2780TR, was found to be 9 times less sensitive to TRIP compared to the wild-type A2780 ovarian cancer cell line. Furthermore, the cytotoxicities of established drugs and other rhenium anticancer agents in the TRIP-resistant cell line were determined. Notably, the drug taxol was found to exhibit a 184-fold decrease in activity in the A2780TR cell line, suggesting that mechanisms of resistance towards TRIP and this drug are similar. Accordingly, expression levels of the ATP-binding cassette transporter P-glycoprotein, an efflux transporter known to detoxify taxol, were found to be elevated in the A2780TR cell line. Additionally, a gene expression analysis using the National Cancer Institute 60 cell line panel identified the MT1E gene to be overexpressed in cells that are less sensitive to TRIP. Because this gene encodes for metallothioneins, this result suggests that detoxification by this class of proteins is another mechanism for resistance to TRIP. The importance of this gene in the A2780TR cell line was assessed, confirming that its expression is elevated in this cell line as well. As the first study to investigate and identify the cancer cell resistance pathways in response to a rhenium complex, this report highlights important similarities and differences in the resistance responses of ovarian cancer cells to TRIP and conventional drugs.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert V. Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Marker SC, King AP, Swanda RV, Vaughn B, Boros E, Qian SB, Wilson JJ. Exploring ovarian cancer cell resistance to rhenium anticancer complexes. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:13493-13502. [PMID: 34366495 PMCID: PMC8340908 DOI: 10.1002/ange.202004883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/29/2022]
Abstract
Rhenium tricarbonyl complexes have been recently investigated as novel anticancer agents. However, little is understood about their mechanisms of action, as well as the means by which cancer cells respond to chronic exposure to these compounds. To gain a deeper mechanistic insight into these rhenium anticancer agents, we developed and characterized an ovarian cancer cell line that is resistant to a previously studied compound [Re(CO)3(dmphen)(ptolICN)]+, where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, called TRIP. This TRIP-resistant ovarian cancer cell line, A2780TR, was found to be 9 times less sensitive to TRIP compared to the wild-type A2780 ovarian cancer cell line. Furthermore, the cytotoxicities of established drugs and other rhenium anticancer agents in the TRIP-resistant cell line were determined. Notably, the drug taxol was found to exhibit a 184-fold decrease in activity in the A2780TR cell line, suggesting that mechanisms of resistance towards TRIP and this drug are similar. Accordingly, expression levels of the ATP-binding cassette transporter P-glycoprotein, an efflux transporter known to detoxify taxol, were found to be elevated in the A2780TR cell line. Additionally, a gene expression analysis using the National Cancer Institute 60 cell line panel identified the MT1E gene to be overexpressed in cells that are less sensitive to TRIP. Because this gene encodes for metallothioneins, this result suggests that detoxification by this class of proteins is another mechanism for resistance to TRIP. The importance of this gene in the A2780TR cell line was assessed, confirming that its expression is elevated in this cell line as well. As the first study to investigate and identify the cancer cell resistance pathways in response to a rhenium complex, this report high-lights important similarities and differences in the resistance responses of ovarian cancer cells to TRIP and conventional drugs.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert V. Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Kumar P, Devaki B, Jonnala UK, Amere Subbarao S. Hsp90 facilitates acquired drug resistance of tumor cells through cholesterol modulation however independent of tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118728. [PMID: 32343987 DOI: 10.1016/j.bbamcr.2020.118728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/23/2022]
Abstract
Acquired multidrug resistance of cancer cells challenges the chemotherapeutic interventions. To understand the role of molecular chaperone, Hsp90 in drug adapted tumor cells, we have used in vitro drug adapted epidermoid tumor cells as a model system. We found that chemotherapeutic drug adaptation of tumor cells is mediated by induced activities of both Hsp90 and P-glycoprotein (P-gp). Although the high-affinity conformation of Hsp90 has correlated with the enhanced drug efflux activity, we did not observe a direct interaction between P-gp and Hsp90. The enrichment of P-gp and Hsp90 at the cholesterol-rich membrane microdomains is found obligatory for enhanced drug efflux activity. Since inhibition of cholesterol biosynthesis is not interfering with the drug efflux activity, it is presumed that the net cholesterol redistribution mediated by Hsp90 regulates the enhanced drug efflux activity. Our in vitro cholesterol and Hsp90 interaction studies have furthered our presumption that Hsp90 facilitates cholesterol redistribution. The drug adapted cells though exhibited anti-proliferative and anti-tumor effects in response to 17AAG treatment, drug treatment has also enhanced the drug efflux activity. Our findings suggest that drug efflux activity and metastatic potential of tumor cells are independently regulated by Hsp90 by distinct mechanisms. We expose the limitations imposed by Hsp90 inhibitors against multidrug resistant tumor cells.
Collapse
Affiliation(s)
- Pankaj Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Bharath Devaki
- Presently at Department of Molecular & Cell Biology, University of Texas, Dallas, USA
| | - Ujwal Kumar Jonnala
- Presently at SYNGENE International Ltd., Biocon BMS R & D Centre, Bengaluru, Karnataka, India
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
21
|
Liu Z, Gu S, Lu T, Wu K, Li L, Dong C, Zhou Y. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res 2020; 39:144. [PMID: 32727517 PMCID: PMC7388476 DOI: 10.1186/s13046-020-01646-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal forms of adult cancer with poor prognosis. Substantial evidence indicates that reactive oxygen species (ROS) are important modulators of aggressive cancer behavior. However, the mechanism by which ESCC cells integrate redox signals to modulate carcinoma progression remains elusive. METHODS The expression of interferon alpha inducible protein 6 (IFI6) in clinical ESCC tissues and cell lines was detected by RT-PCR and Western blotting. The correlation between IFI6 expression levels and aggressive ESCC disease stage was examined by immunohistochemistry. Bioinformatic analysis was conducted to explore the potential function of IFI6 in ESCC. ESCC cell lines stably depleted of IFI6 and ectopically expressing IFI6 were established using lentiviruses expressing shRNAs and an IFI6 expression plasmid, respectively. The effects of IFI6 on ESCC cells were determined by cell-based analyses, including EdU assay, apoptotic assay, cellular and mitochondria-specific ROS detection, seahorse extracellular flux, and mitochondrial calcium flux assays. Blue native-polyacrylamide gel electrophoresis was used to determine mitochondrial supercomplex assembly. Transcriptional activation of NADPH oxidase 4 (NOX4) via ATF3 was confirmed by dual luciferase assay. In vivo tumor growth was determined in mouse xenograft models. RESULTS We find that the expression of IFI6, an IFN-stimulated gene localized in the inner mitochondrial membrane, is markedly elevated in ESCC patients and a panel of ESCC cell lines. High IFI6 expression correlates with aggressive disease phenotype and poor prognosis in ESCC patients. IFI6 depletion suppresses proliferation and induces apoptosis by increasing ROS accumulation. Mechanistically, IFI6 ablation induces mitochondrial calcium overload by activating mitochondrial Ca2+ uniporter and subsequently ROS production. Following IFI6 ablation, mitochondrial ROS accumulation is also induced by mitochondrial supercomplex assembly suppression and oxidative phosphorylation dysfunction, while IFI6 overexpression produces the opposite effects. Furthermore, energy starvation induced by IFI6 inhibition drives endoplasmic reticulum stress through disrupting endoplasmic reticulum calcium uptake, which upregulates NOX4-derived ROS production in an ATF3-dependent manner. Finally, the results in xenograft models of ESCC further corroborate the in vitro findings. CONCLUSION Our study unveils a novel redox homeostasis signaling pathway that regulates ESCC pathobiology and identifies IFI6 as a potential druggable target in ESCC.
Collapse
Affiliation(s)
- Zhenchuan Liu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Tiancheng Lu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Kaiqing Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Lei Li
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China.
| |
Collapse
|
22
|
Cagala M, Pavlikova L, Seres M, Kadlecikova K, Breier A, Sulova Z. Development of Resistance to Endoplasmic Reticulum Stress-Inducing Agents in Mouse Leukemic L1210 Cells. Molecules 2020; 25:molecules25112517. [PMID: 32481618 PMCID: PMC7321222 DOI: 10.3390/molecules25112517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Four new variants of L1210 cells resistant to endoplasmic reticulum (ER) stressors, tunicamycin (STun), thapsigargin (SThap), bortezomib (SBor), and MG-132 (SMG-132), were developed via an 18-month periodic cultivation in culture medium with a gradual increase in substance concentration. Multidrug resistance was generated for STun (to tunicamycin, bortezomib and MG-132), SThap (to tunicamycin, thapsigargin and MG-132), SBor (to bortezomib and MG-132), and SMG-132 (to bortezomib and MG-132). These cells were compared to the original L1210 cells and another two variants, which expressed P-gp due to induction with vincristine or transfection with the gene encoding P-gp, in terms of the following properties: sensitivity to either vincristine or the ER stressors listed above, proliferative activity, expression of resistance markers and proteins involved in the ER stress response, and proteasome activity. The resistance of the new cell variants to ER stressors was accompanied by a decreased proliferation rate and increased proteasome activity. The most consistent change in protein expression was the elevation of GRP78/BiP at the mRNA and protein levels in all resistant variants of L1210 cells. In conclusion, the mechanisms of resistance to these stressors have certain common features, but there are also specific differences.
Collapse
Affiliation(s)
- Martin Cagala
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
| | - Lucia Pavlikova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
- Correspondence: (L.P.); (A.B.); (Z.S.); Tel.: +421-2-593-25-514 (A.B.); +421-2-32295510 (Z.S.)
| | - Mario Seres
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
| | - Karolina Kadlecikova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
- Correspondence: (L.P.); (A.B.); (Z.S.); Tel.: +421-2-593-25-514 (A.B.); +421-2-32295510 (Z.S.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
- Correspondence: (L.P.); (A.B.); (Z.S.); Tel.: +421-2-593-25-514 (A.B.); +421-2-32295510 (Z.S.)
| |
Collapse
|
23
|
Kaczor A, Nové M, Kincses A, Spengler G, Szymańska E, Latacz G, Handzlik J. Search for ABCB1 Modulators Among 2-Amine-5-Arylideneimidazolones as a New Perspective to Overcome Cancer Multidrug Resistance. Molecules 2020; 25:molecules25092258. [PMID: 32403277 PMCID: PMC7249047 DOI: 10.3390/molecules25092258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/03/2023] Open
Abstract
Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure–activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38–1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/toxicity
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Humans
- Imidazoles/chemical synthesis
- Imidazoles/chemistry
- Imidazoles/pharmacology
- In Vitro Techniques
- Inhibitory Concentration 50
- Lymphoma, T-Cell/enzymology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Mice
- Models, Molecular
- Molecular Docking Simulation
- Morpholines/chemistry
- Rhodamine 123/metabolism
- Structure-Activity Relationship
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
- Correspondence:
| |
Collapse
|
24
|
Kontar S, Imrichova D, Bertova A, Mackova K, Poturnayova A, Sulova Z, Breier A. Cell Death Effects Induced by Sulforaphane and Allyl Isothiocyanate on P-Glycoprotein Positive and Negative Variants in L1210 Cells. Molecules 2020; 25:molecules25092093. [PMID: 32365761 PMCID: PMC7249010 DOI: 10.3390/molecules25092093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Variants of L1210 leukemia cells-namely, parental P-glycoprotein-negative S cells and R and T cells expressing P-glycoprotein, due to selection with vincristine and transfection with the human p-glycoprotein gene, respectively-were used. The responses of these cell variants to two naturally occurring isothiocyanates-sulforaphane (SFN, from cruciferous vegetables) and allyl isothiocyanate (AITC, from mustard, radish, horseradish and wasabi)-were studied. We obtained conflicting results for the cell death effects induced by isothiocyanates, as measured by i. cell counting, which showed inhibited proliferation, and ii. cell metabolic activity via an MTS assay, which showed an increased MTS signal. These results indicated the hyperactivation of cell metabolism induced by treatment with isothiocyanates. In more detailed study, we found that, depending on the cell variants and the isothiocyanate used in treatment, apoptosis and necrosis (detected by annexin-V cells and propidium iodide staining), as well as autophagy (detected with monodansylcadaverine), were involved in cell death. We also determined the cell levels/expression of Bcl-2 and Bax as representative anti- and pro-apoptotic proteins of the Bcl-2 family, the cell levels/expression of members of the canonical and noncanonical NF-κB pathways, and the cell levels of 16 and 18 kDa fragments of LC3B protein as markers of autophagy.
Collapse
Affiliation(s)
- Szilvia Kontar
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| | - Anna Bertova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Katarina Mackova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Alexandra Poturnayova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| |
Collapse
|
25
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
26
|
Šereš M, Pavlíková L, Boháčová V, Kyca T, Borovská I, Lakatoš B, Breier A, Sulová Z. Overexpression of GRP78/BiP in P-Glycoprotein-Positive L1210 Cells is Responsible for Altered Response of Cells to Tunicamycin as a Stressor of the Endoplasmic Reticulum. Cells 2020; 9:cells9040890. [PMID: 32268491 PMCID: PMC7226765 DOI: 10.3390/cells9040890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein (P-gp, ABCB1 member of the ABC (ATP-binding cassette) transporter family) localized in leukemia cell plasma membranes is known to reduce cell sensitivity to a large but well-defined group of chemicals known as P-gp substrates. However, we found previously that P-gp-positive sublines of L1210 murine leukemia cells (R and T) but not parental P-gp-negative parental cells (S) are resistant to the endoplasmic reticulum (ER) stressor tunicamycin (an N-glycosylation inhibitor). Here, we elucidated the mechanism of tunicamycin resistance in P-gp-positive cells. We found that tunicamycin at a sublethal concentration of 0.1 µM induced retention of the cells in the G1 phase of the cell cycle only in the P-gp negative variant of L1210 cells. P-gp-positive L1210 cell variants had higher expression of the ER stress chaperone GRP78/BiP compared to that of P-gp-negative cells, in which tunicamycin induced larger upregulation of CHOP (C/EBP homologous protein). Transfection of the sensitive P-gp-negative cells with plasmids containing GRP78/BiP antagonized tunicamycin-induced CHOP expression and reduced tunicamycin-induced arrest of cells in the G1 phase of the cell cycle. Taken together, these data suggest that the resistance of P-gp-positive cells to tunicamycin is due to increased levels of GRP78/BiP, which is overexpressed in both resistant variants of L1210 cells.
Collapse
Affiliation(s)
- Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
- Correspondence: (M.Š.); (A.B.); (Z.S.); Tel.: +421-2-322-95-574 (M.Š.); +421-2-593-25-514 (A.B.); +421-2-322-95-510 (Z.S.)
| | - Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Tomáš Kyca
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Boris Lakatoš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.); Tel.: +421-2-322-95-574 (M.Š.); +421-2-593-25-514 (A.B.); +421-2-322-95-510 (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
- Correspondence: (M.Š.); (A.B.); (Z.S.); Tel.: +421-2-322-95-574 (M.Š.); +421-2-593-25-514 (A.B.); +421-2-322-95-510 (Z.S.)
| |
Collapse
|
27
|
Abstract
To investigate combined effect of the anticancer drug cisplatin (CP) and the opiate analgesic morphine (MOR) on liver, rats were administered MOR (10 mg/kg/day i.p. for 10 days), with or without CP (7.5 mg/kg i.p. once at day 5 of the study). MOR or CP alone caused deterioration of liver function tests and induced damage to histological architecture of liver. In addition, each drug alone caused hepatic oxidative stress, as evident by significant increase of malondialdehyde and nitric oxide, as well as the significant decrease in GSH, catalase and SOD compared to control. Administration of either MOR or CP also caused liver inflammation, evident by the increase in the pro-inflammatory cytokines; TNF-α and IL-6. In addition, either MOR or CP induced liver apoptosis, as shown by significant increase in expression of the pro-apoptotic marker; caspase 3 compared to control. Either MOR or CP also caused up-regulation of the efflux transporter P-glycoprotein (P-gp). Combining MOR with CP caused deterioration in all parameters tested compared to CP alone. Thus, treatment with MOR worsened CP-induced hepatotoxicity through oxidative stress, inflammation and apoptosis mechanisms. In addition, both drugs contributed to the up-regulation of P-gp, which might be a new mechanism for their hepatotoxic effects.
Collapse
|
28
|
Mohamed MZ, Zenhom NM. Mechanisms underlying the protective effect of leukotriene receptor antagonist montelukast against doxorubicin induced testicular injury in rats. Prostaglandins Other Lipid Mediat 2020; 149:106447. [PMID: 32173485 DOI: 10.1016/j.prostaglandins.2020.106447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023]
Abstract
The obligatory use of cytotoxic drugs to face the malignant tumors results in survivors that suffer from long term health problems. Fertility problems, especially in young boys, exert one of the major consequences of chemotherapy treatment that needs resolution. We investigate the potential effect of the cysteinyl leukotriene receptor antagonist montelukast on doxorubicin-induced testicular damage. Five groups of adult Wistar male rats were subjected to the following treatment; vehicle for the control group, montelukast (20 mg/kg orally daily for 10 days) for the drug control, doxorubicin (12 mg/kg intraperitoneal injection once at 5th day) for the toxic group, montelukast at 10 mg/kg + doxorubicin, montelukast at 20 mg/kg + doxorubicin. The period of the experiment was 10 days administration of montelukast, while doxorubicin was injected at the 5th day. Results of serum testosterone, testicular lipid peroxidation, antioxidant status, and histopathology revealed protection of montelukast against doxorubicin-induced testicular damage. The pro-apoptotic caspase 3 and the pro-inflammatory tumor necrosis factor-alpha were examined immunohistochemically and showed a significant decrease with montelukast treatment as compared to doxorubicin group. Doxorubicin increased gene expression of matrix metalloproteinase 9 and decreased peroxisome proliferator activated receptor gamma. Montelukast treatment restored their expressions to normal values. In conclusion, montelukast administration can ameliorate the testicular damage induced by doxorubicin based on its anti-inflammatory, antioxidant and anti-apoptotic effects as well as by of modulation of important genes expression.
Collapse
Affiliation(s)
- Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt.
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
29
|
Williams MS, Amaral FM, Simeoni F, Somervaille TC. A stress-responsive enhancer induces dynamic drug resistance in acute myeloid leukemia. J Clin Invest 2020; 130:1217-1232. [PMID: 31770110 PMCID: PMC7269587 DOI: 10.1172/jci130809] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The drug efflux pump ABCB1 is a key driver of chemoresistance, and high expression predicts treatment failure in acute myeloid leukemia (AML). In this study, we identified and functionally validated the network of enhancers that controls expression of ABCB1. We show that exposure of leukemia cells to daunorubicin activated an integrated stress response-like transcriptional program to induce ABCB1 through remodeling and activation of an ATF4-bound, stress-responsive enhancer. Protracted stress primed enhancers for rapid increases in activity following re-exposure of cells to daunorubicin, providing an epigenetic memory of prior drug treatment. In primary human AML, exposure of fresh blast cells to daunorubicin activated the stress-responsive enhancer and led to dose-dependent induction of ABCB1. Dynamic induction of ABCB1 by diverse stressors, including chemotherapy, facilitated escape of leukemia cells from targeted third-generation ABCB1 inhibition, providing an explanation for the failure of ABCB1 inhibitors in clinical trials. Stress-induced upregulation of ABCB1 was mitigated by combined use of the pharmacologic inhibitors U0126 and ISRIB, which inhibit stress signaling and have potential for use as adjuvants to enhance the activity of ABCB1 inhibitors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Acetamides/pharmacology
- Activating Transcription Factor 4/genetics
- Activating Transcription Factor 4/metabolism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Butadienes/pharmacology
- Cyclohexylamines/pharmacology
- Daunorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nitriles/pharmacology
- Up-Regulation/drug effects
Collapse
|
30
|
Kubíčková J, Elefantová K, Pavlikova L, Cagala M, Šereš M, Šafář P, Marchalín Š, Ďurišová K, Boháčová V, Sulova Z, Lakatoš B, Breier A, Olejníková P. Screening of Phenanthroquinolizidine Alkaloid Derivatives for Inducing Cell Death of L1210 Leukemia Cells with Negative and Positive P-glycoprotein Expression. Molecules 2019; 24:E2127. [PMID: 31195716 PMCID: PMC6600356 DOI: 10.3390/molecules24112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
We describe the screening of a set of cryptopleurine derivatives, namely thienoquinolizidine derivatives and (epi-)benzo analogs with bioactive phenanthroquinolizidine alkaloids that induce cytotoxic effects in the mouse lymphocytic leukemia cell line L1210. We used three variants of L1210 cells: i) parental cells (S) negative for P-glycoprotein (P-gp) expression; ii) P-glycoprotein positive cells (R), obtained by selection with vincristine; iii) P-glycoprotein positive cells (T), obtained by stable transfection with a human gene encoding P-glycoprotein. We identified the most effective derivative 11 with a median lethal concentration of ≈13 μM in all three L1210 cell variants. The analysis of the apoptosis/necrosis induced by derivative 11 revealed that cell death was the result of apoptosis with late apoptosis characteristics. Derivative 11 did not induce a strong alteration in the proportion of cells in the G1, S or G2/M phase of the cell cycle, but a strong increase in the number of S, R and T cells in the subG1 phase was detected. These findings indicated that we identified the most effective inducer of cell death, derivative 11, and this derivative effectively induced cell death in S, R and T cells at similar inhibitory concentrations independent of P-gp expression.
Collapse
Affiliation(s)
- Jana Kubíčková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Katarína Elefantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Lucia Pavlikova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Martin Cagala
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Peter Šafář
- Institute of Organic chemistry, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Štefan Marchalín
- Institute of Organic chemistry, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Kamila Ďurišová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Boris Lakatoš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
31
|
Talebi M, Bahar Aghdam S, Azimi A, Mohammadi H, Karimi Yonjali S, Asariha M, Zadi Heydarabad M. Regulatory Effect of Resveratrol and Prednisolone on MDR1
Protein Expression in Acute Lymphoblastic Leukemia Cell
Line (CCRF-CEM). Asian Pac J Cancer Prev 2019; 20:1171-1176. [PMID: 31030491 PMCID: PMC6948888 DOI: 10.31557/apjcp.2019.20.4.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective: Chemotherapy is the most widely recognized technique to regard leukemia and also different sorts of human tumors. In any case, tranquilize protection has stayed as the primary test against the adequacy of medications. Besides, having different unfriendly impacts, chemotherapy drugs are getting to be traded by characteristic modalities for growth treatment. In such manner, natural segments, for example, resveratrol and prednisolone have been recognized to sharpen the leukemic cells to modified cell demise through an arrangement of complex procedures. In this investigation, we have analyzed effect of 15, 50 and 100μM of resveratrol and 700μM of prednisolone on the human multidrug protection quality 1 (MDR1) as a notable marker for cell sedate protection. We assessed the impact of resveratrol and prednisolone on MDR1 protein expression in the CCRF-CEM cell line as an agent for intense lymphoblastic leukemia. The investigation was planned to clear up whether. Materials and methods: CCRF-CEM cells linage get under drug treatment with use of resveratrol and prednisolone. Western blot use at 24 and 48 hours with different doses of resveratrol and prednisolone to analysis of MDR1 expression changes. Results: Effect of 15, 50, and 100 micro molar of resveratrol and 700 micro molars of prednisolone on CCRF-CEM cells led to the MDR1 decrease. Western blot use for evaluation of MDR1 protein expression changes. Conclusion: In the present study, we observed that resveratrol and prednisolone, with a dose-dependent effect, can reduce the expression of the MDR1 protein. This reduction of expression demonstrates that resveratrol and prednisolone can overcome to drug resistance created by MDR1.
Collapse
Affiliation(s)
- Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Bahar Aghdam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Asariha
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Zadi Heydarabad
- Medicinal Plants Research Center, Yasuj University of Medical sciences, Yasuj, Iran.
| |
Collapse
|
32
|
Abstract
Background In clinical practice, many patients become multidrug resistant during chemotherapy, resulting in reduced or no healing effect. Therefore, the present study focused on bufalin, which is extracted from a traditional Chinese medicine named Chan Su (Venenum bufonis). We assessed the effect of bufalin in reversing K562/A02 cell drug resistance and inducing apoptosis, and explored the possible mechanism by which bufalin induces K562/A02 cell apoptosis. Material/Methods We used flow cytometry to evaluate intracellular ADM concentration, and RT-PCR and Western blot analysis were used to assess the effect of nuclear factor erythroid-2-related factor 2 (Nrf2) bufalin-related resistance gene expression. We used MTT and flow cytometry to detect apoptosis, and RT-PCR and Western blot were used to detect endoplasmic reticulum stress and apoptosis gene action. Results We found that bufalin can increase the concentration of Adriamycin (ADM) in K562/A02 cells by inhibiting the expression of Nrf2 and related drug resistance factors. The results showed that bufalin induced apoptosis of K562/A02 cells by the IRE1α/TRAF2/JNK/caspase-12 pathway. Conclusions These results suggest bufalin can reverse drug resistance in K562/A02 cells and that it induces apoptosis of K562/A02 cells by the IRE1α/TRAF2/JNK/caspase-12 pathway.
Collapse
Affiliation(s)
- Ying Xie
- Department of Blood Transfusion, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xu Yan
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ling Sun
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
33
|
Bian T, Chandagirikoppal Vijendra K, Wang Y, Meacham A, Hati S, Cogle CR, Sun H, Xing C. Exploring the Structure-Activity Relationship and Mechanism of a Chromene Scaffold (CXL Series) for Its Selective Antiproliferative Activity toward Multidrug-Resistant Cancer Cells. J Med Chem 2018; 61:6892-6903. [PMID: 29995404 DOI: 10.1021/acs.jmedchem.8b00813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) is one major barrier in cancer management, which urges for new drugs to help treat MDR malignancies and elucidate MDR mechanisms. A series of chromene compounds (the CXL series) demonstrate increased antiproliferative activity toward MDR acute-myeloid-leukemia (AML) cells. The structure-activity relationship (SAR) of the antiproliferative potency has been partly characterized, whereas the structural determinants contributing to selectivity have not been investigated. In this study, three series of CXL compounds were synthesized and evaluated in HL60 and HL60/MX2 leukemia cells. The results not only confirmed previous SAR studies but also, for the first time, provided structural insights into the selectivity for MDR HL60/MX2 cells. Using the lead compounds as probes, we demonstrated that their modulation of intracellular-calcium homeostasis results in their antiproliferative potency and selectivity. Three candidates also demonstrate excellent in vitro safety profiles between cancer cells and normal cells, which will be evaluated in vivo in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haifeng Sun
- Department of Medicinal Chemistry, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
34
|
The Transcription Factor ATF4 Promotes Expression of Cell Stress Genes and Cardiomyocyte Death in a Cellular Model of Atrial Fibrillation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3694362. [PMID: 30003094 PMCID: PMC5996409 DOI: 10.1155/2018/3694362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 12/19/2022]
Abstract
Introduction Cardiomyocyte remodelling in atrial fibrillation (AF) has been associated with both oxidative stress and endoplasmic reticulum (ER) stress and is accompanied by a complex transcriptional regulation. Here, we investigated the role the oxidative stress and ER stress responsive bZIP transcription factor ATF4 plays in atrial cardiomyocyte viability and AF induced gene expression. Methods HL-1 cardiomyocytes were subjected to rapid field stimulation. Forced expression of ATF4 was achieved by adenoviral gene transfer. Using global gene expression analysis and chromatin immunoprecipitation, ATF4 dependent transcriptional regulation was studied, and tissue specimen of AF patients was analysed by immunohistochemistry. Results Oxidative stress and ER stress caused a significant reduction in cardiomyocyte viability and were associated with an induction of ATF4. Accordingly, ATF4 was also induced by rapid field stimulation mimicking AF. Forced expression of wild type ATF4 promoted cardiomyocyte death. ATF4 was demonstrated to bind to the promoters of several cell stress genes and to induce the expression of a number of ATF4 dependent stress responsive genes. Moreover, immunohistochemical analyses showed that ATF4 is expressed in the nuclei of cardiomyocytes of tissue specimen obtained from AF patients. Conclusion ATF4 is expressed in human atrial cardiomyocytes and is induced in response to different types of cell stress. High rate electrical field stimulation seems to result in ATF4 induction, and forced expression of ATF4 reduces cardiomyocyte viability.
Collapse
|