1
|
Ghahfarrokhi SH, Heidari-Soureshjani S, Sherwin CMT, Azadegan-Dehkordi Z. Efficacy and Mechanisms of Silybum Marianum, Silymarin, and Silibinin on Rheumatoid Arthritis and Osteoarthritis Symptoms: A Systematic Review. Curr Rheumatol Rev 2024; 20:414-425. [PMID: 38314596 DOI: 10.2174/0115733971266397231122080247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) and osteoarthritis (OA) are the most common forms of skeletal disease worldwide. OBJECTIVE The current systematic review investigated the mechanisms of Silybum marianum, silymarin, and silibinin on RA and OA symptoms. METHODS The PRISMA 2020 statement was used for reporting Items in this systematic review. The result was a list of five databases, including Web of Science, Cochrane Library, Embase, PubMed, and Scopus. After determining the inclusion and exclusion criteria, of 437 records identified, 21 studies were eligible. The data were extracted from the studies and imported into an Excel form, and finally, the effects, outcomes, and associated mechanisms were surveyed. RESULTS Silybum marianum and its main constituents revealed immunomodulatory, anti-inflammatory, antioxidant, and anti-apoptotic properties in humans and laboratory animals. Moreover, they protect the joints against the cartilage matrix's hypocellularity and fibrillation, reduce synovitis, and inhibit degeneration of aggrecan and collagen-II in human chondrocytes. They also, through reducing inflammatory cytokines, show an analgesic effect. Although silymarin and silibinin have low absorption, their bioavailability can be increased with nanoparticles. CONCLUSION In experimental studies, Silybum marianum, silymarin, and silibinin revealed promising effects on RA and OA symptoms. However, more clinical studies are needed in this field to obtain reliable results and clinical administration of these compounds.
Collapse
Affiliation(s)
- Shahrzad Habibi Ghahfarrokhi
- Department of Social Medicine, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Social Determinants of Health Research Center, Shahrekord, Iran
| | | | - Catherine M T Sherwin
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | - Zahra Azadegan-Dehkordi
- Oriented Nursing Midwifery Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Raclariu-Manolică AC, Socaciu C. Detecting and Profiling of Milk Thistle Metabolites in Food Supplements: A Safety-Oriented Approach by Advanced Analytics. Metabolites 2023; 13:440. [PMID: 36984880 PMCID: PMC10052194 DOI: 10.3390/metabo13030440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Milk thistle (Silybum marianum (L.) Gaertn.) is among the top-selling botanicals used as a supportive treatment for liver diseases. Silymarin, a mixture of unique flavonolignan metabolites, is the main bioactive component of milk thistle. The biological activities of silymarin have been well described in the literature, and its use is considered safe and well-tolerated in appropriate doses. However, commercial preparations do not always contain the recommended concentrations of silymarin, failing to provide the expected therapeutic effect. While the poor quality of raw material may explain the low concentrations of silymarin, its deliberate removal is suspected to be an adulteration. Toxic contaminants and foreign matters were also detected in milk thistle preparations, raising serious health concerns. Standard methods for determination of silymarin components include thin-layer chromatography (TLC), high-performance thin-layer chromatography (HPTLC), and high-performance liquid chromatography (HPLC) with various detectors, but nuclear magnetic resonance (NMR) and ultra-high-performance liquid chromatography (UHPLC) have also been applied. This review surveys the extraction techniques of main milk thistle metabolites and the quality, efficacy, and safety of the derived food supplements. Advanced analytical authentication approaches are discussed with a focus on DNA barcoding and metabarcoding to complement orthogonal chemical characterization and fingerprinting of herbal products.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, 610004 Piatra Neamț, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- BIODIATECH—Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Abderrezag N, Montenegro ZJS, Louaer O, Meniai AH, Cifuentes A, Ibáñez E, Mendiola JA. One-step sustainable extraction of Silymarin compounds of wild Algerian milk thistle (Silybum marianum) seeds using Gas Expanded Liquids. J Chromatogr A 2022; 1675:463147. [PMID: 35640448 DOI: 10.1016/j.chroma.2022.463147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
This work reports the application of Gas Expanded Liquid (GXL) extraction to concentrate the flavonolignan fraction (silymarin) and taxifolin from Silybum marianum seeds, which have proven to be highly valuable health-promoting compounds. GXL using green solvents was used to isolate silymarin with the objective of replacing conventional methods. In one hand, the effect of different compositions of solvents, aqueous ethanol (20%, 50% or 80% (v/v)) at different CO2/liquid (25, 50 and 75%) ratios, on the GXL extraction was investigated. The obtained extracts have been chemically and functionally characterized by means of UHPLC-ESI-MS/MS (triple quadrupole) and in-vitro assays such as anti-inflammatory, anti-cholinergic and antioxidant. Results revealed that the operating conditions influenced the extraction yield, the total phenolic content and the presence of the target compounds. The best obtained yield was 55.97% using a ternary mixture of solvents composed of CO2:EtOH:H2O (25:60:15) at 40 °C and 9 MPa in 160 min. Furthermore, the results showed that obtained extracts had significant antioxidant and anti-inflammatory activities (with best IC50 value of 8.80 µg/mL and 28.52 µg/mL, respectively) but a moderate anti-cholinesterase activity (with best IC50 value of 125.09 µg/mL). Otherwise, the concentration of silymarin compounds in extract can go up to 59.6% using the present one-step extraction method without further purification, being silybinA+B the predominant identified compound, achieving value of 545.73 (mg silymarin/g of extract). The obtained results demonstrate the exceptional potential of GXL to extract high-added values molecules under sustainable conditions from different matrices.
Collapse
Affiliation(s)
- Norelhouda Abderrezag
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria; Profesora Facultad de Ingeniería Agroindustrial, Universidad de Nariño (UdeNar), Pasto, Colombia
| | | | - Ouahida Louaer
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria
| | - Abdeslam-Hassen Meniai
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria
| | - Alejandro Cifuentes
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jose A Mendiola
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts. COSMETICS 2022. [DOI: 10.3390/cosmetics9040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solanum virginianum L. (Solanum xanthocarpum) is an important therapeutic plant due to the presence of medicinally useful plant-derived compounds. S. virginianum has been shown to have anticancer, antioxidant, antibacterial, antiaging, and anti-inflammatory properties. This plant is becoming endangered due to overexploitation and the loss of its native habitat. The purpose of this research is to develop an ideal technique for the maximum biomass and phytochemical accumulation in S. virginianum leaf-induced in vitro cultures, as well as to evaluate their potential antiaging, anti-inflammatory, and antioxidant abilities. Leaf explants were grown on media (Murashige and Skoog (MS)) that were supplemented with various concentrations and combinations of plant hormones (TDZ, BAP, NAA, and TDZ + NAA) for this purpose. When compared with the other hormones, TDZ demonstrated the best response for callus induction, biomass accumulation, phytochemical synthesis, and biological activities. However, with 5 mg/L of TDZ, the optimal biomass production (FW: 251.48 g/L and DW: 13.59 g/L) was estimated. The highest total phenolic level (10.22 ± 0.44 mg/g DW) was found in 5 mg/L of TDZ, whereas the highest flavonoid contents (1.65 ± 0.11 mg/g DW) were found in 10 mg/L of TDZ. The results of the HPLC revealed that the highest production of coumarins (scopoletin: 4.34 ± 0.20 mg/g DW and esculetin: 0.87 ± 0.040 mg/g DW) was determined for 10 mg/L of TDZ, whereas the highest accumulations of caffeic acid (0.56 ± 0.021 mg/g DW) and methyl caffeate (18.62 ± 0.60 mg/g DW) were shown by 5 mg/L of TDZ. The determination of these phytochemicals (phenolics and coumarins) estimates that the results of our study on biological assays, such as antioxidant, anti-inflammatory, and antiaging assays, are useful for future cosmetic applications.
Collapse
|
5
|
Tungmunnithum D, Drouet S, Garros L, Hano C. Differential Flavonoid and Other Phenolic Accumulations and Antioxidant Activities of Nymphaea lotus L. Populations throughout Thailand. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113590. [PMID: 35684520 PMCID: PMC9182519 DOI: 10.3390/molecules27113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023]
Abstract
Nymphaea lotus L. is a potential plant in the Nymphaeaceae family that is well-recognized as an economic and traditional medicinal plant in Thailand and other countries. Its pharmacological and medicinal effects have been confirmed. However, there is no study going deeper into the population level to examine the phytochemical variation and biological activity of each population that benefits phytopharmaceutical and medical applications using this plant as raw material. This study was intensely conducted to complete this important research gap to investigate the flavonoid profiles from its floral parts, the stamen and perianth, as well as the antioxidant potential of the 13 populations collected from every floristic region by (1) analyzing their flavonoid profiles, including the HPLC analysis, and (2) investigating the antioxidant capacity of these populations using three assays to observe different antioxidant mechanisms. The results indicated that the northeastern and northern regions are the most abundant floristic regions, and flavonoids are the main phytochemical class of both stamen and perianth extracts from N. lotus. The stamen offers higher flavonoids and richer antioxidant potential compared with the perianth. This finding is also the first completed report at the population level to describe the significant correlation between the phytochemical profiles in floral parts extracts and the main antioxidant activity, which is mediated by the electron transfer mechanism. The results from the Pearson correlation coefficients between several phytochemicals and different antioxidant assessments highlighted that the antioxidant capability of these extracts is the result of complex phytochemical combinations. The frontier knowledge from these current findings helps to open up doors for phytopharmaceutical industries to discover their preferred populations and floral parts that fit with their targeted products.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France; (S.D.); (L.G.)
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France; (S.D.); (L.G.)
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France; (S.D.); (L.G.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France; (S.D.); (L.G.)
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
6
|
Flavonoid Profiles and Antioxidant Potential of Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum, a New Species from the Genus Monochoria C. Presl. Antioxidants (Basel) 2022; 11:antiox11050952. [PMID: 35624816 PMCID: PMC9138080 DOI: 10.3390/antiox11050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Plants of the genus Monochoria have long been utilized in food, cosmetics, and traditional herbal treatments. Thailand has the highest species diversity of this genus and a new member, Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum has been recently described. This plant is called “Siam Violet Pearl” as a common name or “Khimuk Si Muang Haeng Siam” as its vernacular name with the same meaning in the Thai language. Despite their importance, little research on Monochoria species has been conducted. This study, thus, provides the results to fill in this gap by: (i) determining flavonoid phytochemical profiles of 25 natural populations of M. angustifolia covering the whole floristic regions in Thailand, and (ii) determining antioxidant activity using various antioxidant assays to investigate probable mechanisms. The results revealed that M. angustifolia presents a higher flavonoid content than the outgroup, M. hastata. Our results also revealed that flavonoids might be used to investigate Monochoria evolutionary connections and for botanical authentication. The various antioxidant assays revealed that M. angustifolia extracts preferentially act through a hydrogen atom transfer antioxidant mechanism. Pearson correlation analysis indicated significant correlations, emphasizing that the antioxidant capacity is most probably due to the complex action of several phytochemicals rather than that of a single molecule. Together, these results showed that this new species provide an attractive alternative starting material with phytochemical variety and antioxidant potential for the phytopharmaceutical industry.
Collapse
|
7
|
Iqbal J, Andleeb A, Ashraf H, Meer B, Mehmood A, Jan H, Zaman G, Nadeem M, Drouet S, Fazal H, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv 2022; 12:14069-14083. [PMID: 35558860 PMCID: PMC9094097 DOI: 10.1039/d2ra01929a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Use of medicinal plants for the biosynthesis of nanoparticles offers several advantages over other synthesis approaches. Plants contain a variety of bioactive compounds that can participate in reduction and capping of nanoparticles. Plant mediated synthesis has the leverage of cost effectiveness, eco-friendly approach and sustained availability. In the current study Silybum marianum, a medicinally valuable plant rich in silymarin content, is used as a reducing and stabilizing agent for the fabrication of nanoparticles. Biosynthesized CuO-NPs were characterized using High Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS) techniques. Characterization revealed that CuO-NPs having a crystalline structure showed spherical morphology with an average size of 15 nm. HPLC analysis demonstrated conjugation of various silymarin components, especially the presence of silybin A (705.06 ± 1.59 mg g-1 DW). CuO-NPs exhibited strong bactericidal potency against clinically important pathogenic bacterial strains e.g. Enterobacter aerogenes and Salmonella typhi with an inhibition zone of 18 ± 1.3 mm and 17 ± 1.2 mm, respectively. Synthesized nanoparticles indicated a dose dependent cytotoxic effect against fibroblast cells exhibiting a percentage cell viability of 83.60 ± 1.505% and 55.1 ± 1.80% at 25 μg mL-1 and 100 μg mL-1 concentration, respectively. Moreover, CuO-NPs displayed higher antioxidant potential in terms of (TAC: 96.9 ± 0.26 μg AAE/mg), (TRP: 68.8 ± 0.35 μg AAE/mg), (DPPH: 55.5 ± 0.62%), (ABTS: 332.34 μM) and a significant value for (FRAP: 215.40 μM). Furthermore, enzyme inhibition assays also exhibited excellent enzyme inhibition potential against α-amylase (35.5 ± 1.54%), urease (78.4 ± 1.26%) and lipase (80.50.91%), respectively. Overall findings indicated that biosynthesized CuO-NPs possess immense in vitro biological and biomedical properties and could be used as a broad-spectrum agent for a wider range of biomedical applications.
Collapse
Affiliation(s)
- Junaid Iqbal
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Hajra Ashraf
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Bisma Meer
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Azra Mehmood
- Stem Cell & Regenerative Medicine Lab, National Centre of Excellence in Molecular Biology, University of Punjab 87-West Canal Bank Road Lahore 53700 Pakistan
| | - Hasnain Jan
- Institute of Biochemical Sciences, National Taiwan University Taipei City 10617 Taiwan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Nadeem
- Institute of Integrative Biosciences, CECOS University Peshawar 25100 Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d'Orléans 45067 Orléans Cedex 2 France
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Peshawar 25120 Pakistan
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d'Orléans 45067 Orléans Cedex 2 France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
8
|
Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells 2022; 11:cells11040599. [PMID: 35203251 PMCID: PMC8870193 DOI: 10.3390/cells11040599] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
Nelumbo nucifera is one of the most valuable medicinal species of the Nelumbonaceae family that has been consumed since the ancient historic period. Its stamen is an indispensable ingredient for many recipes of traditional medicines, and has been proved as a rich source of flavonoids that may provide an antiaging action for pharmaceutical or medicinal applications. However, there is no intense study on antiaging potential and molecular mechanisms. This present study was designed to fill in this important research gap by: (1) investigating the effects of sacred lotus stamen extract (LSE) on yeast lifespan extension; and (2) determining their effects on oxidative stress and metabolism to understand the potential antiaging action of its flavonoids. A validated ultrasound-assisted extraction method was also employed in this current work. The results confirmed that LSE is rich in flavonoids, and myricetin-3-O-glucose, quercetin-3-O-glucuronic acid, kaempferol-3-O-glucuronic acid, and isorhamnetin-3-O-glucose are the most abundant ones. In addition, LSE offers a high antioxidant capacity, as evidenced by different in vitro antioxidant assays. This present study also indicated that LSE delayed yeast (Saccharomyces cerevisiae, wild-type strain DBY746) chronological aging compared with untreated control yeast and a positive control (resveratrol) cells. Moreover, LSE acted on central metabolism, gene expressions (SIR2 and SOD2), and enzyme regulation (SIRT and SOD enzymatic activities). These findings are helpful to open the door for the pharmaceutical and medical sectors to employ this potential lotus raw material in their future pharmaceutical product development.
Collapse
|
9
|
Tungmunnithum D, Drouet S, Hano C. Validation of a High-Performance Liquid Chromatography with Photodiode Array Detection Method for the Separation and Quantification of Antioxidant and Skin Anti-Aging Flavonoids from Nelumbo nucifera Gaertn. Stamen Extract. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031102. [PMID: 35164366 PMCID: PMC8838782 DOI: 10.3390/molecules27031102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Nelumbo nucifera Gaertn., or the so-called sacred lotus, is a useful aquatic plant in the Nelumbonaceae family that has long been used to prepare teas, traditional medicines as well as foods. Many studies reported on the phytochemicals and biological activities of its leaves and seeds. However, to date, only few studies were conducted on its stamen, which is the most important ingredient for herbal medicines, teas and other phytopharmaceutical products. Thus, this present study focuses on the following: (1) the application of high-performance liquid chromatography with photodiode array detection for a validated separation and quantification of flavonoids from stamen; (2) the Nelumbo nucifera stamen’s in vitro and in cellulo antioxidant activities; as well as (3) its potential regarding the inhibition of skin aging enzymes for cosmetic applications. The optimal separation of the main flavonoids from the stamen ethanolic extract was effectively achieved using a core-shell column. The results indicated that stamen ethanolic extract has higher concentration of in vitro and in cellulo antioxidant flavonoids than other floral components. Stamen ethanolic extract showed the highest protective effect against reactive oxygen/nitrogen species formation, as confirmed by cellular antioxidant assay using a yeast model. The evaluation of potential skin anti-aging action showed that the stamen extract has higher potential to inhibit tyrosinase and collagenase compared with its whole flower. These current findings are the first report to suggest the possibility to employ N. nucifera stamen ethanolic extract as a tyrosinase and collagenase inhibitor in cosmetic applications, as well as the utility of the current separation method.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
10
|
Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030681. [PMID: 35163946 PMCID: PMC8840423 DOI: 10.3390/molecules27030681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Asian lotus has long been consumed as a food and herbal drug that provides several health benefits. The number of studies on its biological activity is significant, but research at the population level to investigate the variation in phytochemicals and biological activity of each population which is useful for a more efficient phytopharmaceutical application strategy remains needed. This present study provided the frontier results to fill-in this necessary gap to investigating the phytopharmaceutical potential of perianth and stamen, which represent an important part for Asian traditional medicines, from 18 natural populations throughout Thailand by (1) determining their phytochemical profiles, such as total contents of phenolic, flavonoid, and anthocyanin, and (2) determining the antioxidant activity of these natural populations using various antioxidant assays to examine different mechanisms. The result showed that Central is the most abundant floristic region. The stamen was higher in total phenolic and flavonoid contents, whereas perianth was higher in monomeric anthocyanin content. This study provided the first description of the significant correlation between phytochemical contents in perianth compared with stamen extracts, and indicated that flavonoids are the main phytochemical class. This analysis indicated that the stamen is a richer source of flavonoids than perianth, and provided the first report to quantify different flavonoids accumulated in stamen and perianth extracts under their native glycosidic forms at the population level. Various antioxidant assays revealed that major flavonoids from N. nucifera prefer the hydrogen atom transfer mechanism when quenching free radicals. The significant correlations between various phytochemical classes and the different antioxidant tests were noted by Pearson correlation coefficients and emphasized that the antioxidant capability of an extract is generally the result of complex phytochemical combinations as opposed to a single molecule. These current findings offer the alternative starting materials to assess the phytochemical diversity and antioxidant potential of N. nucifera for phytopharmaceutical sectors.
Collapse
|
11
|
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010067. [PMID: 35009070 PMCID: PMC8747412 DOI: 10.3390/plants11010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 05/05/2023]
Abstract
The edible beans in Fabaceae have been used for foods and medicines since the ancient time, and being used more and more. It is also appeared as a major ingredient in dairy cooking menu in many regions including Thailand, a rich biodiversity country. Many studies reported on health benefits of their flavonoids, but there is no report on the effect of cooking on phytochemical profile and pharmacological potentials. Thus, this present study aims to complete this knowledge, with the 10 most consumed Fabaceae beans in Thailand, by determining the impact of traditional cooking and gastrointestinal digestion on their phytochemicals, their antioxidant and anti-diabetic activities using different in vitro and in cellulo yeast models. The results showed that Vigna unguiculata subsp. sesquipedalis were the richest source of phytochemicals, whereas the population of V. mungo, Phaseolus vulgaris, V. angularis, and V. unguiculata subsp. sesquipedalis were richest in monomeric anthocyanin contents (MAC). Furthermore, the results clearly demonstrated the impact of the plant matrix effect on the preservation of a specific class of phytochemicals. In particular, after cooking and in vitro digestion, total flavonoid contents (TFC) in Glycine max extract was higher than in the uncooked sample. This study is the first report on the influence of cooking and in vitro gastrointestinal digestion on the inhibition capacity toward advanced glycation end products (AGEs). All samples showed a significant capacity to stimulate glucose uptake in yeast model, and V. angularis showed the highest capacity. Interestingly, the increase in glucose uptake after in vitro digestion was higher than in uncooked samples for both P. vulgaris and G. max samples. The current study is the first attempt to investigate at the effects of both processes not only on the natural bioactive compounds but also on antioxidant and anti-diabetic activities of Thailand's 10 most consumed beans that can be applied for agro-industrial and phytopharmaceutical sectors.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orleans, France
- Correspondence: (D.T.); (C.H.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orleans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
12
|
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods 2021; 10:3118. [PMID: 34945669 PMCID: PMC8700874 DOI: 10.3390/foods10123118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Fabaceae is the third largest family containing great variation among populations. However, previous studies mainly focus on single species, and phytochemicals at population level have never been reported. This work aims to complete this knowledge with 50 populations from throughout Thailand by (1) determining total phenolic (TPC), flavonoid (TFC), and anthocyanin (TAC) contents; and (2) investigating in vitro and cellular antioxidant potentials. Phytochemicals of 50 populations from different localities are differed, illustrating high heterogeneity occurring in polyphenols accumulations. Vigna unguiculata subsp. sesquipedalis populations showed low variability in TPC ranging from 628.3 to 717.3 mg/100 g DW gallic acid equivalent, whereas the high variability found in TFC and TAC range from 786.9 to 1536.1 mg/100 g DW quercetin equivalent, and 13.4 to 41.6 mg/100 g DW cyanidin equivalent. Red cultivar population #16 had the greatest TAC, but surprisingly the cream cultivars were relatively high in anthocyanins. HPLC quantification of genistein and daidzein showed great variations among populations. In vitro antioxidant results indicated that antioxidant capacity mediated by electron transfer. Cellular antioxidants ranged from 59.7% to 87.9% of ROS/RNS in yeast model. This study investigated at the population level contributing to better and frontier knowledge for nutraceutical/phytopharmaceutical sectors to seek potential raw plant material.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| |
Collapse
|
13
|
Green Extraction of Antioxidant Flavonoids from Pigeon Pea ( Cajanus cajan (L.) Millsp.) Seeds and Its Antioxidant Potentials Using Ultrasound-Assisted Methodology. Molecules 2021; 26:molecules26247557. [PMID: 34946637 PMCID: PMC8703396 DOI: 10.3390/molecules26247557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Pigeon pea is an important pea species in the Fabaceae family that has long been used for food, cosmetic, and other phytopharmaceutical applications. Its seed is reported as a rich source of antioxidants and anti-inflammatory flavonoids, especially isoflavones, i.e., cajanin, cajanol, daidzein, and genistein. In today’s era of green chemistry and green cosmetic development, the development and optimization of extraction techniques is increasing employed by the industrial sectors to provide environmentally friendly products for their customers. Surprisingly, there is no research report on improving the extraction of these isoflavonoids from pigeon pea seeds. In this present study, ultrasound-assisted extraction (USAE) methodology, which is a green extraction that provides a shorter extraction time and consumes less solvent, was optimized and compared with the conventional methods. The multivariate strategy, the Behnken–Box design (BBD) combined with response surface methodology, was employed to determine the best extraction conditions for this USAE utilizing ethanol as green solvent. Not only in vitro but also cellular antioxidant activities were evaluated using different assays and approaches. The results indicated that USAE provided a substantial gain of ca 70% in the (iso)flavonoids extracted and the biological antioxidant activities were preserved, compared to the conventional method. The best extraction conditions were 39.19 min with a frequency of 29.96 kHz and 63.81% (v/v) aqueous ethanol. Both the antioxidant and anti-aging potentials of the extract were obtained under optimal USAE at a cellular level using yeast as a model, resulting in lower levels of malondialdehyde. These results demonstrated that the extract can act as an effective activator of the cell longevity protein (SIR2/SIRT1) and cell membrane protector against oxidative stress. This finding supports the potential of pigeon pea seeds and USAE methodology to gain potential antioxidant and anti-aging (iso)flavonoids-rich sources for the cosmetic and phytopharmaceutical sectors.
Collapse
|
14
|
Shah M, Jan H, Drouet S, Tungmunnithum D, Shirazi JH, Hano C, Abbasi BH. Chitosan Elicitation Impacts Flavonolignan Biosynthesis in Silybum marianum (L.) Gaertn Cell Suspension and Enhances Antioxidant and Anti-Inflammatory Activities of Cell Extracts. Molecules 2021; 26:791. [PMID: 33546424 PMCID: PMC7913645 DOI: 10.3390/molecules26040791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 μM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts.
Collapse
Affiliation(s)
- Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.S.); (H.J.)
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.S.); (H.J.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand;
| | - Jafir Hussain Shirazi
- Department of Pharmacy, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.S.); (H.J.)
| |
Collapse
|
15
|
Martinelli T, Fulvio F, Pietrella M, Focacci M, Lauria M, Paris R. In Silybum marianum Italian wild populations the variability of silymarin profiles results from the combination of only two stable chemotypes. Fitoterapia 2021; 148:104797. [PMID: 33271258 DOI: 10.1016/j.fitote.2020.104797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022]
Abstract
Silybum marianum (L.) Gaertn. is an important medicinal plant belonging to Mediterranean flora. The medicinal properties of the species are mainly due to silymarin, a combination of different flavonolignans contained in the fruit. As for silymarin, so far a wide variability of possible S. marianum chemotypes has been described. In the present study the flavonolignan profile of 40 different S. marianum wild accessions was analysed at both population and single plant level, further extending the analysis to progenies derived from crosses between parental lines with different chemotypes. The results of this work indicate that S. marianum wild populations can be composed either of individuals with the same chemotype, or heterogeneous mixtures of individuals characterized by different chemotypes. Only three chemotypes (A, B and C) have been identified among Italian wild populations. Based on data collected we furthermore propose that chemotype C is the result of the hybridization between A and B chemotypes. If assessed at single plant level, chemotypes are extremely stable therefore evidencing a strong genetic control of silymarin biosynthetic pathway. Chemotypes A and B are present in all the analysed regions and no clear correlation between chemotypes and geographic features has been found. In conclusion, this work provides a general procedure for the characterization of different and stable chemotypes, for a deeper understanding of silymarin biosynthetic pathway, and in order to implement S. marianum breeding programmes aiming to improve silymarin quality.
Collapse
Affiliation(s)
- Tommaso Martinelli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification (CREA - DC), Loc. Cascine del Riccio, Via di Lanciola 12/A; 50125, Firenze, Italy.
| | - Flavia Fulvio
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA - CI), Via di Corticella 133, 40128 Bologna, Italy
| | - Marco Pietrella
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops (CREA - OFA), via la Canapona 1 bis, 47121 Forli, Italy
| | - Marco Focacci
- Agenzia Italiana per la Cooperazione allo Sviluppo, Largo Louis Braille 4; 50131, Firenze, Italy
| | - Massimiliano Lauria
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council (IBBA - CNR), Via A. Corti 12, 20133 Milano, Italy
| | - Roberta Paris
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA - CI), Via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
16
|
Elateeq AA, Sun Y, Nxumalo W, Gabr AM. Biotechnological production of silymarin in Silybum marianum L.: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Tungmunnithum D, Renouard S, Drouet S, Blondeau JP, Hano C. A Critical Cross-Species Comparison of Pollen from Nelumbo nucifera Gaertn. vs. Nymphaea lotus L. for Authentication of Thai Medicinal Herbal Tea. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9070921. [PMID: 32708113 PMCID: PMC7412456 DOI: 10.3390/plants9070921] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
"Bau Luang" or Nelumbo nucifera Gaertn. is an aquatic medicinal herb that has been used as a component of traditional medicines, medicinal products, and herbal tea for good health, particularly in Asia. The stamen of N. nucifera is an important part of this medicinal plant that is used in the form of dried and/or powdered stamens for herbal tea as well as the main ingredient of some traditional remedies. However, there is another aquatic herb called "Bau Sai" or Nymphaea lotus L. that is distributed in similar locations. Living plants of these two aquatic species may be classified according to their morphology, but the dried and powdered stamens of these two medicinal species are difficult to distinguish. The major reason of adulteration is the higher price of Bau Luang stamen. As a result, various methods of authentication, such as pollen micromorphology evaluation using scanning electron microscopy (SEM) analysis, bioinformatics analysis of two nuclear and plastic DNA markers, phytochemical stamen profiling, and Fourier transform infrared (FTIR) analysis of stamen plant material authentication from Bau Luang and Bau Sai, have been used in this present research in order to avoid some adulteration and/or misuse between the dried stamens of Bau Luang and Bau Sai. These results showed that the micro-morphology of pollen (size of pollen grain, number of apertures, and surface ornamentation) from the SEM analysis, some phytochemical compounds and the FTIR sporopollenin-to-protein ratio signal analysis are potential tools for authentication and identification of these two medicinal plants from their dried-stamen materials. This model of investigation may also be used to distinguish dried plant material from other problematic plant groups.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, 45067 Orléans CEDEX 2, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711, 45067 Orléans CEDEX 2, France
- Correspondence: (D.T.); (C.H.); Tel.: +66-264-486-96 (D.T.); +33-237-309-753 (C.H.)
| | - Sullivan Renouard
- Institut de Chimie et de Biologie des Membranes et des Nano-objets, CNRS UMR 5248, Bordeaux University, 33600 Pessac, France;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, 45067 Orléans CEDEX 2, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711, 45067 Orléans CEDEX 2, France
| | - Jean-Philippe Blondeau
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI) CNRS UPR3079, 1D Avenue de la Recherche Scientifique, 45071 Orléans, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, 45067 Orléans CEDEX 2, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711, 45067 Orléans CEDEX 2, France
- Correspondence: (D.T.); (C.H.); Tel.: +66-264-486-96 (D.T.); +33-237-309-753 (C.H.)
| |
Collapse
|
18
|
Drouet S, Tungmunnithum D, Lainé É, Hano C. Gene Expression Analysis and Metabolite Profiling of Silymarin Biosynthesis during Milk Thistle ( Silybum marianum (L.) Gaertn.) Fruit Ripening. Int J Mol Sci 2020; 21:E4730. [PMID: 32630801 PMCID: PMC7370286 DOI: 10.3390/ijms21134730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Mature fruits (i.e., achenes) of milk thistle (Silybum marianum (L.) Gaertn., Asteraceae) accumulate high amounts of silymarin (SILM), a complex mixture of bioactive flavonolignans deriving from taxifolin. Their biological activities in relation with human health promotion and disease prevention are well described. However, the conditions of their biosynthesis in planta are still obscure. To fill this gap, fruit development stages were first precisely defined to study the accumulation kinetics of SILM constituents during fruit ripening. The accumulation profiles of the SILM components during fruit maturation were determined using the LC-MS analysis of these defined developmental phases. The kinetics of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and peroxidase (POX) activities suggest in situ biosynthesis of SILM from l-Phenylalanine during fruit maturation rather than a transport of precursors to the achene. In particular, in contrast to laccase activity, POX activity was associated with the accumulation of silymarin, thus indicating a possible preferential involvement of peroxidase(s) in the oxidative coupling step leading to flavonolignans. Reference genes have been identified, selected and validated to allow accurate gene expression profiling of candidate biosynthetic genes (PAL, CAD, CHS, F3H, F3'H and POX) related to SILM accumulation. Gene expression profiles were correlated with SILM accumulation kinetic and preferential location in pericarp during S. marianum fruit maturation, reaching maximum biosynthesis when desiccation occurs, thus reinforcing the hypothesis of an in situ biosynthesis. This observation led us to consider the involvement of abscisic acid (ABA), a key phytohormone in the control of fruit ripening process. ABA accumulation timing and location during milk thistle fruit ripening appeared in line with a potential regulation of the SLIM accumulation. A possible transcriptional regulation of SILM biosynthesis by ABA was supported by the presence of ABA-responsive cis-acting elements in the promoter regions of the SILM biosynthetic genes studied. These results pave the way for a better understanding of the biosynthetic regulation of SILM during the maturation of S. marianum fruit and offer important insights to better control the production of these medicinally important compounds.
Collapse
Affiliation(s)
- Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
| |
Collapse
|
19
|
Tungmunnithum D, Drouet S, Kabra A, Hano C. Enrichment in Antioxidant Flavonoids of Stamen Extracts from Nymphaea lotus L. Using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption. Antioxidants (Basel) 2020; 9:E576. [PMID: 32630721 PMCID: PMC7402147 DOI: 10.3390/antiox9070576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Nymphaea lotus L. is the medicinal plant that has long been used for food, cosmetics and traditional medicines in Africa and Asia since ancient times. Its flavonoids and other interesting phytochemical compounds from rhizome, leaf and the whole flowers have been reported in the previous published research. However, stamens, which are essential for reproductive functions, may also represent new alternative sources of potential antioxidant flavonoids, as investigated in this study. The innovative green chemistry methods, i.e., ultrasound-assisted extraction (UAE) as well as a macroporous resin (MPR) purification procedure, were employed in this current research. Using a full factorial design coupled to three-dimensional (3D) surface plot methodology, the influence of three variables, namely aqEtOH concentration (ranging from 50 to 100% (v/v), US frequency (ranging from 0 (no US applied) to 45 kHz), and the extraction duration (ranging from 20 to 60 min), were evaluated. Five MPRs with different surface areas, average pore diameters, matrix types and polarities were also investigated for the purification of total flavonoids. The optimal UAE condition is 90% (v/v) aqEtOH with 34.65 khz ultrasonic frequency and 46 min of extraction duration. Compared with the conventional heat reflux extraction (HRE) method, a significant 1.35-fold increase in total flavonoids content was obtained using optimized UAE conditions (169.64 for HRE vs. 235.45 mg/g dry weight for UAE), causing a 2.80-fold increase when this UAE associated with MPR purification (475.42 mg/g dry weight). In vitro cell free antioxidant activity of N. lotus stamen extracts and in cellulo antioxidant investigation using yeast model showed the same trend, indicating that the best antioxidant flavonoid can be found in UAE coupled with MPR purification. Moreover, in the yeast model, the expression of key antioxidant genes such as SIR2 and SOD2 were expressed at the highest level in yeast cells treated with the extract from UAE together with MPR purification. Consequently, it can be seen that the UAE combined with MPR purification can help enhance the flavonoid antioxidant potential of the stamens extract from this medicinal species.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| | - Atul Kabra
- School of Pharmacy, Raffles University, Neemrana 301705, Alwar, Rajasthan, India;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| |
Collapse
|
20
|
Shah M, Nawaz S, Jan H, Uddin N, Ali A, Anjum S, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110889. [PMID: 32409047 DOI: 10.1016/j.msec.2020.110889] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 01/31/2023]
Abstract
The purpose of current study was green synthesis of silver nanoparticles (AgNPs) from seeds and wild Silybum plants in comparison with their respective extracts followed by characterization and biological potency. The biologically synthesized AgNPs were subjected to characterization using techniques like XRD, FTIR, TEM, HPLC and SPE. Highly crystalline and stable NPs were obtained using Silybum wild plant (NP1) and seeds (NP3) with size range between 18.12 and 13.20 nm respectively. The synthesized NPs and their respective extracts revealed a vast range of biological applications showing antibacterial, antioxidant, anti-inflammatory, cytotoxic and anti-aging potencies. The highest antioxidant activity (478.23 ± 1.9 μM, 176.91 ± 1.3 μM, 83.5 ± 1.6% μgAAE/mg, 156.32 ± 0.6 μgAAE/mg) for ABTS, FRAP, FRSA, TRP respectively was shown by seed extract (NP4) followed by highest value of (117.35 ± 0.9 μgAAE/mg) for TAC by wild extract (NP2). The highest antifungal activity (13 mm ± 0.76) against Candida albicans was shown by NP3 while antibacterial activity of (6 mm against Klebsiella pneumonia) was shown by NP3 and NP4. The highest anti-inflammatory activity (38.56 ± 1.29 against COX1) was shown by NP2. Similarly, the high value of (48.89 ± 1.34 against Pentosidine-Like AGEs) was shown by NP4. Also, the high anti-diabetic activity (38.74 ± 1.09 against α-amylase) was shown by NP4. The extracts and the synthesized NPs have shown activity against hepato-cellular carcinoma (HepG2) human cells. The HPLC analysis revealed that the highest value of silymarin component (silybin B 2289 mg/g DW) was found for NP4. Silydianin is responsible for capping. Among the green synthesized AgNPs and the extracts used, the effect of NP4 was most promising for further use.
Collapse
Affiliation(s)
- Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sabir Nawaz
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Noor Uddin
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ashaq Ali
- Key State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Nathalie Giglioli-Guivarc'h
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France
| | - Christophe Hano
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
| |
Collapse
|
21
|
A Quick, Green and Simple Ultrasound-Assisted Extraction for the Valorization of Antioxidant Phenolic Acids from Moroccan Almond Cold-Pressed Oil Residues. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Almond (Prunus dulcis (Mill.) D.A. Webb) is one of the most important nut crops both in terms of area and production. Over the last few decades, an important part of the beneficial actions for health associated with their consumption was attributed to the phenolic compounds, mainly accumulated in almond skin. Interestingly, after cold-pressed oil extraction, most of these antioxidant phenolic compounds are retained in a skin-enriched by-product, a so-called almond cold-pressed oil residue. In Morocco, the fifth highest ranking producer in the world, this production generates an important part of this valuable byproduct. In the present study, using a multivariate Box–Behnken design, an ultrasound-assisted extraction method of phenolic compounds from Moroccan almond cold-pressed oil residue was developed and validated. Response surface methodology resulted in the optimal extraction conditions: the use of aqueous ethanol 53.0% (v/v) as a green solvent, applying an ultrasound frequency of 27.0 kHz for an extraction duration of 29.4 min. The present ultrasound-assisted extraction allowed substantial gains in terms of extraction efficiency compared to conventional heat reflux extraction. Applied to three different local Beldi genotypes growing at three different experimental sites, the optimal conditions for ultrasound-assisted extraction led to a total phenolic content of 13.86 mg/g dry weight. HPLC analysis revealed that the main phenolic compounds from this valuable byproduct were: chlorogenic acid followed by protocatechuic acid, p-hydroxybenzoic acid, and p-coumaric acid. The accumulation of these phenolic compounds appeared to be more dependent on the genetic background than on the environmental impact here represented by the three experimental culture sites. Both in vitro cell free and cellular antioxidant assays were performed, and revealed the great potential of these extracts. In particular, correlation analysis provided evidence of the prominent roles of chlorogenic acid, protocatechuic acid, and p-hydroxybenzoic acid. To summarize, the validated ultrasound-assisted extraction method presented here is a quick, green, simple and efficient for the possible valorization of antioxidant phenolic compounds from Moroccan almond cold-pressed oil residues, making it possible to generate extracts with attractive antioxidant activities for future nutraceutical and/or cosmetic applications.
Collapse
|
22
|
Hano C, Tungmunnithum D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E26. [PMID: 32397520 PMCID: PMC7281114 DOI: 10.3390/medicines7050026] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/28/2022]
Abstract
The present editorial serves as an introduction to the Special Issue "Antioxidant and Anti-aging Action of Plant Polyphenols". It also provides a summary of the polyphenols, their biological properties and possible functions as medicines, the importance of traditional medicines as a source of inspiration, the rationalization of new uses of plant extracts which lead to applications in modern medicine, the status of modern green-chemistry extraction methods, and some reflections on future prospects. Here, the articles from this Special Issue, and the main aspects of the antioxidant and anti-aging effects of plant polyphenols are discussed in the form of seven questions.
Collapse
Affiliation(s)
- Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 21 rue de Loigny la Bataille, F-28000 Chartres, France;
- Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 21 rue de Loigny la Bataille, F-28000 Chartres, France;
- Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Santos VH, Minatel IO, Lima GP, Silva RM, Chen CYO. Antioxidant capacity and phytochemical characterization of Spathodea campanulata growing in different climatic zones in Brazil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Green Bio-Assisted Synthesis, Characterization and Biological Evaluation of Biocompatible ZnO NPs Synthesized from Different Tissues of Milk Thistle ( Silybum marianum). NANOMATERIALS 2019; 9:nano9081171. [PMID: 31426328 PMCID: PMC6724086 DOI: 10.3390/nano9081171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
Abstract
The purpose of the current study was green synthesis of ZnO-nanoparticles (NPs) from different tissues of Silybum marianum (L.) Gaernt. (i.e., seeds, wild plant, in vitro derived plantlets and callus cultures) followed by extensive characterization and evaluation of their biological potency. ZnO-NPs thus synthesized were subjected to characterization using standard techniques such as XRD, FTIR and SEM. Thermal stability of synthesized NPs was also evaluated using thermo-gravimetric analysis. Highly stable crystalline NPs with size ranging between 30.8 and 46.0 nm were obtained from different tissues of S. marianum. These NPs have revealed a wide range of biological applications showing antioxidant, moderate α-amylase inhibitor, antibacterial and cytotoxic potencies. The highest antibacterial activity (20 ± 0.98 mm) was shown by seed extract-mediated ZnO NPs against Staphylococcus aureus (ATCC-6538). Seed extract-mediated ZnO NPs also showed the most potent antioxidant activity (27.7 ± 0.9 µgAAE/mg, 23.8 ± 0.7 µgAAE/mg and 12.7 ± 1.9% total antioxidant capacity (TAC), total reducing power (TRP) and DPPH-free radical scavenging assay (FRSA), respectively). All of the synthesized ZnO NPs also showed cytotoxic activity against the hepato-cellular carcinoma (HepG2) human cells. Interestingly, these ZnO NPs were also highly biocompatible, as evidenced by the brine shrimp lethality and human red blood cells hemolytic assays. Among all of the NPs synthesized and used, the effect of seed extract-mediated NPs was found to be most promising for future applications.
Collapse
|
25
|
Drouet S, Leclerc EA, Garros L, Tungmunnithum D, Kabra A, Abbasi BH, Lainé É, Hano C. A Green Ultrasound-Assisted Extraction Optimization of the Natural Antioxidant and Anti-Aging Flavonolignans from Milk Thistle Silybum marianum (L.) Gaertn. Fruits for Cosmetic Applications. Antioxidants (Basel) 2019; 8:E304. [PMID: 31416140 PMCID: PMC6721202 DOI: 10.3390/antiox8080304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/23/2023] Open
Abstract
Silybum marianum (L.) Gaertn. (aka milk thistle) constitutes the source of silymarin (SILM), a mixture of different flavonolignans and represents a unique model for their extraction. Here we report on the development and validation of an ultrasound-assisted extraction (UAE) method of S. marianum flavonolignans follow by their quantification using LC system. The optimal conditions of this UAE method were: aqueous EtOH 54.5% (v/v) as extraction solvent, with application of an ultrasound (US) frequency of 36.6 kHz during 60 min at 45 °C with a liquid to solid ratio of 25:1 mL/g dry weight (DW). Following its optimization using a full factorial design, the extraction method was validated according to international standards of the association of analytical communities (AOAC) to ensure precision and accuracy in the quantitation of each component of the SILM mixture. The efficiency of this UAE was compared with maceration protocol. Here, the optimized and validated conditions of the UAE allowed the highest extraction yields of SILM and its constituents in comparison to maceration. During UAE, the antioxidant capacity of the extracts was retained, as confirmed by the in vitro assays CUPRAC (cupric ion reducing antioxidant capacity) and inhibition of AGEs (advanced glycation end products). The skin anti-aging potential of the extract obtained by UAE was also confirmed by the strong in vitro cell-free inhibition capacity of both collagenase and elastase. To summarize, the UAE procedure presented here is a green and efficient method for the extraction and quantification of SILM and its constituents from the fruits of S. marianum, making it possible to generate extracts with attractive antioxidant and anti-aging activities for future cosmetic applications.
Collapse
Affiliation(s)
- Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Emilie A Leclerc
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Atul Kabra
- Inder Kumar Gujral Punjab Technical University, Kapurthala, Punjab 144603, India
- Kota College of Pharmacy, Kota Rajasthan 325003, India
| | - Bilal Haider Abbasi
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France.
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France.
| |
Collapse
|
26
|
Shah M, Ullah MA, Drouet S, Younas M, Tungmunnithum D, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Interactive Effects of Light and Melatonin on Biosynthesis of Silymarin and Anti-Inflammatory Potential in Callus Cultures of Silybum marianum (L.) Gaertn. Molecules 2019; 24:E1207. [PMID: 30934786 PMCID: PMC6480540 DOI: 10.3390/molecules24071207] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in vitro potential under different light regimes in the presence of melatonin. The optimal callogenic response occurred in the combination of 1.0 mg/L α-naphthalene acetic acid and 0.5 mg/L 6-benzylaminopurine under photoperiod. Continuous light associated with melatonin treatment increased total flavonoid content (TFC), total phenolic content (TPC) and antioxidant potential, followed by photoperiod and dark treatments. The increased level of melatonin has a synergistic effect on biomass accumulation under continuous light and photoperiod, while an adverse effect was observed under dark conditions. More detailed phytochemical analysis showed maximum total silymarin content (11.92 mg/g dry weight (DW)) when placed under continuous light + 1.0 mg/L melatonin. Individually, the level of silybins (A and B), silydianin, isolsilychristin and silychristin was found highest under continuous light. Anti-inflammatory activities were also studied and highest percent inhibition was recorded against 15-lipoxygenase (15-LOX) for cultures cultivated under continuous light (42.33%). The current study helps us to better understand the influence of melatonin and different light regimes on silymarin production as well as antioxidant and anti-inflammatory activities in S. marianum callus extracts.
Collapse
Affiliation(s)
- Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Nathalie Giglioli-Guivarc'h
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, 37000 Tours, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, 37000 Tours, France.
| |
Collapse
|
27
|
Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, Maaza M. Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond) 2019; 14:655-673. [PMID: 30714480 DOI: 10.2217/nnm-2018-0279] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the physical and biological properties of Silybum marianum inspired ZnO nanoparticles (NPs), Ag-ZnO heterostructures. Experiment: Nanoparticles were characterized using ultraviolet-visible and infrared spectroscopy, x-ray diffraction, high resolution electron microscopy, ζ potential and thermo-gravimetric analysis etc. Results: Ag-ZnO-NPs indicated slightly higher antimicrobial potential then ZnO-NPs. Good antileishmanial (IC50 = 246 μg/ml for Ag-ZnO; 341 μg/ml for ZnO) and antioxidant potential while moderate enzyme inhibition is reported. 2, 2-Diphenyl 1-picrylhydrazyl radical scavenging of Ag-ZnO was higher relative to ZnO-NPs. Nanocosmaceutical formulation of nanoparticles indicated stable antimicrobial performance. CONCLUSION Biosynthesized nanoparticles indicated interesting biological properties and should be subjected to further research to establish their pharmacological relevance.
Collapse
Affiliation(s)
- Safia Hameed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali T Khalil
- Department of Eastern Medicine & Surgery, Qarshi University, Lahore, Pakistan
- UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Material Research Department, iThemba LABS, Cape Town, South Africa
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Numan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saleh Khamlich
- UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Material Research Department, iThemba LABS, Cape Town, South Africa
| | - Zabta K Shinwari
- Department of Eastern Medicine & Surgery, Qarshi University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Malik Maaza
- Department of Eastern Medicine & Surgery, Qarshi University, Lahore, Pakistan
- Nanosciences African Network (NANOAFNET), Material Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
28
|
A "Green" Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius. Molecules 2019; 24:molecules24040694. [PMID: 30769949 PMCID: PMC6413027 DOI: 10.3390/molecules24040694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/01/2023] Open
Abstract
Clerodane diterpenoids are the main bioactive constituents of Croton crassifolius and are proved to have multiple biological activities. However, quality control (QC) research on the constituents are rare. Thus, the major research purpose of the current study was to establish an efficient homogenate extraction (HGE) process combined with a sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC–MS) technique together for the rapid extraction and determination of clerodane diterpenoids in C. crassifolius. All calibration curves showed good linearity (r > 0.9943) within the test ranges and the intra- and inter-day precisions and repeatability were all within required limits. This modified HGE–UHPLC–MS method only took 5 min to extract nine clerodane diterpenoids in C. crassifolius and another 12 min to quantify these components. The results indicated that the quantitative analysis based on UHPLC–MS was a feasible method for QC of clerodane diterpenoids in C. crassifolius, and the findings outlined in the current study also inferred the potential of the method in the QC of clerodane diterpenoids in other complex species of plants.
Collapse
|
29
|
Drouet S, Doussot J, Garros L, Mathiron D, Bassard S, Favre-Réguillon A, Molinié R, Lainé É, Hano C. Selective Synthesis of 3- O-Palmitoyl-Silybin, a New-to-Nature Flavonolignan with Increased Protective Action against Oxidative Damages in Lipophilic Media. Molecules 2018; 23:molecules23102594. [PMID: 30309022 PMCID: PMC6222644 DOI: 10.3390/molecules23102594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
A selective acylation protocol using cerium chloride (CeCl3) as catalyst was applied to functionalize silybinin (1), a natural antioxidant flavonolignan from milk thistle fruit, in order to increase its solubility in lipophilic media while retaining its strong antioxidant activity. The selective esterification of 1 at the position 3-OH with a palmitate acyl chain leading to the formation of the 3-O-palmitoyl-silybin (2) was confirmed by both mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. The antioxidant activity of 1 was at least retained and even increased with the CUPRAC assay designed to estimate the antioxidant activity of both hydrophilic and lipophilic compounds. Finally, the 3-O-palmitoylation of 1, resulting in the formation of 2, also increased its anti-lipoperoxidant activity (i.e., inhibition of conjugated diene production) in two different lipophilic media (bulk oil and o/w emulsion) subjected to accelerated storage test.
Collapse
Affiliation(s)
- Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 45067 Orléans, France.
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067 Orléans CÉDEX 2, France.
| | - Joël Doussot
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 45067 Orléans, France.
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Département Chimie Vivant Santé (EPN 7), Conservatoire National des Arts et Métiers, 75141 Paris CEDEX 03, France.
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 45067 Orléans, France.
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067 Orléans CÉDEX 2, France.
- Institut de Chimie Organique et Analytique, ICOA UMR7311, Université d'Orléans-CNRS, 45067 Orléans CÉDEX 2, France.
| | - David Mathiron
- Plateforme Analytique, Institut de Chimie de Picardie FR 3085 CNRS, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| | - Solène Bassard
- BIOPI EA3900, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80037 Amiens, France.
| | - Alain Favre-Réguillon
- Département Chimie Vivant Santé (EPN 7), Conservatoire National des Arts et Métiers, 75141 Paris CEDEX 03, France.
- Laboratoire de Génie des Procédés Catalytiques (UMR 5285), Université de Lyon, CPE Lyon, 43 boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Roland Molinié
- BIOPI EA3900, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80037 Amiens, France.
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 45067 Orléans, France.
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067 Orléans CÉDEX 2, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans, 45067 Orléans, France.
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067 Orléans CÉDEX 2, France.
| |
Collapse
|
30
|
Younas M, Drouet S, Nadeem M, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:61-70. [PMID: 29803074 DOI: 10.1016/j.jphotobiol.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Silybum marianum L. (Milk thistle) is one of the most extensively studied medicinal herbs with well-known hepatoprotective activity. Light is considered as a key abiotic elicitor influencing several physiological processes in plants, including the biosynthesis of secondary metabolites. In this study, we investigated the influence of light quality on morphological and biochemical aspects in in vitro grown leaf-derived callus cultures of S. marianum. Combination of 6-benzylaminopurine (BAP 2.5 mg/L) and α-naphthalene acetic acid (NAA 1.0 mg/L) resulted in optimum callogenic response (97%) when placed under cool-white light with 16 h light and 8 h dark. Red light significantly increased the total phenolic content (TPC), total flavonoid content (TFC), antioxidant and superoxide dismutase (SOD) activities while highest peroxidase (POD) activity was recorded for the dark grown cultures, followed by green light grown cultures. HPLC analysis revealed enhanced total silymarin content under red light (18.67 mg/g DW), which was almost double than control (9.17 mg/g DW). Individually, the level of silychristin, isosilychristin, silydianin, silybin A and silybin B were found greatest under red light, whereas green spectrum resulted in highest accumulation of isosilybin A and isosilybin B. Conversely, the amount of taxifolin was found maximum under continuous white light (0.480 mg/g DW) which was almost 8-fold greater than control (0.063 mg/g DW). A positive correlation was found between the TPC, TFC and antioxidant activities. This study will assist in comprehending the influence of light quality on production of valuable secondary metabolites in in vitro cultures of S. marianum L.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France
| | - Muhammad Nadeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France; EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France.
| |
Collapse
|