1
|
Li L, Liu Z, Guo J, Zhou Y, Li L, Yu Y, Yang Z. Preparative separation of ten flavonoids from Scutellaria baicalensis Georgi roots using two-dimensional countercurrent chromatography with an online-storage, dilution, and mixing interface. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124325. [PMID: 39342820 DOI: 10.1016/j.jchromb.2024.124325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The process of counter-current chromatography (CCC) separation for natural products typically necessitates the use of multiple solvent systems to accommodate constituents with a wide range of polarities. However, the incompatibility between these different solvent systems often results in unsuccessful online 2D successive separations. In this study, a 2D CCC system was developed, featuring an interface for online-storage, dilution, and mixing. It facilitated the implementation of online 2D CCC using different solvent systems. The method was subsequently applied for the preparative isolation of flavonoids from Scutellaria baicalensis Georgi roots. For 1D CCC, n-heptane-ethyl acetate-methanol-water (HepEMWat, 5:5:4:6, v/v) was utilized, while for 2D CCC, ethyl acetate-n-butanol-water (EBuWat, 0:5:5, v/v) was employed. The eluent with low resolution in 1D CCC was stored online, diluted three times using the lower phase of EBuWat (0:5:5, v/v), and subsequently transferred into 2D CCC for further isolation utilizing the same EBuWat (0:5:5, v/v) system. As results, six lipophilic compounds were isolated in 1D CCC in a normal mode, while two major hydrophilic constituents were isolated in a pH-peak-focusing mode in 2D CCC. Additionally, two additional compounds were purified through subsequent semi-preparative HPLC separation in order to resolve co-elution in 2D CCC. The developed 2D CCC system with a multifunctional interface demonstrated to be an exceptionally efficient and promising approach for the high-throughput purification of complex natural products.
Collapse
Affiliation(s)
- Lanjie Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhuo Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Jinxing Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Yi Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Yao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China.
| | - Zhi Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhang P, Li K, Kamali A, Ziadlou R, Ahmad P, Wang X, Richards RG, Alini M, Basoli V, Li Z, Grad S. Small molecules of herbal origin for osteoarthritis treatment: in vitro and in vivo evidence. Arthritis Res Ther 2022; 24:105. [PMID: 35545776 PMCID: PMC9092710 DOI: 10.1186/s13075-022-02785-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/19/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflammatory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mechanisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehensively reviewed.
Collapse
Affiliation(s)
- Penghui Zhang
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaihu Li
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | | | - Paras Ahmad
- AO Research Institute Davos, Davos, Switzerland
| | - Xinluan Wang
- Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland.
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland. .,Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
3
|
Natural Xanthine Oxidase Inhibitor 5- O-Caffeoylshikimic Acid Ameliorates Kidney Injury Caused by Hyperuricemia in Mice. Molecules 2021; 26:molecules26237307. [PMID: 34885887 PMCID: PMC8659034 DOI: 10.3390/molecules26237307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Xanthine oxidase (XOD) inhibition has long been considered an effective anti-hyperuricemia strategy. To identify effective natural XOD inhibitors with little side effects, we performed a XOD inhibitory assay-coupled isolation of compounds from Smilacis Glabrae Rhizoma (SGR), a traditional Chinese medicine frequently prescribed as anti-hyperuricemia agent for centuries. Through the in vitro XOD inhibitory assay, we obtained a novel XOD inhibitor, 5-O-caffeoylshikimic acid (#1, 5OCSA) with IC50 of 13.96 μM, as well as two known XOD inhibitors, quercetin (#3) and astilbin (#6). Meanwhile, we performed in silico molecular docking and found 5OCSA could interact with the active sites of XOD (PDB ID: 3NVY) with a binding energy of −8.6 kcal/mol, suggesting 5OCSA inhibits XOD by binding with its active site. To evaluate the in vivo effects on XOD, we generated a hyperuricemia mice model by intraperitoneal injection of potassium oxonate (300 mg/kg) and oral gavage of hypoxanthine (500 mg/kg) for 7 days. 5OCSA could inhibit both hepatic and serum XOD in vivo, together with an improvement of histological and multiple serological parameters in kidney injury and HUA. Collectively, our results suggested that 5OCSA may be developed into a safe and effective XOD inhibitor based on in vitro, in silico and in vivo evidence.
Collapse
|
4
|
Li H, Zhang F, Jin Q, Zhu T. Preparative separation and purification of Cyclosporin D from fungus Hypoxylon Spp. by improved closed-loop recycling counter-current chromatography. J Chromatogr A 2021; 1649:462221. [PMID: 34034103 DOI: 10.1016/j.chroma.2021.462221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Improved closed-loop recycling counter-current chromatography (CLR CCC) with a two-phase solvent system composed of n-hexane-acetonitrile (1:1, v/v) was developed for separation, purification and preparation of cyclosporin D from the crude extract of fungus Hypoxylon Spp. (sj18). 28 mg cyclosporin D was successfully purified from 300 mg crude extract sample. The purity was 95.2% after five cycles, determined by HPLC. The structure of cyclosporin D was identified and assigned by 1H NMR, 13C NMR and mass spectrometric analyses. In addition, in the study, we show an interesting phenomenon that cyclosporin D can be prepared by the conventional CCC in n-hexane-ethyl acetate-methanol-water solvent system (2.5:1:2.5:1, v/v/v/v), and can also be prepared by the improved closed-loop recycling CCC in n-hexane-acetonitrile solvent system (1:1, v/v), but the efficiency of preparation varies greatly.
Collapse
Affiliation(s)
- Hepeng Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, Zhejiang Province China
| | - Feiying Zhang
- Zhejiang Academy of Forestry, Hangzhou, 310023, Zhejiang Province China.
| | - Qunying Jin
- Zhejiang Academy of Forestry, Hangzhou, 310023, Zhejiang Province China
| | - Tangjun Zhu
- Zhejiang Academy of Forestry, Hangzhou, 310023, Zhejiang Province China
| |
Collapse
|
5
|
Garcia MG, Gomes RF, Nascimento CC, Oliveira LM, Thomasi SS, Ferreira AG, Lima MP. Isolation of New Compounds from Andira parviflora and Inga alba Wood Residues Using LC-DAD-SPE/NMR. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03352-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Cho HM, Lee YR, Lee BW, Zhang M, Ryu B, Nghiem DT, Pham HTT, Oh WK. Phenolic Constituents of the Roots of Rhamnoneuron balansae with Senolytic Activity. JOURNAL OF NATURAL PRODUCTS 2020; 83:3661-3670. [PMID: 33256407 DOI: 10.1021/acs.jnatprod.0c00885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the advent of senolytic agents capable of selectively removing senescent cells in old tissues, the perception of age-associated diseases has been changing from being an inevitable to a preventable phenomenon of human life. In the search for materials with senolytic activity from natural products, six new flavonostilbenes (1-6), three new phenylethylchromanones (7-9), three new phenylethylchromones (10-12), and four known compounds (13-16) were isolated from the roots of Rhamnoneuron balansae. The chemical structures of these isolated compounds were determined based on the interpretation of spectroscopic data, including 1D and 2D NMR, ECD, and HRMS. The absolute configuration of compound 1 was also determined by a Mosher ester analysis and ECD calculations. Compounds 6-8 were shown to selectively destroy senescent cells, and the promoter activity of p16INK4A, a representative senescence marker, was reduced significantly by compound 6. The present results suggest the potential activity of flavonostilbene and phenylethylchromanone skeletons from R. balansae as new senolytics.
Collapse
Affiliation(s)
- Hyo-Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yae-Rin Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ba-Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi Zhang
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeol Ryu
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Du-Trong Nghiem
- Department of Botany, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Wang X, Zhao S, Wang C, Du W, Sun H, Sun W, Jin Y, Zuo G, Tong S. Orthogonality in the selection of biphasic solvent systems for off-line two-dimensional countercurrent chromatography from Polygonum cuspidatum Sieb. et Zucc. J Chromatogr A 2020; 1634:461666. [PMID: 33197846 DOI: 10.1016/j.chroma.2020.461666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Off-line two-dimensional countercurrent chromatography has been widely applied to the isolation of complex samples, but little research on the investigation of orthogonality in the selection of biphasic solvent systems is available. In the present work, the orthogonality in the selection of a biphasic solvent system for liquid-liquid chromatographic separation of aqueous extract and ether extract from the traditional Chinese medicinal plant Polygonum cuspidatum Sieb. et Zucc was evaluated by the correlation coefficient and space occupancy rate. In total, 25 different biphasic solvent systems were tested, and 313 system combinations were analysed. A convex hull methodology was used to determine the separation space and to optimize separation conditions. The correlation coefficient matrix was transformed into dendrograms and a colour map to visualize the dissimilarity between, and orthogonality for, all solvent systems. The aqueous extracts from Polygonum cuspidatum were separated using selected biphasic solvent systems with high orthogonality: ethyl acetate-ethanol-water (70:1:70, v/v) and petroleum ether-ethyl acetate-water (1:5:5, v/v). The ether extracts from Polygonum cuspidatum were also separated using selected biphasic solvent systems with high orthogonality: petroleum-ethyl acetate-methanol-aqueous 0.25 M NH3•H2O (5:5:5:5, v/v) and petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v). Thirteen compounds were successfully obtained. The experimental results demonstrated that the evaluation of orthogonality provided an alternative strategy to select an applicable solvent system for the separation of complex samples using off-line two-dimensional countercurrent chromatography.
Collapse
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaoyue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hengmian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenyu Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yang Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
8
|
Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules 2020; 25:molecules25225295. [PMID: 33202848 PMCID: PMC7697956 DOI: 10.3390/molecules25225295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to isolate, prepare and identify the main flavonoids from a standardized Smilax glabra flavonoids extract (SGF) using preparative HPLC, MS, 1H NMR and 13C NMR, determine the contents of these flavonoids using UPLC, then compare their pharmacological activities in vitro. We obtained six flavonoids from SGF: astilbin (18.10%), neoastilbin (11.04%), isoastilbin (5.03%), neoisoastilbin (4.09%), engeletin (2.58%) and (−)-epicatechin (1.77%). The antioxidant activity of six flavonoids were evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS+) radical scavenging activity and ferric reducing antioxidant power (FRAP). In addition, the anti-inflammatory activity of six flavonoids were evaluated by determining the production of cytokines (IL-1β, IL-6), nitric oxide (NO) using enzyme linked immunosorbent assay and the NF-κB p65 expression using Western blotting in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that (−)-epicatechin, astilbin, neoastilbin, isoastilbin and neoisoastilbin had strong antioxidant activities, not only in DPPH and ABTS+ radicals scavenging capacities, but in FRAP system. Furthermore, all the six flavonoids could significantly inhibit the secretion of IL-1β, IL-6, NO (p < 0.01) and the protein expression of NF-κB p-p65 (p < 0.01) in LPS-stimulated RAW264.7 cells. This study preliminarily verified the antioxidant and anti-inflammatory activities of six flavonoids in S. glabra.
Collapse
|
9
|
Wu X, Gao X, Liu X, Zhang S, Yang H, Zhu X, Song H, Li F, Chen Q. Quality Control of Psoralea corylifolia L. Based on High-Speed Countercurrent Chromatographic Fingerprinting. Molecules 2020; 25:molecules25020279. [PMID: 31936676 PMCID: PMC7024294 DOI: 10.3390/molecules25020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 01/29/2023] Open
Abstract
Traditional Chinese medicine (TCM)has played an important role in promoting the health of Chinese people. The TCM Psoralea corylifolia L. has been used in the treatment of various kinds of diseases including enuresis, vitiligo, and calvities. However, therapeutic effects of P. corylifolia L. have often influenced by the quality of plants. So, it is very important to control the quality of P. corylifolia L. In this study, analytical high-speed countercurrent chromatography (HSCCC) was successfully used to fingerprint P. corylifolia L. Samples of P. corylifolia L. were extracted by ultrasonic extraction. n-hexane-ethyl acetate–methanol–water at a ratio of 5:5.5:6.5:5 (v/v) was selected as a two-phase solvent system and the condition of HSCCC were optimized in order to good separation. And the method of HSCCC was verified (reproducibility, precision, and stability). HSCCC chromatograms exhibited six common peaks, which were selected as indicator compounds for the quality control of P. corylifolia L. Within 20 types of medicinal materials, chemical components are similar, but the levels of components are quite different in HSCCC fingerprint. The present results demonstrate that the HSCCC method provides a reliable basis for the quality control of P. corylifolia L. and can also be applied to confirm the authenticity of plant materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Chen
- Correspondence: ; Tel.: +86-0592-2881181
| |
Collapse
|
10
|
Wang X, Zhao S, Wang C, Sun W, Jin Y, Gong X, Tong S. Off‐line comprehensive two‐dimensional reversed‐phase countercurrent chromatography with high‐performance liquid chromatography: Orthogonality in separation of
Polygonum cuspidatum
Sieb. et Zucc. J Sep Sci 2019; 43:561-568. [DOI: 10.1002/jssc.201900877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Shanshan Zhao
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Chaoyue Wang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Wenyu Sun
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Yang Jin
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang University Hangzhou 310023 P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| |
Collapse
|
11
|
Zhou X, Yi M, Ding L, He S, Yan X. Isolation and Purification of a Neuroprotective Phlorotannin from the Marine Algae Ecklonia maxima by Size Exclusion and High-Speed Counter-Current Chromatography. Mar Drugs 2019; 17:E212. [PMID: 30987394 PMCID: PMC6521176 DOI: 10.3390/md17040212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Phlorotannins are polyphenolic metabolites of marine brown algae that have been shown to possess health-beneficial biological activities. An efficient approach using a combination of high-speed counter-current chromatography (HSCCC) and size exclusion chromatography with a Sephadex LH-20 has been successfully developed for the isolation and purification of a neuroprotective phlorotannin, eckmaxol, from leaves of the marine brown algae, Ecklonia maxima. The phlorotannin of interest, eckmaxol, was isolated with purity >95% by HSCCC using an optimized solvent system composed of n-hexane-ethyl acetate-methanol-water (2:8:3:7, v/v/v/v) after Sephadex LH-20 size exclusion chromatography. This compound was successfully purified in the quantity of 5.2 mg from 0.3 kg of the E. maxima crude organic extract. The structure of eckmaxol was identified and assigned by NMR spectroscopic and mass spectrometric analyses. The purification method developed for eckmaxol will facilitate the further investigation and development of this neuroprotective agent as a drug lead or pharmacological probe. Furthermore, it is suggested that the combination of HSCCC and size exclusion chromatography could be more widely applied for the isolation and purification of phlorotannins from marine algae.
Collapse
Affiliation(s)
- Xuezhen Zhou
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Mengqi Yi
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|