1
|
Antoniou IM, Ioannou N, Panagiotou N, Georgiades SN. LED-induced Ru-photoredox Pd-catalyzed C-H arylation of (6-phenylpyridin-2-yl)pyrimidines and heteroaryl counterparts. RSC Adv 2024; 14:12179-12191. [PMID: 38628490 PMCID: PMC11019410 DOI: 10.1039/d4ra02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
N-heterocycles are essential building blocks and scaffolds in medicinal chemistry. A Pd-catalyzed, Ru-photoredox-mediated C-H arylation is applied herein, for converting a series of functionality-inclusive (6-phenylpyridin-2-yl)pyrimidines to single arylated derivatives, using phenyldiazonium tetrafluoroborate as aryl source. This green chemistry-compliant transformation is induced by LED light. The drug-like modular substrates are constructed via combination of Biginelli multi-component condensation and Suzuki C-C cross-coupling, in order to strategically install, adjacent to the Ph-ring intended to undergo C-H arylation, a (6-pyridin-2-yl)pyrimidine that plays the role of a chelating directing moiety for the C-H arylation catalyst. The scope has been demonstrated on a series of 26 substrates, comprising diverse Ph-ring substituents and substitution patterns, as well as with 13 different aryl donors. Substrates in which the Ph-ring (arylation acceptor) was replaced by an electron-rich heteroaryl counterpart (2-/3-thiophene or -benzofuran) have also been examined and found to undergo arylation regioselectively. End-product conformations afford interesting motifs for occupying 3D chemical space, as implied by single-crystal X-ray diffraction, which has allowed the elucidation of six structures of aryl derivatives and one of an unprecedented pyrimidine-pyridine-benzofuran carbopalladated complex, believed to be a C-H activation derivative.
Collapse
Affiliation(s)
- Ioakeim M Antoniou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Natalia Ioannou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Nikos Panagiotou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Savvas N Georgiades
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| |
Collapse
|
2
|
Bensalah D, Mansour L, Sauthier M, Gurbuz N, Özdemir I, Beji L, Gatri R, Hamdi N. Plausible PEPPSI catalysts for direct C-H functionalization of five-membered heterocyclic bioactive motifs: synthesis, spectral, X-ray crystallographic characterizations and catalytic activity. RSC Adv 2023; 13:31386-31410. [PMID: 37941793 PMCID: PMC10628855 DOI: 10.1039/d3ra06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
In this study, a series of benzimidazolium salts were synthesized as asymmetric N-heterocyclic carbene (NHC) precursors. Nine novel palladium complexes with the general formula [PdX2(NHC)(pyridine)] were synthesized using benzimidazolium salts in the PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) theme. All synthesized Pd(ii) complexes are stable. The synthesized compounds were thoroughly characterized by respective spectroscopic techniques, such as 1HNMR, 13C NMR, FTIR spectroscopy, X-ray crystallography and elemental analysis. The geometric structure of the palladium N-heterocyclic carbene has been optimized in the framework of density functional theory (DFT) using the B3LYP-D3 dispersion functional with LANL2DZ as a basis set. The on/off mechanism of pyridine assisted Pd-NHC complexes made them the best C-H functionalized catalysts for regioselective C-5 arylated products. Five membered heterocyclic compounds such as 2-acetyl furan, furfuryl acetate 2-acetylthiophene and N-methylpyrrole-2-carboxaldehyde were treated with numerous aryl bromides and arylchlorides under optimal catalytic reaction conditions. Interestingly, all the prepared catalysts possessed essential structural features that facilitated the formation of desired coupling products in quantitative yield with excellent selectivity. The arylation reaction of bromoacetophenone was highly catalytically active with only 1 mol% catalyst loading at 150 °C for 2 hours. To check the efficiency of the synthesized complexes, three different five member heterocyclic substrates (2-acetylfuran, 2-acetylthiophen, 2-propylthaizole) were tested with a number of aryl bromides bearing both electron-donating and electron-withdrawing groups on para position. The data in Tables 2-4. Indicated that electron-donating groups on the para position of aryl halide decreased the catalytic conversion while electron-withdrawing groups increased the catalytic conversion this was due to the high nucleophilicity of the electron-donating substituents.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, USTL BP 90108, Villeneuve d'Ascq 59652 France
| | - Nevin Gurbuz
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at Arras, Qassim University Saudi Arabia
| | - Rafik Gatri
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique Évaluation Biologique LR17ES01 Faculté des Sciences de Tunis Campus Universitaire, Université de Tunis El Manar 1092 Tunis Tunisia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| |
Collapse
|
3
|
Akkoç M. Benzimidazole-based Nheterocyclic carbene ruthenium(II) complexes: Synthesis and C H bond activation properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Shepelenko KE, Nikolaeva KA, Shevchenko MA, Tkachenko YN, Minyaev ME, Chernyshev VM. Ruthenium complexes with chelating carboxylate-NHC ligands as efficient catalysts for C H arylation in water. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
4,5‐Dihydro‐imidazol‐2‐ylidene‐linked palladium complexes as catalysts for the direct CH bond arylation of azoles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Kaloğlu M, Kaloğlu N, Günal S, Özdemir İ. Synthesis of N-heterocyclic carbene-based silver complexes and their antimicrobial properties against bacteria and fungi. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2014457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Murat Kaloğlu
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Nazan Kaloğlu
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Selami Günal
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Drug Application and Research Center, İnönü University, Malatya, Turkey
| |
Collapse
|
7
|
The direct C(sp2)-H functionalization and coupling of aromatic N-heterocycles with (hetero)aryl bromides by [PdX2(imidazolidin-2-ylidene)(Py)] catalysts. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
|
9
|
Rufino-Felipe E, Nayely Osorio-Yáñez R, Vera M, Valdés H, González-Sebastián L, Reyes-Sanchez A, Morales-Morales D. Transition-metal complexes bearing chelating NHC Ligands. Catalytic activity in cross coupling reactions via C H activation. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Urgoitia G, Herrero MT, Churruca F, Conde N, SanMartin R. Direct Arylation in the Presence of Palladium Pincer Complexes. Molecules 2021; 26:4385. [PMID: 34299661 PMCID: PMC8305722 DOI: 10.3390/molecules26144385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Direct arylation is an atom-economical alternative to more established procedures such as Stille, Suzuki or Negishi arylation reactions. In comparison with other palladium sources and ligands, the use of palladium pincer complexes as catalysts or pre-catalysts for direct arylation has resulted in improved efficiency, higher reaction yields, and advantageous reaction conditions. In addition to a revision of the literature concerning intra- and intermolecular direct arylation reactions performed in the presence of palladium pincer complexes, the role of these remarkably active catalysts will also be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Raul SanMartin
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (G.U.); (M.T.H.); (F.C.); (N.C.)
| |
Collapse
|
11
|
Infante-Tadeo S, Rodríguez-Fanjul V, Habtemariam A, Pizarro AM. Osmium(ii) tethered half-sandwich complexes: pH-dependent aqueous speciation and transfer hydrogenation in cells. Chem Sci 2021; 12:9287-9297. [PMID: 34349898 PMCID: PMC8278929 DOI: 10.1039/d1sc01939b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/04/2023] Open
Abstract
Aquation is often acknowledged as a necessary step for metallodrug activity inside the cell. Hemilabile ligands can be used for reversible metallodrug activation. We report a new family of osmium(ii) arene complexes of formula [Os(η6-C6H5(CH2)3OH)(XY)Cl]+/0 (1-13) bearing the hemilabile η6-bound arene 3-phenylpropanol, where XY is a neutral N,N or an anionic N,O- bidentate chelating ligand. Os-Cl bond cleavage in water leads to the formation of the hydroxido/aqua adduct, Os-OH(H). In spite of being considered inert, the hydroxido adduct unexpectedly triggers rapid tether ring formation by attachment of the pendant alcohol-oxygen to the osmium centre, resulting in the alkoxy tethered complex [Os(η6-arene-O-κ1)(XY)] n+. Complexes 1C-13C of formula [Os(η6:κ1-C6H5(CH2)3OH/O)(XY)]+ are fully characterised, including the X-ray structure of cation 3C. Tether-ring formation is reversible and pH dependent. Osmium complexes bearing picolinate N,O-chelates (9-12) catalyse the hydrogenation of pyruvate to lactate. Intracellular lactate production upon co-incubation of complex 11 (XY = 4-Me-picolinate) with formate has been quantified inside MDA-MB-231 and MCF7 breast cancer cells. The tether Os-arene complexes presented here can be exploited for the intracellular conversion of metabolites that are essential in the intricate metabolism of the cancer cell.
Collapse
Affiliation(s)
| | | | - Abraha Habtemariam
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Ana M Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
12
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Jalal M, Hammouti B, Touzani R, Aouniti A, Ozdemir I. Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review. MATERIALS TODAY. PROCEEDINGS 2020; 31:S122-S129. [PMID: 32837919 PMCID: PMC7365653 DOI: 10.1016/j.matpr.2020.06.398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/27/2022]
Abstract
N-heterocyclic carbenes are of central importance in many domains of chemistry such as organometallic, catalysis and bioinorganic. Their great importance is due to their ability to act as ligands with a large number of transition metals. These Metal-NHCs are used as catalysts in various organic transformations with good biological properties. A wide range of Metals - NHC has been found to be useful as a catalyst in various reactions using Ru, Pd, Ir, Au and Ag. This review examines the different classes of Metal - NHCs and their applications as effective catalysts in several types of organic processes, for example the formation of amide linkage, hydrogenation, isomerization, cycloisomerization, cyclopropanation, hydrosilylation, allylation and desallylation, enol-ester synthesis, heterocycle synthesis, C - C alkyne coupling.
Collapse
Affiliation(s)
- Mohammed Jalal
- Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Faculty of Science, Department of Chemistry, 60000 Oujda, Morocco
| | - Belkheir Hammouti
- Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Faculty of Science, Department of Chemistry, 60000 Oujda, Morocco
| | - Rachid Touzani
- Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Faculty of Science, Department of Chemistry, 60000 Oujda, Morocco
| | - Abdelouhaed Aouniti
- Laboratory of Applied and Environmental Chemistry (LCAE), Mohammed First University, Faculty of Science, Department of Chemistry, 60000 Oujda, Morocco
| | - Ismail Ozdemir
- Inönü University, Faculty of Science and Arts, Department of Chemistry, 44280 Malatya, Turkey
| |
Collapse
|
14
|
Abstract
In this contribution, we provide a comprehensive overview of C-H activation methods promoted by NHC-transition metal complexes, covering the literature since 2002 (the year of the first report on metal-NHC-catalyzed C-H activation) through June 2019, focusing on both NHC ligands and C-H activation methods. This review covers C-H activation reactions catalyzed by group 8 to 11 NHC-metal complexes. Through discussing the role of NHC ligands in promoting challenging C-H activation methods, the reader is provided with an overview of this important area and its crucial role in forging carbon-carbon and carbon-heteroatom bonds by directly engaging ubiquitous C-H bonds.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangrong Meng
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
15
|
Çevik-Yıldız E, Şahin N, Şahin-Bölükbaşı S. Synthesis, characterization, and investigation of antiproliferative activity of novel Ag (I)-N-Heterocyclic Carbene (NHC) compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
González-Fernández R, Crochet P, Cadierno V. Half-sandwich ruthenium(ii) complexes with tethered arene-phosphinite ligands: synthesis, structure and application in catalytic cross dehydrogenative coupling reactions of silanes and alcohols. Dalton Trans 2019; 49:210-222. [PMID: 31808486 DOI: 10.1039/c9dt04421c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The preparation of the tethered arene-ruthenium(ii) complexes [RuCl2{η6:κ1(P)-C6H5(CH2)nOPR2}] (R = Ph, n = 1 (9a), 2 (9b), 3 (9c); R = iPr, n = 1 (10a), 2 (10b), 3 (10c)) from the corresponding phosphinite ligands R2PO(CH2)nPh (R = Ph, n = 1 (1a), 2 (1b), 3 (1c); R = iPr, n = 1 (2a), 2 (2b), 3 (2c)) is presented. Thus, in a first step, the treatment at room temperature of tetrahydrofuran solutions of dimers [{RuCl(μ-Cl)(η6-arene)}2] (arene = p-cymene (3), benzene (4)) with 1-2a-c led to the clean formation of the corresponding mononuclear derivatives [RuCl2(η6-p-cymene){R2PO(CH2)nPh}] (5-6a-c) and [RuCl2(η6-benzene){R2PO(CH2)nPh}] (7-8a-c), which were isolated in 66-99% yield. The subsequent heating of 1,2-dichloroethane solutions of these compounds at 120 °C allowed the exchange of the coordinated arene. The substitution process proceeded faster with the benzene derivatives 7-8a-c, from which complexes 9-10a-c were generated in 61-82% yield after 0.5-10 h of heating. The molecular structures of [RuCl2(η6-p-cymene){iPr2PO(CH2)3Ph}] (6c) and [RuCl2{η6:κ1(P)-C6H5(CH2)nOPiPr2}] (n = 1 (10a), 2 (10b), 3 (10c)) were unequivocally confirmed by X-ray diffraction methods. In addition, complexes [RuCl2{η6:κ1(P)-C6H5(CH2)nOPR2}] (9-10a-c) proved to be active catalysts for the dehydrogenative coupling of hydrosilanes and alcohols under mild conditions (r.t.). The best results were obtained with [RuCl2{η6:κ1(P)-C6H5(CH2)3OPiPr2}] (10c), which reached TOF and TON values up to 117 600 h-1 and 57 000, respectively.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain.
| | | | | |
Collapse
|
17
|
Kaloğlu M. Half-sandwich ruthenium-carbene catalysts: Synthesis, characterization, and catalytic application in the N-alkylation of amines with alcohols. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Abstract
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
Collapse
|
19
|
Mehta A, Saha B, Koohang AA, Chorghade MS. Arene Ruthenium Catalyst MCAT-53 for the Synthesis of Heterobiaryl Compounds in Water through Aromatic C–H Bond Activation. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anita Mehta
- Chicago Discovery Solutions LLC, 23561 West Main St., Plainfield, Illinois 60544, United States
| | - Biswajit Saha
- Chicago Discovery Solutions LLC, 23561 West Main St., Plainfield, Illinois 60544, United States
| | - Ali Aiden Koohang
- Chicago Discovery Solutions LLC, 23561 West Main St., Plainfield, Illinois 60544, United States
| | - Mukund S. Chorghade
- Chicago Discovery Solutions LLC, 23561 West Main St., Plainfield, Illinois 60544, United States
| |
Collapse
|
20
|
Kaloğlu M, Kaloğlur N, Özdemir İ. Direct C-H Bond Activation of Benzoxazole and Benzothiazole with Aryl Bromides Catalyzed by Palladium(II)-N-
heterocyclic Carbene Complexes. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Murat Kaloğlu
- Department of Chemistry, Faculty of Science and Arts; İnönü University; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - Nazan Kaloğlur
- Department of Chemistry, Faculty of Science and Arts; İnönü University; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Arts; İnönü University; 44280 Malatya Turkey
| |
Collapse
|
21
|
Kaloğlu M, Özdemir İ. Palladium(II)-N-
Heterocyclic Carbene Complexes: Efficient Catalysts for the Direct C-H Bond Arylation of Furans with Aryl Halides. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Murat Kaloğlu
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| |
Collapse
|