1
|
Gambato S, Bellotto O, Mardirossian M, Di Stasi A, Gennaro R, Pacor S, Caporale A, Berti F, Scocchi M, Tossi A. Designing New Hybrid Antibiotics: Proline-Rich Antimicrobial Peptides Conjugated to the Aminoglycoside Tobramycin. Bioconjug Chem 2023. [PMID: 37379329 PMCID: PMC10360068 DOI: 10.1021/acs.bioconjchem.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Resistance to aminoglycoside antibiotics is a serious problem, typically arising from inactivating enzymes, reduced uptake, or increased efflux in the important pathogens for which they are used as treatment. Conjugating aminoglycosides to proline-rich antimicrobial peptides (PrAMPs), which also target ribosomes and have a distinct bacterial uptake mechanism, might mutually benefit their individual activities. To this aim we have developed a strategy for noninvasively modifying tobramycin to link it to a Cys residue and through this covalently link it to a Cys-modified PrAMP by formation of a disulfide bond. Reduction of this bridge in the bacterial cytosol should release the individual antimicrobial moieties. We found that the conjugation of tobramycin to the well-characterized N-terminal PrAMP fragment Bac7(1-35) resulted in a potent antimicrobial capable of inactivating not only tobramycin-resistant bacterial strains but also those less susceptible to the PrAMP. To a certain extent, this activity also extends to the shorter and otherwise poorly active fragment Bac7(1-15). Although the mechanism that allows the conjugate to act when its individual components do not is as yet unclear, results are very promising and suggest this may be a way of resensitizing pathogens that have developed resistance to the antibiotic.
Collapse
Affiliation(s)
- Stefano Gambato
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri, 1, 34127 Trieste, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Andrea Caporale
- CNR, Institute of Crystallography, SS 14 Km 163.5 c/o Area Science Park, Basovizza, 34149 Trieste, Italy
- CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", 80134 Napoli, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri, 1, 34127 Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, 5, 34127 Trieste, Italy
| |
Collapse
|
2
|
Cantopcu E, Aydinli E, Goksu H. Homogeneous catalyst containing Pd in the reduction of aryl azides to primary amines. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Interest of Homodialkyl Neamine Derivatives against Resistant P. aeruginosa, E. coli, and β-Lactamases-Producing Bacteria-Effect of Alkyl Chain Length on the Interaction with LPS. Int J Mol Sci 2021; 22:ijms22168707. [PMID: 34445410 PMCID: PMC8396045 DOI: 10.3390/ijms22168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3′,6-dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3′,6-homodialkyl neamine derivatives carrying different alkyl chains (C7–C11) to interact with LPS and alter membrane permeability. 3′,6-Dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3′,6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3′,6-dinonyl- and 3′,6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.
Collapse
|
4
|
Green KD, Punetha A, Chandrika NT, Hou C, Garneau-Tsodikova S, Tsodikov OV. Development of Single-Stranded DNA Bisintercalating Inhibitors of Primase DnaG as Antibiotics. ChemMedChem 2021; 16:1986-1995. [PMID: 33711198 DOI: 10.1002/cmdc.202100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Many essential enzymes in bacteria remain promising potential targets of antibacterial agents. In this study, we discovered that dequalinium, a topical antibacterial agent, is an inhibitor of Staphylococcus aureus primase DnaG (SaDnaG) with low-micromolar minimum inhibitory concentrations against several S. aureus strains, including methicillin-resistant bacteria. Mechanistic studies of dequalinium and a series of nine of its synthesized analogues revealed that these compounds are single-stranded DNA bisintercalators that penetrate a bacterium by compromising its membrane. The best compound of this series likely interacts with DnaG directly, inhibits both staphylococcal cell growth and biofilm formation, and displays no significant hemolytic activity or toxicity to mammalian cells. This compound is an excellent lead for further development of a novel anti-staphylococcal therapeutic.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | | | - Caixia Hou
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | | | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
5
|
Rodríguez-Cerdeira C, Martínez-Herrera E, Carnero-Gregorio M, López-Barcenas A, Fabbrocini G, Fida M, El-Samahy M, González-Cespón JL. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front Microbiol 2020; 11:544480. [PMID: 33262741 PMCID: PMC7686049 DOI: 10.3389/fmicb.2020.544480] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
The ability of Candida spp. to form biofilms is crucial for its pathogenicity, and thus, it should be considered an important virulence factor in vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). Its ability to generate biofilms is multifactorial and is generally believed to depend on the site of infection, species and strain involved, and the microenvironment in which the infection develops. Therefore, both cell surface proteins, such as Hwp1, Als1, and Als2, and the cell wall-related protein, Sun41, play a critical role in the adhesion and virulence of the biofilm. Immunological and pharmacological approaches have identified the NLRP3 inflammasome as a crucial molecular factor contributing to host immunopathology. In this context, we have earlier shown that Candida albicans associated with hyphae-secreted aspartyl proteinases (specifically SAP4-6) contribute to the immunopathology of the disease. Transcriptome profiling has revealed that non-coding transcripts regulate protein synthesis post-transcriptionally, which is important for the growth of Candida spp. Other studies have employed RNA sequencing to identify differences in the 1,245 Candida genes involved in surface and invasive cellular metabolism regulation. In vitro systems allow the simultaneous processing of a large number of samples, making them an ideal screening technique for estimating various physicochemical parameters, testing the activity of antimicrobial agents, and analyzing genes involved in biofilm formation and regulation (in situ) in specific strains. Murine VVC models are used to study C. albicans infection, especially in trials of novel treatments and to understand the cause(s) for resistance to conventional therapeutics. This review on the clinical relevance of Candida biofilms in VVC focuses on important advances in its genomics, transcriptomics, and proteomics. Moreover, recent experiments on the influence of biofilm formation on VVC or RVVC pathogenesis in laboratory animals have been discussed. A clear elucidation of one of the pathogenesis mechanisms employed by Candida biofilms in vulvovaginal candidiasis and its applications in clinical practice represents the most significant contribution of this manuscript.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain.,Department of Dermatology, Hospital do Meixoeiro and University of Vigo, Vigo, Spain.,European Women's Dermatologic and Venereologic Society, Tui, Spain.,Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina
| | - Erick Martínez-Herrera
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina.,Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Mexico
| | - Miguel Carnero-Gregorio
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain.,Department of Molecular Diagnosis (Array & NGS Division), Institute of Cellular and Molecular Studies, Lugo, Spain
| | - Adriana López-Barcenas
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina.,Section of Mycology, Department of Dermatology, Manuel Gea González hospital, Mexico City, Mexico
| | - Gabriella Fabbrocini
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - Monika Fida
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, University of Medicine, Tirana, Tirana, Albania
| | - May El-Samahy
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
6
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
7
|
Dennis EK, Kim JH, Parkin S, Awuah SG, Garneau-Tsodikova S. Distorted Gold(I)–Phosphine Complexes as Antifungal Agents. J Med Chem 2019; 63:2455-2469. [DOI: 10.1021/acs.jmedchem.9b01436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emily K. Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jong Hyun Kim
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sean Parkin
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Samuel G. Awuah
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
8
|
|
9
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
10
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|