1
|
Stefanakis MK, Tsiftsoglou OS, Mašković PZ, Lazari D, Katerinopoulos HE. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × commixta Rech. f. ( P. cretica × P. lanata). Int J Mol Sci 2024; 25:816. [PMID: 38255889 PMCID: PMC10815138 DOI: 10.3390/ijms25020816] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The present work is the first report on the ingredients of the P. × commixta hybrid, a plant of the genus Phlomis. So far, thirty substances have been isolated by various chromatographic techniques and identified by spectroscopic methods, such as UV/Vis, NMR, GC-MS and LC-MS. The compounds are classified as flavonoids: naringenin, eriodyctiol, eriodyctiol-7-O-β-D-glucoside, luteolin, luteolin-7-O-β-D-glucoside, apigenin, apigenin-7-O-β-D-glucoside, diosmetin-7-O-β-D-glucoside, quercetin, hesperetin and quercetin-3-O-β-D-glucoside; phenylpropanoids: martynoside, verbascoside, forsythoside B, echinacoside and allysonoside; chromene: 5,7-dihydroxychromone; phenolic acids: caffeic acid, p-hydroxybenzoic acid, chlorogenic acid, chlorogenic acid methyl ester, gallic acid, p-coumaric acid and vanillic acid; aliphatic hydrocarbon: docos-1-ene; steroids: brassicasterol and stigmasterol; a glucoside of allylic alcohol, 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-ene-3-ol, was fully characterized as a natural product for the first time. Two tyrosol esters were also isolated: tyrosol lignocerate and tyrosol methyl ether palmitate, the latter one being isolated as a natural product for the first time. Moreover, the biological activities of the extracts from the different polarities of the roots, leaves and flowers were estimated for their cytotoxic potency. All root extracts tested showed a high cytotoxic activity against the Hep2c and RD cell lines.
Collapse
Affiliation(s)
- Michalis K. Stefanakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece; (M.K.S.); (H.E.K.)
| | - Olga St. Tsiftsoglou
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pavle Z. Mašković
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
2
|
Khound P, Sarma H, Sarma PP, Jana UK, Devi R. Ultrasound-Assisted Extraction of Verbascoside from Clerodendrum glandulosum Leaves for Analysis of Antioxidant and Antidiabetic Activities. ACS OMEGA 2023; 8:20360-20369. [PMID: 37323385 PMCID: PMC10268293 DOI: 10.1021/acsomega.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023]
Abstract
Verbascoside (VER) is a phenylethanoid glycoside compound found in Clerodendrum species and is an important part of traditional medicine. It is found in the leaves of Clerodendrum glandulosum, which is taken as a soup or vegetable and also utilized in traditional medicine by the people of Northeast India, especially against hypertension and diabetes. In the present study, VER was extracted from C. glandulosum leaves using ultrasound-assisted extraction through the solvent extraction method (ethanol-water, ethanol, and water). The ethanol extract had the highest phenolic and flavonoid contents, viz., 110.55 mg GAE/g and 87.60 mg QE/g, respectively. HPLC and LC-MS were used to identify the active phenolic compound, and VER was found to be the main component present in the extraction with a molecular weight of 624.59 g/mol. NMR (1H, 2D-COSY) analysis showed the presence of hydroxytyrosol, caffeic acid, glucose, and rhamnose in the VER backbone. Further, different antioxidant activities and antidiabetic and antihyperlipidemia enzyme markers' inhibition against VER-enriched ethanol extract were evaluated. The results showed that ultrasound extraction of polyphenols using ethanol from C. glandulosum could be a promising technique for the extraction of bioactive compounds.
Collapse
Affiliation(s)
- Puspanjali Khound
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Guwahati 781035, Assam, India
- Department
of Zoology, Gauhati University, Jalukbari, Guwahati 781014, Assam, India
| | - Himangshu Sarma
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Guwahati 781035, Assam, India
| | - Partha Pratim Sarma
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Guwahati 781035, Assam, India
| | - Uttam Kumar Jana
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Guwahati 781035, Assam, India
| | - Rajlakshmi Devi
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Guwahati 781035, Assam, India
- Department
of Zoology, Gauhati University, Jalukbari, Guwahati 781014, Assam, India
| |
Collapse
|
3
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
4
|
Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022; 27:molecules27217625. [PMID: 36364452 PMCID: PMC9654144 DOI: 10.3390/molecules27217625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
To evaluate the antioxidant activity of flavonoids extracted from Chinese herb mulberry leaves (ML), flavonoids from mulberry leaves (FML) were extracted and purified by using ultrasonic-assisted enzymatic extraction and D101 macroporous resin. Using LC-MS/MS-Liquid Chromatography with tandem mass spectrometry analysis, hesperidin, rutoside, hyperoside, cyanidin-3-o-glucoside, myricitrin, cyanidin, and quercetin were identified, and NMR and UV were consistent with the verification of IR flavonoid characteristics. The antioxidant activity of FML has also been evaluated as well as the protective effect on 2,2 0-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress. The results showed that FML exhibited powerful antioxidant activity. Moreover, FML showed dose-dependent protection against AAPH-induced sheep erythrocytes’ oxidative hemolysis. In the enzymatic antioxidant system, pretreatment with high FML maintained the balance of SOD, CAT, and GSH-Px; in the non-enzymatic antioxidant system, the content of MDA can be effectively reduced after FML treatment. This study provides a research basis for the development of natural products from mulberry leaves.
Collapse
|
5
|
Delicato A, Masi M, de Lara F, Rubiales D, Paolillo I, Lucci V, Falco G, Calabrò V, Evidente A. In vitro characterization of iridoid and phenylethanoid glycosides from Cistanche phelypaea for nutraceutical and pharmacological applications. Phytother Res 2022; 36:4155-4166. [PMID: 35781895 PMCID: PMC9796874 DOI: 10.1002/ptr.7548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 01/07/2023]
Abstract
"Desert hyacinths" are a remarkable group of parasitic plants belonging to genus Cistanche, including more than 20 accepted species typically occurring in deserts or coastal dunes parasitizing roots of shrubs. Several Cistanche species have long been a source of traditional herbal medicine or food, being C. deserticola and C. tubulosa the most used in China. This manuscript reports the isolation and identification of some phenylethanoid and iridoid glycosides, obtained from the hydroalcoholic extract of C. phelypaea collected in Spain. The present study aims to characterize the antioxidant activity of C. phelypaea metabolites in the light of their application in nutraceutical and cosmeceutical industries and the effect of acetoside, the most abundant metabolite in C. phelypaea extract, on human keratinocyte and pluripotent stem cell proliferation and differentiation. Our study demonstrated that acetoside, besides its strong antioxidant potential, can preserve the proliferative potential of human basal keratinocytes and the stemness of mesenchymal progenitors necessary for tissue morphogenesis and renewal. Therefore, acetoside can be of practical relevance for the clinical application of human stem cell cultures in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Antonella Delicato
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | | | | | - Ida Paolillo
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Valeria Lucci
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Geppino Falco
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| |
Collapse
|
6
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
7
|
Xu X, Hui W, Liu N, Zhang Y. Effects of ergosteroside combined risedronate on fracture healing and BMP-2, BMP-7 and VEGF expression in rats. Acta Cir Bras 2021; 36:e361107. [PMID: 34932671 PMCID: PMC8691146 DOI: 10.1590/acb361107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose To evaluate the effect of ergosterol combined with risedronate on fracture
healing. Methods Sixty male Sprague Dawley fracture model rats were assigned into group A
(n=20), group B (n=20), and group C (n=20) at random. All rats were fed by
gavage until their sacrifice as it follows: group A with ergosteroside and
risedronate, group B with risedronate, and group C with saline solution. At
weeks 2 and 4, 10 rats of each group were sacrificed. Healing effect and
bone tissue changes in the fractures site were assessed by using hematoxylin
and eosin stain histology. Enzyme-linked immunosorbent assay was used to
detect the expression of serum bone morphogenetic protein-2 (BMP-2), bone
morphogenetic protein-7 (BMP-7), and vascular endothelial growth factor
(VEGF). Reverse transcriptase polymerase chain reaction was applied to
detect the expression of osteoprotegerin (OPG) mRNA, osteocalcin (OCN) mRNA
and core-binding factor subunit-?1 (CBF-?1) mRNA. Results In terms of serum BMP-2, BMP-7, and VEGF expression at weeks 2 and 4 after
gavage, group A < group B < group C (P<0.05). At week 4 after
gavage, serum VEGF expression in the three groups harbored positive
relationship with serum BMP-2 and BMP-7 expression (P<0.05). Regarding
serum OPG, OCN and CBF-?1 mRNA expression at weeks 2 and 4 after gavage,
group A <group B <group C (P<0.05). Hematoxylin and eosin staining
results showed that the recovery effect of trabecular bone and callus in the
cases of group A was better than the other two groups after intragastric
administration. Conclusion Ergosteroside combined risedronate can patently ameliorate the healing effect
of fracture in rats.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Shanghai Jiao Tong University School of Medicine, China
| | - Wenyu Hui
- Shanghai Jiao Tong University School of Medicine, China
| | - Nian Liu
- Shanghai Jiao Tong University School of Medicine, China
| | - Yong Zhang
- Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
8
|
Acteoside isolated from Colebrookea oppositifolia attenuates I/R brain injury in Wistar rats via modulation of HIF-1α, NF-κB, and VEGF pathways. Inflammopharmacology 2021; 29:1565-1577. [PMID: 34365555 DOI: 10.1007/s10787-021-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
AIMS The objective of this study was to assess the anti-stroke activity of acteoside isolated from methanolic root extract of C. oppositifolia METHODS: Ischemia-reperfusion(I/R) brain injury was induced in Wistar rats to assess the anti-stroke activity of acteoside. Rats were pretreated with acteoside (10, 25 & 50 mg/kg, p.o.) before the induction of I/R injury. Parameters such as neurological, motor-cognitive functions were evaluated along with morphological (brain volume, infarct size), biochemical (SOD, Catalase, GSH, lipid peroxidation, TNF-α, IL-6, IL-10, ICAM-1, HIF-1α, VEGF, and NF-κB), histopathological, and gene expression studies (HIF-1α, VEGF) were performed to study the protective effect of acteoside against I/R induced brain injury. RESULTS I/R injury caused significant deterioration of neurological (p < 0.01), motor (p < 0.01) and cognitive (p < 0.01) functions, associated with increase in the brain volume (p < 0.01), and infarct size (p < 0.01); increase in the levels of MDA, TNF-α, IL-6, ICAM-1, HIF-1α, VEGF, and NF-κB along with significant decrease in SOD, catalase, GSH, and IL-10 (p < 0.01 for all parameters) compared to Sham control group. Histology of brain tissue of disease control group exhibited significant vascular changes, neutrophil infiltration, cerebral oedema, and necrosis of the neuronal cells. Further, the gene-expression studies showed significant increase in the HIF-1α (p < 0.01) and VEGF (p < 0.01) mRNA levels in the I/R control compared to Sham control. Interestingly, the acteoside (10, 25 & 50 mg/kg) has prevented the neurological, motor and cognitive dysfunctions, along with inhibiting the morphological, biochemical, histological and gene expression changes induced by I/R-injury (p < 0.05 for 10 mg; p < 0.01 for 25 & 50 mg/kg of acteoside for all the parameters). CONCLUSION These findings suggest that acteoside possess potent anti-stroke activity through modulation of HIF-1α, NF-κB, and VEGF pathway along with its potent antioxidant activity.
Collapse
|
9
|
Chen B, Li X, Liu J, Li Y, Dai W, Chen Y, Chen D. Ferroptosis-Inhibitory Effect and Possible Mechanisms of Ellagitannin Geraniin. ChemistryOpen 2021; 10:737-739. [PMID: 33590718 PMCID: PMC8340064 DOI: 10.1002/open.202000255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The search for safe and effective ferroptosis-inhibitors has become an important topic. Geraniin, an ellagitannin bearing hexahydroxydiphenoyl (HHDP) and dehydrohexahydroxydiphenoyl (DHHDP) groups, was observed to inhibit erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells (bmMSCs). To determine the mechanism, geraniin was further analyzed using UV-vis spectra and several colorimetric assays, where its IC50 values were always much lower than that of the Trolox positive control. When interacted with several free radicals, geraniin gave no radical adduct formation (RAF) peak in the ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. In conclusion, geraniin exhibits ferroptosis-inhibitory potential towards erastin-treated bmMSCs; such potential may mainly stem from its strong lipid peroxidation (LPO)-inhibition, Fe2+ -chelating, and antioxidant actions. Geraniin gives neither dimer nor radical adduct, owing to the bulky HHDP (or DHHDP) group; thus, it is considered as a safe and effective ferroptosis-inhibitor.
Collapse
Affiliation(s)
- Ban Chen
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega Center510006GuangzhouChina
| | - Xican Li
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega Center510006GuangzhouChina
| | - Jie Liu
- Shenzhen Bao'an Traditional Chinese Medicine HospitalGuangzhou University of Chinese Medicine51800ShenzhenChina
| | - Yuling Li
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega Center510006GuangzhouChina
| | - Wanjian Dai
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega Center510006GuangzhouChina
| | - Yingci Chen
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega Center510006GuangzhouChina
| | - Dongfeng Chen
- School of Basic Medical ScienceGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega Center510006GuangzhouChina
| |
Collapse
|
10
|
Skalski B, Pawelec S, Jedrejek D, Rolnik A, Pietukhov R, Piwowarczyk R, Stochmal A, Olas B. Antioxidant and anticoagulant effects of phenylpropanoid glycosides isolated from broomrapes (Orobanche caryophyllacea, Phelipanche arenaria, and P. ramosa). Biomed Pharmacother 2021; 139:111618. [PMID: 33901871 DOI: 10.1016/j.biopha.2021.111618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022] Open
Abstract
Holoparasitic plants of the Orobanchaceae, including Cistanche, Orobanche, and Phelipanche spp, are known for their richness of phenylpropanoid glycosides (PPGs). Many PPG compounds have been found to possess a wide spectrum of activities, such as antimicrobial, anti-inflammatory, antioxidant, and memory-enhancing. To better explore the bioactivity potential of European broomrapes (O. caryophyllacea - OC, P. arenaria - PA, P. ramosa - PR) and ten single isolated phenylpropanoid constituents, we investigated their antiradical action, protective effect against oxidation in plasma in vitro system, and influence on coagulation parameters. The tested extracts showed a scavenging activity of 50-70% of Trolox's power. The OC extract, rich in acteoside, had over 20% better antiradical potential than PR extract which was the only one containing PPGs lacking a B-ring catechol moiety in the acyl unit. Moreover, it was found that only eight tested PPGs demonstrated antioxidant potential in human plasma treated with H2O2/Fe; however, the three tested PPGs possessed anticoagulant potential in addition to antioxidant properties. It appears that the structure of PPGs, especially the presence of acyl and catechol moieties, is mainly related to their antioxidant properties. The anticoagulant potential of these compounds is also related to their chemical structure. Selected PPGs exhibit the potential for treating cardiovascular diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Bartosz Skalski
- University of Łódź, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236 Łódź, Poland
| | - Sylwia Pawelec
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Agata Rolnik
- University of Łódź, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236 Łódź, Poland
| | - Rostyslav Pietukhov
- University of Łódź, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236 Łódź, Poland
| | - Renata Piwowarczyk
- Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Beata Olas
- University of Łódź, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236 Łódź, Poland.
| |
Collapse
|
11
|
Treml J, Večeřová P, Herczogová P, Šmejkal K. Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays. Molecules 2021; 26:molecules26092534. [PMID: 33926137 PMCID: PMC8123583 DOI: 10.3390/molecules26092534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Oxidative stress is a key factor in the pathophysiology of many diseases. This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay was employed for direct scavenging assays. In the indirect approach, the influence of each test substance on the gene and protein expression and activity of selected antioxidant enzymes was observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each compound was measured using a glucose oxidative stress protection assay. Results: Among the test compounds, acteoside showed the highest direct scavenging activity and no effect on the expression of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone demonstrated antioxidant effects in cell-based assays.
Collapse
Affiliation(s)
- Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic; (P.V.); (P.H.)
- Correspondence: (J.T.); (K.Š.)
| | - Petra Večeřová
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic; (P.V.); (P.H.)
| | - Petra Herczogová
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic; (P.V.); (P.H.)
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
- Correspondence: (J.T.); (K.Š.)
| |
Collapse
|
12
|
Lim H, Kim DK, Kim TH, Kang KR, Seo JY, Cho SS, Yun Y, Choi YY, Leem J, Kim HW, Jo GU, Oh CJ, Oh DS, Chun HS, Kim JS. Acteoside Counteracts Interleukin-1 β-Induced Catabolic Processes through the Modulation of Mitogen-Activated Protein Kinases and the NF κB Cellular Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8684725. [PMID: 33833854 PMCID: PMC8016581 DOI: 10.1155/2021/8684725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/15/2021] [Accepted: 03/06/2021] [Indexed: 01/12/2023]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease with chronic joint pain caused by progressive degeneration of articular cartilage at synovial joints. Acteoside, a caffeoylphenylethanoid glycoside, has various biological activities such as antimicrobial, anti-inflammatory, anticancer, antioxidative, cytoprotective, and neuroprotective effect. Further, oral administration of acteoside at high dosage does not cause genotoxicity. Therefore, the aim of present study is to verify the anticatabolic effects of acteoside against osteoarthritis and its anticatabolic signaling pathway. Acteoside did not decrease the viabilities of mouse fibroblast L929 cells used as normal cells and primary rat chondrocytes. Acteoside counteracted the IL-1β-induced proteoglycan loss in the chondrocytes and articular cartilage through suppressing the expression and activation of cartilage-degrading enzyme such as matrix metalloproteinase- (MMP-) 13, MMP-1, and MMP-3. Furthermore, acteoside suppressed the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in the primary rat chondrocytes treated with IL-1β. Subsequently, the expression of proinflammatory cytokines was decreased by acteoside in the primary rat chondrocytes treated with IL-1β. Moreover, acteoside suppressed not only the phosphorylation of mitogen-activated protein kinases in primary rat chondrocytes treated with IL-1β but also the translocation of NFκB from the cytosol to the nucleus through suppression of its phosphorylation. Oral administration of 5 and 10 mg/kg acteoside attenuated the progressive degeneration of articular cartilage in the osteoarthritic mouse model generated by destabilization of the medial meniscus. Our findings indicate that acteoside is a promising potential anticatabolic agent or supplement to attenuate or prevent progressive degeneration of articular cartilage.
Collapse
Affiliation(s)
- HyangI Lim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Do Kyung Kim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Tae-Hyeon Kim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyeong-Rok Kang
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Jeong-Yeon Seo
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
- Departments of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Seung Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Younghee Yun
- Chung-Yeon Medical Institute, Gwangju 61949, Republic of Korea
- Research and Development Institute, CY Pharma Co., Seoul 06224, Republic of Korea
| | - Ye-yong Choi
- Chung-Yeon Medical Institute, Gwangju 61949, Republic of Korea
- Research and Development Institute, CY Pharma Co., Seoul 06224, Republic of Korea
| | - Jungtae Leem
- Chung-Yeon Medical Institute, Gwangju 61949, Republic of Korea
- Research and Development Institute, CY Pharma Co., Seoul 06224, Republic of Korea
| | - Hyoun-Woo Kim
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Geon-Ung Jo
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Chan-Jin Oh
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Deuk-Sil Oh
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Hong-Sung Chun
- Departments of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae-Sung Kim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
13
|
Liu Y, Li X, Hua Y, Zhang W, Zhou X, He J, Chen D. Tannic Acid as a Natural Ferroptosis Inhibitor: Mechanisms and Beneficial Role of 3’‐
O
‐Galloylation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangping Liu
- The Fourth Clinical Medical College Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xican Li
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Yujie Hua
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Wenhui Zhang
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xianxi Zhou
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| | - Jianfeng He
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Dongfeng Chen
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| |
Collapse
|
14
|
Navrátilová M, Raisová Stuchlíková L, Skálová L, Szotáková B, Langhansová L, Podlipná R. Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31202-31210. [PMID: 32483720 DOI: 10.1007/s11356-020-09442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The anthelmintic drug ivermectin (IVM), used frequently especially in veterinary medicine, enters the environment mainly via excrements in pastures and could negatively affect non-target organisms including plants. The present study was designed to follow up on our previous investigations into IVM metabolism and its effects in the common meadow plant ribwort plantain (Plantago lanceolata L.) during long-term exposure of both cell suspensions and whole plant regenerants. IVM uptake, distribution, and biotransformation pathways were studied using UHPLC-MS analysis. In addition, the IVM effect on antioxidant enzymes activities, proline concentration, the content of all polyphenols, and the level of the main bioactive secondary metabolites was also tested with the goal of learning more about IVM-induced stress in the plant organism. Our results showed that the ribwort plantain was able to uptake IVM and transform it via demethylation and hydroxylation. Seven and six metabolites respectively were detected in cell suspensions and in the roots of regenerants. However, only the parent drug IVM was detected in the leaves of the regenerants. IVM accumulated in the roots and leaves of plants might negatively affect ecosystems due to its toxicity to herbivorous invertebrates. As IVM exposition increased the activity of catalase, the concentration of proline and polyphenols, as well as decreased the activity of ascorbate peroxidase and the concentration of the bioactive compounds acteoside and aucubin, long-term exposition of the ribwort plantain to IVM caused abiotic stress and might decrease the medicinal value of this herb.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
15
|
Khitri W, Smati D, Mitaine-Offer AC, Paululat T, Lacaille-Dubois MA. Chemical constituents from Phlomis bovei Noë and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants (Basel) 2020; 9:antiox9030205. [PMID: 32131401 PMCID: PMC7139729 DOI: 10.3390/antiox9030205] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
In this study, the anti-ferroptosis effects of catecholic flavonol quercetin and its metabolite quercetin Diels-Alder anti-dimer (QDAD) were studied using an erastin-treated bone marrow-derived mesenchymal stem cell (bmMSCs) model. Quercetin exhibited higher anti-ferroptosis levels than QDAD, as indicated by 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 2',7'-dichlorodihydrofluoroscein diacetate (H2DCFDA), lactate dehydrogenase (LDH) release, cell counting kit-8 (CCK-8), and flow cytometric assays. To understand the possible pathways involved, the reaction product of quercetin with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH●) was measured using ultra-performance liquid-chromatography coupled with electrospray-ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS). Quercetin was found to produce the same clusters of molecular ion peaks and fragments as standard QDAD. Furthermore, the antioxidant effects of quercetin and QDAD were compared by determining their 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging, Cu2+-reducing, Fe3+-reducing, lipid peroxidation-scavenging, and DPPH●-scavenging activities. Quercetin consistently showed lower IC50 values than QDAD. These findings indicate that quercetin and QDAD can protect bmMSCs from erastin-induced ferroptosis, possibly through the antioxidant pathway. The antioxidant pathway can convert quercetin into QDAD-an inferior ferroptosis-inhibitor and antioxidant. The weakening has highlighted a rule for predicting the relative anti-ferroptosis and antioxidant effects of catecholic flavonols and their Diels-Alder dimer metabolites.
Collapse
|
17
|
Liu J, Li X, Cai R, Ren Z, Zhang A, Deng F, Chen D. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and ( S)-Butin. Molecules 2020; 25:E674. [PMID: 32033283 PMCID: PMC7036861 DOI: 10.3390/molecules25030674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
To elucidate the mechanism of anti-ferroptosis and examine structural optimization in natural phenolics, cellular and chemical assays were performed with 2'-hydroxy chalcone butein and dihydroflavone (S)-butin. C11-BODIPY staining and flow cytometric assays suggest that butein more effectively inhibits ferroptosis in erastin-treated bone marrow-derived mesenchymal stem cells than (S)-butin. Butein also exhibited higher antioxidant percentages than (S)-butin in five antioxidant assays: linoleic acid emulsion assay, Fe3+-reducing antioxidant power assay, Cu2+-reducing antioxidant power assay, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping assay, and α,α-diphenyl-β-picrylhydrazyl radical (DPPH•)-trapping assay. Their reaction products with DPPH• were further analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Butein and (S)-butin produced a butein 5,5-dimer (m/z 542, 271, 253, 225, 135, and 91) and a (S)-butin 5',5'-dimer (m/z 542, 389, 269, 253, and 151), respectively. Interestingly, butein forms a cross dimer with (S)-butin (m/z 542, 523, 433, 419, 415, 406, and 375). Therefore, we conclude that butein and (S)-butin exert anti-ferroptotic action via an antioxidant pathway (especially the hydrogen atom transfer pathway). Following this pathway, butein and (S)-butin yield both self-dimers and cross dimers. Butein displays superior antioxidant or anti-ferroptosis action to (S)-butin. This can be attributed the decrease in π-π conjugation in butein due to saturation of its α,β-double bond and loss of its 2'-hydroxy group upon biocatalytical isomerization.
Collapse
Affiliation(s)
- Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Rongxin Cai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Ziwei Ren
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Aizhen Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Fangdan Deng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
18
|
Li W, Deng R, Jing X, Chen J, Yang D, Shen J. Acteoside ameliorates experimental autoimmune encephalomyelitis through inhibiting peroxynitrite-mediated mitophagy activation. Free Radic Biol Med 2020; 146:79-91. [PMID: 31634539 DOI: 10.1016/j.freeradbiomed.2019.10.408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease in central nervous system (CNS) with limited therapeutic drugs. In the present study, we explored the anti-inflammatory/neuroprotective properties of Acteoside (AC), an active compound from medicinal herb Radix Rehmanniae (RR), and neuroprotective effects of AC on MS pathology by using an experimental autoimmune encephalomyelitis (EAE) model. We tested the hypothesis that AC could alleviate EAE pathogenesis through inhibiting inflammation and ONOO--mediated mitophagy activation in vivo and in vitro. The results showed that AC treatment effectively ameliorated neurological deficit score and postponed disease onset in the EAE mice. AC treatment inhibited inflammation/demyelination, alleviated peripheral activation and CNS infiltration of encephalitogenic CD4+ T cells and CD11b+ activated microglia/macrophages in the spinal cord of EAE mice. Meanwhile, AC treatment reduced ONOO- production, down-regulated the expression of iNOS and NADPH oxidases, and inhibited neuronal apoptotic cell death and mitochondrial damage in the spinal cords of the EAE mice. Furthermore, AC treatment decreased the ratio of LC3-II to LC3-I in mitochondrial fraction, and inhibited the translocation of Drp1 to the mitochondria. In vitro studies further proved that AC possessed strong ONOO- scavenging capability and protected the neuronal cells from nitrative cytotoxicity via suppressing ONOO--mediated excessive mitophagy. Taken together, Acteoside could be a potential therapeutic agent for multiple sclerosis treatment. The suppression of ONOO--induced excessive mitophagy activation could be one of the critical mechanisms contributing to its anti-inflammatory and anti-demyelinating properties.
Collapse
Affiliation(s)
- Wenting Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ruixia Deng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoshu Jing
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Dan Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Jiangang Shen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Marzano G, Mastrorocco A, Zianni R, Mangiacotti M, Chiaravalle AE, Lacalandra GM, Minervini F, Cardinali A, Macciocca M, Vicenti R, Fabbri R, Hinrichs K, Dell'Aquila ME, Martino NA. Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM. Mol Reprod Dev 2019; 86:1388-1404. [PMID: 31025442 DOI: 10.1002/mrd.23156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/12/2019] [Accepted: 04/04/2019] [Indexed: 02/01/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with endocrine-disrupting properties. In this study, we used an equine model to investigate DEHP concentrations in ovarian follicular fluid (FF), and to determine the effects of exposure of oocytes to potentially toxic concentrations of DEHP during in vitro maturation (IVM) on embryo development and quality. Embryo development was evaluated using time-lapse monitoring (TLM), a photomicroscopic tool that reveals abnormalities in cleavage kinetics unobservable by conventional morphology assessment. Blastocyst bioenergetic/oxidative status was assessed by confocal analysis. The possibility that verbascoside (VB), a bioactive polyphenol with antioxidant activity, could counteract DEHP-induced oocyte oxidative damage, was investigated. DEHP was detected in FF and in IVM media at concentrations up to 60 nM. Culture of oocytes in the presence of 500 nM DEHP delayed second polar body extrusion, reduced duration of the second cell cycle, and increased the percentage of embryos showing abrupt multiple cleavage, compared with controls. Mitochondrial activity and intracellular levels of reactive oxygen species were reduced in blastocysts from DEHP-exposed oocytes. VB addition during IVM limited DEHP-induced blastocyst damage. In conclusion, DEHP is detectable in equine FF and culture medium, and oocyte exposure to increased concentrations of DEHP during IVM affects preimplantation embryo development. Moreover, TLM, reported for the first time in the horse in this study, is an efficient tool for identifying altered morphokinetic parameters and cleavage abnormalities associated with exposure to toxic compounds.
Collapse
Affiliation(s)
- Giuseppina Marzano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Rosalia Zianni
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | | | | | | | - Fiorenza Minervini
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Maria Macciocca
- Department of Medical and Surgical Sciences, Gynecology and Physiopathology of Human Reproductive Unit, Sant'Orsola-Malpighi Hospital, University of Bologna,, Bologna, Italy
| | - Rossella Vicenti
- Department of Medical and Surgical Sciences, Gynecology and Physiopathology of Human Reproductive Unit, Sant'Orsola-Malpighi Hospital, University of Bologna,, Bologna, Italy
| | - Raffaella Fabbri
- Department of Medical and Surgical Sciences, Gynecology and Physiopathology of Human Reproductive Unit, Sant'Orsola-Malpighi Hospital, University of Bologna,, Bologna, Italy
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX
| | - Maria E Dell'Aquila
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Nicola A Martino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Valenzano, Bari, Italy.,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy.,Department of Veterinary Science, University of Turin, Grugliasco, Italy
| |
Collapse
|
20
|
Cardoso SM. Special Issue: The Antioxidant Capacities of Natural Products. Molecules 2019; 24:molecules24030492. [PMID: 30704064 PMCID: PMC6384626 DOI: 10.3390/molecules24030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Antioxidant Mechanisms of Echinatin and Licochalcone A. Molecules 2018; 24:molecules24010003. [PMID: 30577443 PMCID: PMC6337356 DOI: 10.3390/molecules24010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/15/2023] Open
Abstract
Echinatin and its 1,1-dimethyl-2-propenyl derivative licochalcone A are two chalcones found in the Chinese herbal medicine Gancao. First, their antioxidant mechanisms were investigated using four sets of colorimetric measurements in this study. Three sets were performed in aqueous solution, namely Cu2+-reduction, Fe3+-reduction, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging measurements, while 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging colorimetric measurements were conducted in methanol solution. The four sets of measurements showed that the radical-scavenging (or metal-reduction) percentages for both echinatin and licochalcone A increased dose-dependently. However, echinatin always gave higher IC50 values than licochalcone A. Further, each product of the reactions of the chalcones with DPPH• was determined using electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The UPLC-ESI-Q-TOF-MS/MS determination for echinatin yielded several echinatin–DPPH adduct peaks (m/z 662, 226, and 196) and dimeric echinatin peaks (m/z 538, 417, and 297). Similarly, that for licochalcone A yielded licochalcone A-DPPH adduct peaks (m/z 730, 226, and 196) and dimeric licochalcone A peaks (m/z 674 and 553). Finally, the above experimental data were analyzed using mass spectrometry data analysis techniques, resonance theory, and ionization constant calculations. It was concluded that, (i) in aqueous solution, both echinatin and licochalcone A may undergo an electron transfer (ET) and a proton transfer (PT) to cause the antioxidant action. In addition, (ii) in alcoholic solution, hydrogen atom transfer (HAT) antioxidant mechanisms may also occur for both. HAT may preferably occur at the 4-OH, rather than the 4′-OH. Accordingly, the oxygen at the 4-position participates in radical adduct formation (RAF). Lastly, (iii) the 1,1-dimethyl-2-propenyl substituent improves the antioxidant action in both aqueous and alcoholic solutions.
Collapse
|
22
|
Lin J, Li X, Chen B, Wei G, Chen D. E-Configuration Improves Antioxidant and Cytoprotective Capacities of Resveratrols. Molecules 2018; 23:molecules23071790. [PMID: 30036971 PMCID: PMC6100583 DOI: 10.3390/molecules23071790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
The antioxidant and cytoprotective capacities of E-resveratrol and Z-resveratrol were compared using chemical and cellular assays. Chemical assays revealed that the two isomers were dose-dependently active in •O₂--scavenging, ferric reducing antioxidant power (FRAP), Cu2+-reducing antioxidant capacity (CUPRAC), 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging (pH 7.4 and pH 4.5), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH•)-scavenging assays. The cellular assay indicated that the two isomers could also increase cell viabilities. However, quantitative analyses suggested that E-resveratrol exhibited stronger effects than Z-resveratrol in all chemical and cellular assays. Finally, the conformations of E-resveratrol and Z-resveratrol were analyzed. It can be concluded that both E-resveratrol and Z-resveratrol can promote redox-related pathways to exhibit antioxidant action and consequently protect bone marrow-derived mesenchymal stem cells (bmMSCs) from oxidative damage. These pathways include electron transfer (ET) and H⁺-transfer, and likely include hydrogen atom transfer (HAT). The E-configuration, however, improves antioxidant and cytoprotective capacities of resveratrols. The detrimental effect of the Z-configuration may be attributed to the non-planar preferential conformation, where two dihedral angles block the extension of the conjugative system.
Collapse
Affiliation(s)
- Jian Lin
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- School of Biomedical Sciences, Monash University, Melbourne Victoria 3001, Australia.
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Gang Wei
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
23
|
Li X, Chen B, Zhao X, Chen D. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide Radical (PTIO•) Trapping Activity and Mechanisms of 16 Phenolic Xanthones. Molecules 2018; 23:molecules23071692. [PMID: 29997352 PMCID: PMC6100357 DOI: 10.3390/molecules23071692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
This study used the 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) trapping model to study the antioxidant activities of 16 natural xanthones in aqueous solution, including garcinone C, γ-mangostin, subelliptenone G, mangiferin, 1,6,7-trihydroxy-xanthone, 1,2,5-trihydroxyxanthone, 1,5,6-trihydroxyxanthone, norathyriol, 1,3,5,6-tetrahydroxy-xanthone, isojacareubin, 1,3,5,8-tetrahydroxyxanthone, isomangiferin, 2-hydroxyxanthone, 7-O-methylmangiferin, neomangiferin, and lancerin. It was observed that most of the 16 xanthones could scavenge the PTIO• radical in a dose-dependent manner at pH 4.5 and 7.4. Among them, 12 xanthones of the para-di-OHs (or ortho-di-OHs) type always exhibited lower half maximal inhibitory concentration (IC50) values than those not of the para-di-OHs (or ortho-di-OHs) type. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis revealed that most of these xanthones gave xanthone-xanthone dimers after incubation with PTIO•, except for neomangiferin. Based on these data, we concluded that the antioxidant activity of phenolic xanthone may be mediated by electron-transfer (ET) plus H⁺-transfer mechanisms. Through these mechanisms, some xanthones can further dimerize unless they bear huge substituents with steric hindrance. Four substituent types (i.e., para-di-OHs, 5,6-di-OHs, 6,7-di-OHs, and 7,8-di-OHs) dominate the antioxidant activity of phenolic xanthones, while other substituents (including isoprenyl and 3-hydroxy-3-methylbutyl substituents) play a minor role as long as they do not break the above four types.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Xiaojun Zhao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
24
|
Li X, Chen B, Xie H, He Y, Zhong D, Chen D. Antioxidant Structure⁻Activity Relationship Analysis of Five Dihydrochalcones. Molecules 2018; 23:molecules23051162. [PMID: 29757201 PMCID: PMC6100071 DOI: 10.3390/molecules23051162] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 01/05/2023] Open
Abstract
The study determined the comparative antioxidant capacities of five similar dihydrochalcones: phloretin, phloridzin, trilobatin, neohesperidin dihydrochalcone, and naringin dihydrochalcone. In the ferric-reducing antioxidant power (FRAP) assay, the antioxidant activities of pairs of dihydrochalcones had the following relationship: phloretin > phloridzin, phloretin > trilobatin, trilobatin > phloridzin, trilobatin > naringin dihydrochalcone, and neohesperidin dihydrochalcone > naringin dihydrochalcone. Similar relative antioxidant levels were also obtained from 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS•+)-scavenging, and superoxide radical (•O2−)-scavenging assays. Using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS) analysis for the reaction products with DPPH•, phloretin, phloridzin, and trilobatin were found to yield both dihydrochalcone-DPPH adduct and dihydrochalcone-dihydrochalcone dimer, whereas naringin dihydrochalcone gave a naringin dihydrochalcone-DPPH adduct, and neohesperidin dihydrochalcone gave a dimer. In conclusion, the five dihydrochalcones may undergo redox-based reactions (especially electron transfer (ET) and hydrogen atom transfer (HAT)), as well as radical adduct formation, to exert their antioxidant action. Methoxylation at the ortho-OH enhances the ET and HAT potential possibly via p-π conjugation, whereas the glycosylation of the –OH group not only reduces the ET and HAT potential but also hinders the ability of radical adduct formation. The 2′,6′-di-OH moiety in dihydrochalcone possesses higher ET and HAT activities than the 2′,4′-di-OH moiety because of its resonance with the adjacent keto group.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Yuhua He
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dewei Zhong
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|