1
|
Brandani S, Hwang S, Kärger J, Mangano E. Diffusion anomaly in nanopores as a rich field for theorists and a challenge for experimentalists. Nat Commun 2024; 15:5721. [PMID: 38977704 PMCID: PMC11231286 DOI: 10.1038/s41467-024-49821-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/13/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
| | - Seungtaik Hwang
- Faculty of Physics and Earth System Sciences, University of Leipzig, Leipzig, Germany
| | - Jörg Kärger
- Faculty of Physics and Earth System Sciences, University of Leipzig, Leipzig, Germany.
| | - Enzo Mangano
- School of Engineering, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Shi Z, Weng K, Li N. The Atomic Structure and Mechanical Properties of ZIF-4 under High Pressure: Ab Initio Calculations. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010022. [PMID: 36615217 PMCID: PMC9821817 DOI: 10.3390/molecules28010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The effects of pressure on the structural and electronic properties and the ionic configuration of ZIF-4 were investigated through the first-principles method based on the density functional theory. The elastic properties, including the isotropic bulk modulus K, shear modulus G, Young's modulus E, and Poisson's ratio ν of the orthorhombic-type structure ZIF-4 were determined using the Voigt-Reuss-Hill averaging scheme. The results show that the ZIF-4 phase is ductile according to the analysis of K/G and Cauchy pressure. The Debye temperatures obtained from the elastic stiffness constants increase with increasing pressure. Finally, the pressure-dependent behaviors of the density of states and ionic configuration are successfully calculated and discussed.
Collapse
Affiliation(s)
- Zuhao Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518000, China
| | - Kaiyi Weng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518000, China
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
3
|
Yang J, Gao M, Wang S, Zhang M, Chen L, Su J, Huang Y, Zhang Y, Wang X, Shen B. Experimental and Simulation Studies of the Adsorption of Methylbenzene by Fe(III)-Doped NU-1000 (Zr). ACS APPLIED MATERIALS & INTERFACES 2022; 14:40052-40061. [PMID: 36006013 DOI: 10.1021/acsami.2c11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic framework (MOF) materials, NU-1000(Zr) and Fe(III)-doped NU-1000(Zr), were prepared through the hydrothermal method and used to remove methylbenzene in this work. The pore structure, crystal structure, adsorption capacity, adsorption heat, and adsorption density of Fe(III)-doped NU-1000(Zr) were analyzed based on the experimental and Giant Canonical Monte Carlo (GCMC) simulation methods. The results show that Fe3+ has a uniform distribution and a stable structure after NU-1000(Zr) was modified with Fe3+. The adsorption-penetration experiments of NU-1000 doped with different concentrations of Fe3+ have shown that the adsorption capacity of methylbenzene on the material surface is up to 231 mg g-1 at Fe/Zr = 0.1, which is due to the less doping of Fe elements and more defective sites in the structure. The GCMC simulation shows that NU-1000(Zr) and Fe(III)-NU-1000(Zr) adsorbed methylbenzene through π-π interaction, and the adsorption effect is good and close to the experimental result. The conclusions of this paper provide important support for the modification of MOF materials and the removal of methylbenzene.
Collapse
Affiliation(s)
- Jiancheng Yang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Engineering Research Center of Pollution Control in Power System, Tianjin 300401, China
| | - Mengkai Gao
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shining Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Mingkai Zhang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Long Chen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiachun Su
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yuan Huang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yiqing Zhang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xin Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Engineering Research Center of Pollution Control in Power System, Tianjin 300401, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
4
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
5
|
Iacomi P, Maurin G. ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50602-50642. [PMID: 34669387 DOI: 10.1021/acsami.1c12403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have long been recognized as a prominent subset of the metal-organic framework (MOF) family, in part because of their ease of synthesis and good thermal and chemical stability, alongside attractive properties for diverse potential applications. Prototypical ZIFs like ZIF-8 have become embodiments of the significant promise held by porous coordination polymers as next-generation designer materials. At the same time, their intriguing property of experiencing significant structural changes upon the application of external stimuli such as temperature, mechanical pressure, guest adsorption, or electromagnetic fields, among others, has placed this family of MOFs squarely under the umbrella of stimuli-responsive materials. In this review, we provide an overview of the current understanding of the triggered structural and electronic responses observed in ZIFs (linker and bond dynamics, crystalline and amorphous phase changes, luminescence, etc.). We then describe the state-of-the-art experimental and computational methodology capable of shedding light on these complex phenomena, followed by a comprehensive summary of the stimuli-responsive nature of four prototypical ZIFs: ZIF-8, ZIF-7, ZIF-4, and ZIF-zni. We further expose the relevant challenges for the characterization and fundamental understanding of responsive ZIFs, including how to take advantage of their flexible properties for new application avenues.
Collapse
Affiliation(s)
- Paul Iacomi
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| | - Guillaume Maurin
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| |
Collapse
|
6
|
Audu CO, Chen D, Kung CW, Snurr RQ, Nguyen ST, Farha OK, Hupp JT. Transport Diffusion of Linear Alkanes (C 5-C 16) through Thin Films of ZIF-8 as Assessed by Quartz Crystal Microgravimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9405-9414. [PMID: 34338528 DOI: 10.1021/acs.langmuir.1c00672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report uptake capacities and transport diffusivities, D, for each of eight linear alkanes (ranging from C5 to C16) in quartz crystal-supported films of solvent-evacuated ZIF-8. Analyses of the alkane uptake profiles revealed that the transport dynamics are governed by guest diffusion through metal-organic framework (MOF) (ZIF-8) crystallites rather than by rates of entry into films at the MOF/vapor interface. The obtained diffusivities range from just over 10-18 m2/s to just under 10-14 m2/s. Notably, minimum cross-sectional widths for all guests exceed the crystallographically measured width of ZIF-8's largest apertures and imply consistently with previous experimental and computational studies that apertures expand to accommodate guest uptake. On average, each additional carbon decreases the transport diffusivity of an alkane by twofold. Closer examination, however, reveals an odd-even effect such that linear alkanes having even numbers of carbons diffuse more rapidly than alkanes featuring one more or one less carbon atom. Thus, ZIF-8's differentiation of transport diffusivities for pairs of alkanes differing in length by only one carbon atom can be significantly greater than the aforementioned factor of 2. Elucidation of the microscopic basis for the odd-even behavior, however, awaits the outcome of molecular dynamics calculations that are beyond the scope of the present study. For compact, solvothermally prepared films, guest transport is dominated by 1D diffusion from the film/vapor interface and toward the underlying quartz crystal. For much lower density, electrophoretically deposited (EPD) films, crystallites behave nearly independently, and guest transport can be adequately modeled by assuming rapid permeation of macroscopic voids between crystallites, followed by entry and rate-limiting radial diffusion into isolated crystallites. One consequence is that EPD films can be much more rapidly infiltrated by molecular guests than can compact, solvothermally grown films. The combined results have potentially favorable implications for the development of kinetic separation schemes for closely related analytes.
Collapse
Affiliation(s)
- Cornelius O Audu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - David Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, USA
| | - Chung-Wei Kung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, USA
| | - SonBinh T Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
7
|
Liu Z, Yuan J, van Baten JM, Zhou J, Tang X, Zhao C, Chen W, Yi X, Krishna R, Sastre G, Zheng A. Synergistically enhance confined diffusion by continuum intersecting channels in zeolites. SCIENCE ADVANCES 2021; 7:7/11/eabf0775. [PMID: 33712464 PMCID: PMC7954456 DOI: 10.1126/sciadv.abf0775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
In separation and catalysis applications, adsorption and diffusion are normally considered mutually exclusive. That is, rapid diffusion is generally accompanied by weak adsorption and vice versa. In this work, we analyze the anomalous loading-dependent mechanism of p-xylene diffusion in a newly developed zeolite called SCM-15. The obtained results demonstrate that the unique system of "continuum intersecting channels" (i.e., channels made of fused cavities) plays a key role in the diffusion process for the molecule-selective pathways. At low pressure, the presence of strong adsorption sites and intersections that provide space for molecule rotation facilitates the diffusion of p-xylene along the Z direction. Upon increasing the molecular uptake, the adsorbates move faster along the X direction because of the effect of continuum intersections in reducing the diffusion barriers and thus maintaining the large diffusion coefficient of the diffusing compound. This mechanism synergistically improves the diffusion in zeolites with continuum intersecting channels.
Collapse
Affiliation(s)
- Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jasper M van Baten
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Jian Zhou
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, P. R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - German Sastre
- Instituto de Tecnologia Quimica UPV-CSIC, Universitat Politecnica de Valencia, Av. Los Naranjos s/n, 46022 Valencia, Spain
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| |
Collapse
|
8
|
Fu Y, Guan H, Yin J, Kong X. Probing molecular motions in metal-organic frameworks with solid-state NMR. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Solanki VA, Borah B. In-silico identification of adsorbent for separation of ethane/ethylene mixture. J Mol Model 2020; 26:353. [PMID: 33242178 DOI: 10.1007/s00894-020-04612-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022]
Abstract
We present here a high-throughput computational screening of 4,821 real metal-organic framework (MOF) structures that do not contain any open metal sites to isolate the best performing candidate for separation of ethane/ethylene mixture at ambient conditions. The MOF structures were assessed on the basis of several adsorption-based separation performance metrics. Some of these metrics were found to correlate strongly among themselves. We have presented various structures-property correlations which unfold useful insights. MOF ATAGEJ is found to be the top performing MOF with highest adsorbent performance score 12.38 mol/kg and regenerability 93.88%. Several other MOFs OTOLIU (MIL-167), UMUMOG (UBMOF-8), and TOVGES (PCN-230) containing tetravalent metal cations such as Zr4+ and Ti4+ are found to be potential structures that are thermally, mechanically, and chemically stable and performs better than zeolites. Adsorption selectivity shows exponential correlation with difference of heat of adsorption of ethane and ethene at 0.1 bar and 298 K. We have also presented how various performance metrics correlate among themselves. These correlations unfold useful insights. Graphical abstract.
Collapse
Affiliation(s)
- Viral A Solanki
- P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Changa, Anand, Gujarat, 388421, India
| | - Bhaskarjyoti Borah
- P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
10
|
Abstract
AbstractThis paper provides a general overview of the phenomenon of guest diffusion in nanoporous materials. It introduces the different types of diffusion measurement that can be performed under both equilibrium and non-equilibrium conditions in either single- or multicomponent systems. In the technological application of nanoporous materials for mass separation and catalytic conversion diffusion often has a significant impact on the overall rate of the process and is quite commonly rate controlling. Diffusion enhancement is therefore often a major goal in the manufacture of catalysts and adsorbents.
Collapse
|
11
|
Chen H, Snurr RQ. Understanding the Loading Dependence of Adsorbate Diffusivities in Hierarchical Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1372-1378. [PMID: 31957450 DOI: 10.1021/acs.langmuir.9b03802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using atomistic simulations, we studied the diffusion of n-hexane in a series of isoreticular hierarchical metal-organic frameworks (MOFs) NU-100x. Nonmonotonic diffusivity-loading relationships that depend on the pore sizes were observed, which can be explained by the spatial distribution of adsorbates at different loadings. For one of the MOFs in the series, NU-1000-M, the diffusivity-loading relationship is almost identical to the previously reported results of n-hexane diffusion in the hierarchical self-pillared pentasil (SPP) zeolite. Detailed analysis revealed that the similarity results from their similar micropore and window sizes, which was confirmed by free-energy mapping. The effects of temperature and adsorbate chain length on the diffusion were also studied, which supported our conclusion that the diffusivity in hierarchical nanoporous materials is primarily controlled by the sizes of the micropores and the connecting windows, particularly at relatively low loadings.
Collapse
Affiliation(s)
- Haoyuan Chen
- Department of Chemical & Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
12
|
Thomas AM, Subramanian Y. Diffusion processes in a poly-crystalline zeolitic material: A molecular dynamics study. J Chem Phys 2018; 149:064702. [PMID: 30111156 DOI: 10.1063/1.5037146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extensive molecular dynamics simulations of xenon in two classes of zeolite crystal systems, one consisting of purely intra-crystalline space and the other with both intra- and inter-crystalline space are reported. The latter mimics a typical poly-crystalline sample of zeolite. Comparison of results from these two systems provides insights into the structure and dynamics in the presence of inter-crystalline space. The temperature, as well as the distance between the crystallites, has been varied. The density distribution and diffusivities calculated inside the poly-crystalline system show that the interfacial region between the crystal and the inter-crystalline region acts as a bottleneck for diffusion through the system. At lower temperatures, the particles are trapped at the interface due to the pronounced energy minima present in that region. With the increase in temperature, the particles are able to overcome this barrier frequently, and the transport across the inter-crystalline region is increased. A ballistic or superdiffusive motion is seen in the inter-crystalline region along all the axes except along the axis which has the inter-crystalline space. The transition time for ballistic to diffusive motion increases with the increase in the length of the inter-crystalline space. Velocity auto- and cross correlation functions exhibit strong oscillations and exchange of kinetic energy along directions perpendicular to the direction of the inter-crystalline space. These results explain why uptake and PFG-NMR measurements exhibit lower values for diffusivity for the same system when compared to Quasi-Elastic Neutron Scattering. Thus, using molecular dynamics simulations, we were able to correlate the difference of diffusivity values measured using various experimental methods where these inter-crystalline regions are common.
Collapse
Affiliation(s)
- Angela Mary Thomas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Yashonath Subramanian
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|