1
|
Davinelli S, Intrieri M, Ali S, Righetti S, Mondazzi L, Scapagnini G, Corbi G. Omega-3 index and AA/EPA ratio as biomarkers of running-related injuries: An observational study in recreational runners. Eur J Sport Sci 2023; 23:134-142. [PMID: 34694208 DOI: 10.1080/17461391.2021.1998643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACTThe aim of this study was to examine the association between biomarkers of polyunsaturated fatty acids (PUFA), such as omega-3 (ω-3) index and arachidonic acid (AA; 20:4 ω-6)/eicosapentaenoic acid (EPA; 20:5ω-3) ratio (AA/EPA), and the prevalence of running-related injuries (RRI) in a cohort of recreational runners. We performed a retrospective, observational study of 275 non-elite runners (mean age: 41.20 ± 12.47 years) who were not supplemented with ω-3 fatty acids. The training characteristics and RRI were recorded over a period of 12 months through a self-reported questionnaire. Using whole blood samples collected by finger prick, PUFA were quantified by gas chromatography and ω-3 index and AA/EPA ratio measured. A total of 191 RRI cases were reported, with an injury prevalence rate of 50.9% in the overall population. The injured runners ran a significantly greater weekly distance than uninjured subjects (53.54 ± 25.27 km/week; p = 0.007). In a multivariate regression analysis, the lowest number of RRI was associated with higher values of ω-3 index (β = - 0.237; 95% CI - 0.308 to - 0.164; R2 = 0.172; p < 0.0001), while a higher AA/EPA ratio was correlated with higher number of RRI (β = 0.019; 95% CI 0.007-0.031; R2 = 0.038; p = 0.003). This study identifies ω-3 index and AA/EPA ratio as potential parameters associated with the risk of RRI. Future research is needed to confirm these results and apply specific nutritional strategies to successfully modify these biochemical variables.Trial registration: ISRCTN.org identifier: ISRCTN12847156..
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Luca Mondazzi
- School of Clinical Nutrition, University of Milano, Milano, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
2
|
Bishop LM, Fiehn O. Comprehensive lipidomic profiling by plasma separation cards. Anal Bioanal Chem 2023; 415:193-201. [PMID: 36316462 PMCID: PMC10448968 DOI: 10.1007/s00216-022-04399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Large-scale lipidomic analyses have been limited by the cost and accessibility of traditional venipuncture sampling. Microsampling techniques offer a less-invasive and more accessible alternative. From a single drop of blood, plasma separation cards (PSC) deliver two volumetric dried plasma samples which are studied here for profiling endogenous blood lipids. Six lots of EDTA-treated human whole blood were used to compare PSC, dried blood spot analyses (DBS), and classic wet plasma extractions. Six replicate extractions were performed for each lot. Nontargeted lipidomics was performed by liquid chromatography-high resolution tandem mass spectrometry. Lipids were annotated by accurate mass/retention time matching and MS/MS spectral library matching using peak intensities for quantitation. Four hundred ninety-eight compounds covering 24 lipid subclasses were annotated. Inter-lot repeatability was evaluated by the percent relative standard deviation (%RSD) for each lot, giving median %RSD values across the lots at 14.6% for PSC, 9.3% for DBS, and 8.6% for wet plasma. Strong correlations of lipid peak intensities between wet plasma and PSCs were observed, but less for DBS. Lipid recovery and stability were comparable between the PSC and DBS samples, with roughly 60% of annotated lipids stable at room temperature after 28 days. Overall, PSCs provide a better alternative for quantitative blood lipidomic analyses compared to dried blood spots. However, problems with lipid stability for samples handled and shipped at room temperature are currently unavoidable outside of a clinical setting. Data transferability and comparability to standard plasma is lipid and lipid class dependent.
Collapse
Affiliation(s)
- Lauren M Bishop
- Department of Chemistry, University of California Davis, Davis, CA, USA
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Oliver Fiehn
- Department of Chemistry, University of California Davis, Davis, CA, USA.
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Dried blood spots in clinical lipidomics: optimization and recent findings. Anal Bioanal Chem 2022; 414:7085-7101. [PMID: 35840669 DOI: 10.1007/s00216-022-04221-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Dried blood spots (DBS) are being considered as an alternative sampling method of blood collection that can be used in combination with lipidomic and other omic analysis. DBS are successfully used in the clinical context to collect samples for newborn screening for the measurement of specific fatty acid derivatives, such as acylcarnitines, and lipids from whole blood for diagnostic purposes. However, DBS are scarcely used for lipidomic analysis and investigations. Lipidomic studies using DBS are starting to emerge as a powerful method for sampling and storage in clinical lipidomic analysis, but the major research work is being done in the pre- and analytical steps and procedures, and few in clinical applications. This review presents a description of the impact factors and variables that can affect DBS lipidomic analysis, such as the type of DBS card, haematocrit, homogeneity of the blood drop, matrix/chromatographic effects, and the chemical and physical properties of the analyte. Additionally, a brief overview of lipidomic studies using DBS to unveil their application in clinical scenarios is also presented, considering the studies of method development and validation and, to a less extent, for clinical diagnosis using clinical lipidomics. DBS combined with lipidomic approaches proved to be as effective as whole blood samples, achieving high levels of sensitivity and specificity during MS and MS/MS analysis, which could be a useful tool for biomarker identification. Lipidomic profiling using MS/MS platforms enables significant insights into physiological changes, which could be useful in precision medicine.
Collapse
|
4
|
Furse S, Koulman A. Lipid extraction from dried blood spots and dried milk spots for untargeted high throughput lipidomics. Mol Omics 2020; 16:563-572. [PMID: 32945330 DOI: 10.1039/d0mo00102c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dried blood spots (DBS) and dried milk spots (DMS) represent convenient matrices for collecting and storing human samples. However, the use of these sample types for researching lipid metabolism remains relatively poorly explored, and especially unclear is the efficiency of lipid extraction in the context of high throughput, untargeted lipidomics. A visual inspection of punched DBSs after standard extraction suggests that the samples remain largely intact. DMSs comprise a dense aggregate of milk fat globules on one side of the card, suggesting that part of the lipid fraction may be physically inaccessible. This led us to the hypothesis that decoagulating may facilitate lipid extraction from both DBSs and DMSs. We tested this hypothesis using a mixture of strong chaeotropes (guanidine and thiourea) in both DBS and DMS in the context of high throughput lipidomics (96/384w plate). Extraction of lipids from DMSs was tested with established extractions and one novel solvent mixture in a high throughput format. We found that exposure of DBSs to chaeotropes facilitated collection of the lipid fraction but was ineffective for DMSs. The lipid fraction of DMSs was best isolated without water, using a mixture of xylene/methanol/isopropanol (1 : 2 : 4). We conclude that decoagulation is essential for efficient extraction of lipids from DBSs and that a non-aqueous procedure using a spectrum of solvents is the best procedure for extracting lipids from DMSs. These methods represent convenient steps that are compatible with the sample structure and type, and with high throughput lipidomics.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
5
|
Davinelli S, Corbi G, Righetti S, Casiraghi E, Chiappero F, Martegani S, Pina R, De Vivo I, Simopoulos AP, Scapagnini G. Relationship Between Distance Run Per Week, Omega-3 Index, and Arachidonic Acid (AA)/Eicosapentaenoic Acid (EPA) Ratio: An Observational Retrospective Study in Non-elite Runners. Front Physiol 2019; 10:487. [PMID: 31105590 PMCID: PMC6499024 DOI: 10.3389/fphys.2019.00487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Tissue availability of polyunsaturated fatty acids (PUFA) depends on several factors, including dietary intake, physical exercise, genetic variation, and metabolic turnover. However, there is limited evidence whether running training activity per se may influence indices associated with PUFA metabolism such as Omega-3 (ω-3) index and arachidonic acid (AA; 20:4ω-6)/eicosapentaenoic acid (EPA; 20:5ω-3) ratio. Objective: To examine the association between kilometers (Km) run per week and changes in ω-3 index and AA/EPA ratio. Methods: We conducted a retrospective, observational, cohort study of 257 non-elite runners (mean age: 40.85 ± 12.17 years) who consumed no fatty acid supplements and provided a blood sample for analysis. The whole blood samples were collected by finger sticks, stored on absorbent filter paper, and then PUFA were quantified by gas chromatography (GC) and ω-3 index and AA/EPA ratio measured. Results: In a multivariate linear regression model, a gradual decrease of the ω-3 index was observed with higher weekly running distance (β = −0.033; 95% CI −0.039 to −0.026; R2 = 0.447; p < 0.0001). We also found a progressive increase of the AA/EPA ratio in subjects who ran greater weekly distances (β = 0.092; 95% CI 0.038 to 0.146; R2 = 0.320; p = 0.001). No other significant associations were observed with other variables, including years of running training and weekly training frequency (hours/week). Finally, as expected, a significant inverse correlation between ω-3 index and AA/EPA ratio (β = −2.614; 95% CI −3.407 to −1.821; R2 = 0.336; p < 0.0001) was detected. Conclusions: These findings suggest that distance running training and its weekly volume may negatively contribute to changes of the ω-3 index and AA/EPA ratio. Further studies with greater sample size will be required to replicate and extend these data.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Elena Casiraghi
- Equipe Enervit Srl, Scientific Research Unit of Enervit Spa, Milan, Italy
| | | | | | - Riccardo Pina
- Equipe Enervit Srl, Scientific Research Unit of Enervit Spa, Milan, Italy
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
6
|
Zhang Q, Wang Y, Zheng Q, Li J. Analysis of O-Acetylated Sialic Acids in Dried Blood Spots. Anal Chem 2019; 91:2744-2751. [DOI: 10.1021/acs.analchem.8b04420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research,
Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research,
Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjun Li
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|