1
|
Cao TJ, Ying P, Zheng Q, Wu YJ, Wang XL, Nan MM, Fu CL, Huang WM, Kong LY, Xu WJ. (±)-hypermonanones A-G, seven pairs of monoterpenoid polyprenylated acylphloroglucinol enantiomers from Hypericum monanthemum. Fitoterapia 2024; 176:105985. [PMID: 38705541 DOI: 10.1016/j.fitote.2024.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Seven pairs of undescribed monoterpenoid polyprenylated acylphloroglucinol enantiomers [(±)-hypermonanones A-G (1-7)], together with three known analogues, were identified from the whole plant of Hypericum monanthemum Hook. The structures of these compounds were determined by analyses of their UV, HRESIMS, 1D/2D NMR spectroscopic data, and NMR calculations. The absolute configurations of these compounds were assigned by ECD calculations after chiral HPLC separation. Diverse monoterpene moieties were fused at C-3/C-4 of the dearomatized acylphloroglucinol core, which led to 3,4-dihydro-2H-pyran-integrated angular or linear type 6/6/6 tricyclic skeletons in 1-7. Compounds (-)-2 and (+)-2 exhibited significant NO inhibitory activity against LPS induced RAW264.7 cells with the IC50 values of 7.07 ± 1.02 μM and 11.39 ± 0.24 μM, respectively.
Collapse
Affiliation(s)
- Tian-Jie Cao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Ying
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, People's Republic of China
| | - Qiang Zheng
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, People's Republic of China
| | - You-Jun Wu
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, People's Republic of China
| | - Xiao-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Miao-Miao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chuan-Lu Fu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei-Ming Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
2
|
Su H, Liang H, Tian J, Zheng L, Li H, Yang X, Yin S, Bi H. Discovery of PXR agonists from Hypericum japonicum: A class of novel nonaromatic acylphloroglucinol-terpenoid adducts. Bioorg Chem 2024; 147:107354. [PMID: 38599054 DOI: 10.1016/j.bioorg.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.
Collapse
Affiliation(s)
- Haiguo Su
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hangfei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huilin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Eladwy RA, Vu HT, Shah R, Li CG, Chang D, Bhuyan DJ. The Fight against the Carcinogenic Epstein-Barr Virus: Gut Microbiota, Natural Medicines, and Beyond. Int J Mol Sci 2023; 24:1716. [PMID: 36675232 PMCID: PMC9862477 DOI: 10.3390/ijms24021716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Despite recent advances in oncology, cancer has remained an enormous global health burden, accounting for about 10 million deaths in 2020. A third of the cancer cases in developing counties are caused by microbial infections such as human papillomavirus (HPV), Epstein-Barr Virus (EBV), and hepatitis B and C viruses. EBV, a member of the human gamma herpesvirus family, is a double-stranded DNA virus and the primary cause of infectious mononucleosis. Most EBV infections cause no long-term complications. However, it was reported that EBV infection is responsible for around 200,000 malignancies worldwide every year. Currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection. Recently, the gut microbiota has been investigated for its pivotal roles in pathogen protection and regulating metabolic, endocrine, and immune functions. Several studies have investigated the efficacy of antiviral agents, gut microbial metabolites, and natural products against EBV infection. In this review, we aim to summarise and analyse the reported molecular mechanistic and clinical studies on the activities of gut microbial metabolites and natural medicines against carcinogenic viruses, with a particular emphasis on EBV. Gut microbial metabolites such as short-chain fatty acids were reported to activate the EBV lytic cycle, while bacteriocins, produced by Enterococcus durans strains, have shown antiviral properties. Furthermore, several natural products and dietary bioactive compounds, such as curcumin, epigallocatechin gallate, resveratrol, moronic acid, and andrographolide, have shown antiviral activity against EBV. In this review, we proposed several exciting future directions for research on carcinogenic viruses.
Collapse
Affiliation(s)
- Radwa A. Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hang Thi Vu
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Ravi Shah
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
4
|
Deng X, Xia J, Hu B, Hou XC, Pu XD, Wu L. Hyjapones A-D, trimethylated acyphloroglucinol meroterpenoids from Hypericum japonicum thunb. With anti-inflammatory activity. PHYTOCHEMISTRY 2022; 202:113308. [PMID: 35817204 DOI: 10.1016/j.phytochem.2022.113308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Four undescribed trimethylated acylphloroglucinol meroterpenoids, hyjapones A-D, along with seven known analogues, were isolated from Hypericum japonicum Thunb. Hyjapone A represents the first example of a double norflavesones-caryophyllene hybrid featuring a rare 6/6/9/4/6/6 hexacyclic frame. Hyjapone D was isolated as a natural product for the first time. Their structures and absolute configurations were established by comprehensive spectroscopic data analyses and electronic circular dichroism (ECD) calculations. The anti-inflammatory activities of all compounds were evaluated using lipopolysaccharide-induced RAW264.7 cells. Hyperjapone A showed more pronounced anti-inflammatory effect through reducing the production of nitric oxide (IC50 value of 11.32 ± 2.10 μM) and proinflammatory cytokines. In addition, the mechanistic studies revealed hyperjapone A inhibited LPS-induced activation of nuclear factor-κB.
Collapse
Affiliation(s)
- Xin Deng
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jing Xia
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bo Hu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xing-Cun Hou
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xiang-Dong Pu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Lin Wu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
5
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
6
|
Nazir M, Saleem M, Tousif MI, Anwar MA, Surup F, Ali I, Wang D, Mamadalieva NZ, Alshammari E, Ashour ML, Ashour AM, Ahmed I, Elizbit, Green IR, Hussain H. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021; 11:957. [PMID: 34209734 PMCID: PMC8301922 DOI: 10.3390/biom11070957] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.
Collapse
Affiliation(s)
- Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, DG Khan Campus, University of Education Lahore, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Aijaz Anwar
- Pharmaceutical Research Division, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Frank Surup
- Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Iftikhar Ali
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Nilufar Z Mamadalieva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str 77, Tashkent 100170, Uzbekistan
| | - Elham Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizbit
- Department of Materials Engineering, National University of Sciences and Technology (NUST) H12, Islamabad 44000, Pakistan
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| |
Collapse
|
7
|
Feng SL, Zhang J, Jin H, Zhu WT, Yuan Z. A Network Pharmacology Study of the Molecular Mechanisms of Hypericum japonicum in the Treatment of Cholestatic Hepatitis with Validation in an Alpha-Naphthylisothiocyanate (ANIT) Hepatotoxicity Rat Model. Med Sci Monit 2021; 27:e928402. [PMID: 33657087 PMCID: PMC7938440 DOI: 10.12659/msm.928402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This network pharmacology study aimed to identify the active compounds and molecular mechanisms involved in the effects of Hypericum japonicum on cholestatic hepatitis. We validated the findings in an alpha-naphthylisothiocyanate (ANIT) rat model of hepatotoxicity. Material/Methods The chemical constituents and targets of H. japonicum and target genes previously associated with cholestatic hepatitis were retrieved from public databases. A network was constructed using Cytoscape 3.7.2 software and the STRING database and potential protein functions were analyzed based on the public platform of bioinformatics. ANIT was used to induce cholestatic hepatitis in a rat model using 36 Sprague-Dawley rats, and this model was used to investigate intervention with 3 doses of quercetin (low-dose, 50 mg/kg; medium-dose, 100 mg/kg; and high-dose, 200 mg/kg), the main active component of H. japonicum. Levels of serum biochemical indexes were measured by commercial kits, and the messenger RNA (mRNA) levels of markers of liver and mitochondrial function and oxidative stress were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). Results The main active ingredients of H. japonicum were quercetin, kaempferol, and tetramethoxyluteolin, and their key targets included prostaglandin G/H synthase 2 (PTGS2), B-cell lymphoma-2 (BCL2), cholesterol 7-alpha hydroxylase (CYP7A1), and farnesoid X receptor (FXR). Quercetin intervention promoted recovery from cholestatic hepatitis. Conclusions The findings from this research provide support for future research on the roles of quercetin, kaempferol, and tetramethoxyluteolin in human liver disease and the roles of the PTGS2, BCL2, CYP7A1, and FXR genes in cholestatic hepatitis.
Collapse
Affiliation(s)
- Sen Ling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jing Zhang
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Hongliu Jin
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wen Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
8
|
Marrelli M, Statti G, Conforti F. Hypericum spp.: An Update on the Biological Activities and Metabolic Profiles. Mini Rev Med Chem 2020; 20:66-87. [PMID: 31556858 DOI: 10.2174/1389557519666190926120211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
Plants from the genus Hypericum, one genus of the Hypericaceae family, have attracted a lot of attention for their potential pharmaceutical applications. Most of the studies in the literature focus on H. perforatum L. (common St. John's wort), whose complex spectrum of bioactive compounds makes this species one of the top herbal remedies and supplements in the world. It is also important to compare the studies on other Hypericum species, both from the phytochemical and biological point of view. The aim of this review was to provide an update of most recent studies about biological investigations of plants belonging to Hypericum genus. The metabolic profiles of Hypericum spp. were also discussed in order to present a spectrum of secondary metabolites not previously identified in this genus.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| |
Collapse
|
9
|
Yan DW, Huang CD, Zheng HH, Zhao N, Feng XL, Ma SJ, Zhang AL, Zhang Q. Meroterpene-Like α-Glucosidase Inhibitors Based on Biomimetic Reactions Starting from β-Caryophyllene. Molecules 2020; 25:molecules25020260. [PMID: 31936396 PMCID: PMC7024386 DOI: 10.3390/molecules25020260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Natural meroterpenes derived from phloroglucinols and β-caryophyllene have shown high inhibitory activity against α-glucosidase or cancer cells, however, the chemical diversity of this type of skeletons in Nature is limited. METHODS To expand the chemical space and explore their inhibitory activities against α-glucosidase (EC 3.2.1.20), we employed β-caryophyllene and some natural moieties (4-hydroxycoumarins, lawsone or syncarpic acid) to synthesize new types of meroterpene-like skeletons. All the products (including side products) were isolated and characterized by NMR, HR-MS, and ECD. RESULTS In total, 17 products (representing seven scaffolds) were generated through a one-pot procedure. Most products (12 compounds) showed more potential activity (IC50 < 25 μM) than the positive controls (acarbose and genistein, IC50 58.19, and 54.74 μM, respectively). Compound 7 exhibited the most potent inhibition of α-glucosidase (IC50 3.56 μM) in a mixed-type manner. The CD analysis indicated that compound 7 could bind to α-glucosidase and influence the enzyme's secondary structure. CONCLUSIONS Compound 7 could serve as a new type of template compound to develop α-glucosidase inhibitors. Full investigation of a biomimic reaction can be used as a concise strategy to explore diverse natural-like skeletons and search for novel lead compounds.
Collapse
Affiliation(s)
- Da-Wei Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
| | - Cheng-Di Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
| | - Hang-Hang Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
| | - Na Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
| | - Xiao-Lan Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Shuang-Jiang Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
| | - An-Ling Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
- Correspondence: (A.-L.Z.); (Q.Z.); Tel.: +86-1809-272-0670 (Q.Z.)
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (D.-W.Y.); (C.-D.H.); (H.-H.Z.); (N.Z.); (S.-J.M.)
- Correspondence: (A.-L.Z.); (Q.Z.); Tel.: +86-1809-272-0670 (Q.Z.)
| |
Collapse
|
10
|
Xiao CY, Mu Q, Gibbons S. The Phytochemistry and Pharmacology of Hypericum. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 112 2020; 112:85-182. [DOI: 10.1007/978-3-030-52966-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China. Molecules 2019; 24:molecules24193568. [PMID: 31581734 PMCID: PMC6804229 DOI: 10.3390/molecules24193568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/30/2022] Open
Abstract
Hypericum stellatum, a species endemic to China, is used to treat hepatitis by several ethnic groups in Guizhou Province. This research was inspired by the traditional medicinal usage of H. stellatum, and aims to explore the phytochemistry and bioactivity of H. stellatum to explain why local people in Guizhou widely apply H. stellatum for liver protection. In this study, two new prenylated xanthones, hypxanthones A (8) and B (9), together with seven known compounds, were isolated from the aerial parts of the plant. Spectroscopic data as well as experimental and calculated ECD spectra were used to establish the structures of these compounds. Six xanthones isolated in this study, together with four xanthones previously isolated from H. stellatum, were evaluated for their growth-inhibitory activities against five human liver carcinoma cell lines to analyze the bioactivity and structure-activity relationship of xanthones from H. stellatum. Isojacareubin (6) showed significant cytotoxicity against five human liver carcinoma cell lines, with an IC50 value ranging from 1.41 to 11.83 μM, which was stronger than the positive control cisplatin (IC50 = 4.47–20.62 μM). Hypxanthone B (9) showed moderate cytotoxicity to three of the five cell lines. Finally, structure-activity analysis revealed that the prenyl and pyrano substituent groups of these xanthones contributed to their cytotoxicity.
Collapse
|