1
|
Tsirigotis-Maniecka M, Górska E, Mazurek-Hołys A, Pawlaczyk-Graja I. Unlocking the Potential of Food Waste: A Review of Multifunctional Pectins. Polymers (Basel) 2024; 16:2670. [PMID: 39339134 PMCID: PMC11436238 DOI: 10.3390/polym16182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This review comprehensively explores the multifunctional applications of pectins derived from food waste and by-products, emphasizing their role as versatile biomaterials in the medical-related sectors. Pectins, known for their polyelectrolytic nature and ability to form hydrogels, influence the chemical composition, sensory properties, and overall acceptability of food and pharmaceutical products. The study presents an in-depth analysis of molecular parameters and structural features of pectins, such as the degree of esterification (DE), monosaccharide composition, galacturonic acid (GalA) content, and relative amounts of homogalacturonan (HG) and rhamnogalacturonan I (RG-I), which are critical for their technofunctional properties and biological activity. Emphasis is placed on pectins obtained from various waste sources, including fruits, vegetables, herbs, and nuts. The review also highlights the importance of structure-function relationships, especially with respect to the interfacial properties and rheological behavior of pectin solutions and gels. Biological applications, including antioxidant, immunomodulatory, anticancer, and antimicrobial activities, are also discussed, positioning pectins as promising biomaterials for various functional and therapeutic applications. Recalled pectins can also support the growth of probiotic bacteria, thus increasing the health benefits of the final product. This detailed review highlights the potential of using pectins from food waste to develop advanced and sustainable biopolymer-based products.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Ewa Górska
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Aleksandra Mazurek-Hołys
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Izabela Pawlaczyk-Graja
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
2
|
Zhang S, Ren C, Wang C, Han R, Xie S. Effects of hydrocolloids and oleogel on techno-functional properties of dairy foods. Food Chem X 2024; 21:101215. [PMID: 38379797 PMCID: PMC10876705 DOI: 10.1016/j.fochx.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
This paper aims to overview the influence of different gels that including hydrocolloids and oleogel on techno-functional changes of dairy foods. The hydrocolloids are widely added to dairy products as stabilizers, emulsifiers, and gelling agents to enhance their texture, or improve sensory properties to meet consumer needs; and the newly developed oleogel, which despite less discussed in dairy foods, this article lists its application in different dairy products. The properties of different hydrocolloids were explained in detail, meanwhile, some common hydrocolloids such as pectin, sodium alginate, carrageenan along with the interaction between gel and proteins on techno-functional properties of dairy products were mainly discussed. What's more, the composition of oleogel and its influence on dairy foods were briefly summarized. The key issues have been revealed that the use of both hydrocolloids and oleogel has great potential to be the future trend to improve the quality of dairy foods effectively.
Collapse
Affiliation(s)
- Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Caiyun Wang
- Inner Mongolia YiLi Industrial Group Co., Ltd., Hohhot 010110, China
| | - Renjiao Han
- Inner Mongolia National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Siyu Xie
- Inner Mongolia YiLi Industrial Group Co., Ltd., Hohhot 010110, China
| |
Collapse
|
3
|
Mykhalevych A, Buniowska-Olejnik M, Polishchuk G, Puchalski C, Kamińska-Dwórznicka A, Berthold-Pluta A. The Influence of Whey Protein Isolate on the Quality Indicators of Acidophilic Ice Cream Based on Liquid Concentrates of Demineralized Whey. Foods 2024; 13:170. [PMID: 38201198 PMCID: PMC10779262 DOI: 10.3390/foods13010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The use of liquid whey concentrates in the composition of ice cream, especially in combination with other powdered whey proteins, is limited due to their understudied properties. This article shows the main rheological and thermophysical characteristics of ice cream mixes, as well as color parameters, microstructure, analysis of ice crystals and quality indicators of ice cream during storage. The most significant freezing of free water (p ≤ 0.05) was observed in the temperature range from the cryoscopic temperature to -10 °C. The microscopy of experimental ice cream samples based on hydrolyzed whey concentrates indicates the formation of a homogeneous crystalline structure of ice crystals with an average diameter of 13.75-14.75 μm. Microstructural analysis confirms the expediency of using whey protein isolate in ice cream, which ensures uniform distribution of air bubbles in the product and sufficient overrun (71.98-76.55%). The combination of non-hydrolyzed whey concentrate and 3% whey protein isolate provides the highest stability to preserve the purity and color intensity of the ice cream during storage. The produced ice cream can be classified as probiotic (number of Lactobacillus acidophilus not lower than 6.2 log CFU/g) and protein-enriched (protein supply from 15.02-18.59%).
Collapse
Affiliation(s)
- Artur Mykhalevych
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine;
| | - Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklinskiej 2D St., 35-601 Rzeszow, Poland;
| | - Galyna Polishchuk
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine;
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland;
| | - Anna Kamińska-Dwórznicka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Anna Berthold-Pluta
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland
| |
Collapse
|
4
|
Syan V, Kaur J, Sharma K, Patni M, Rasane P, Singh J, Bhadariya V. An overview on the types, applications and health implications of fat replacers. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:27-38. [PMID: 38192702 PMCID: PMC10771406 DOI: 10.1007/s13197-022-05642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Driven by the demand of consumers for low-fat foods, the field of fat replacers has made a tremendous breakthrough over the past decade. A fat replacer is a substance that replaces whole or part of the fat in food while asserting the same physiological properties. Based on the source, fat replacers can be carbohydrate, protein or lipid-based. They serve two major purposes in food viz. reducing the calorie content and amount of fat used in the preparation of food products as well as impart fat-like properties. Fat replacers exhibit its functionalities by providing texture, acting as stabilizers, emulsifiers, gelling and thickening agents. It is crucial to select the proper kind of fat replacer because fat functionality varies considerably depending on the meal type and the formulation. Evidence suggests that reducing fat intake can help in controlling body weight and the risk of diseases like type-2 diabetes, hypertension and cardiovascular disease. Consumers should not be misled into believing that fat and calorie-reduced foods may be consumed indefinitely. Fat replacers are most beneficial when they aid in calorie control and promote the consumption of meals that provide essential nutrients. This review aims to provide a deep insight into the fact that fat replacers can be utilized in various food commodities in order to meet the dietary guidelines for reducing fat intake with a healthy lifestyle and prudent dietary approach.
Collapse
Affiliation(s)
- Vanshika Syan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Kartik Sharma
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110 Songkla Thailand
| | - Manvi Patni
- Department of Nutrition, BD Arya Girls College, Jalandhar, Punjab India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
5
|
Fırat E, Koca N, Kaymak-Ertekin F. Extraction of pectin from watermelon and pomegranate peels with different methods and its application in ice cream as an emulsifier. J Food Sci 2023; 88:4353-4374. [PMID: 37623912 DOI: 10.1111/1750-3841.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Pectin extraction from watermelon peel (WP) and pomegranate peel (PP) was carried out using three different extraction methods: classical solvent extraction (CSE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). Extraction parameters (pH, temperature, time, and speed/amplitude/power) were optimized to target maximum crude pectin yield (CPY), while the sample-to-solvent ratio (SS) was determined to be fixed at 1:10 w/v at all experiments. CPY was increased by low pH, high temperature, and long time. The pectins obtained at optimum conditions were characterized regarding the physicochemical and rheological properties, and the pectin solutions were found to be typical pseudoplastic fluids. WP pectin extracted with MAE and PP pectin extracted with UAE were determined to have the best emulsifying properties and added to the ice cream formulations. MAE had the maximum CPY of 9.40% for WP (pH = 1.3, 6 min, 596 W) and the best emulsifying properties. UAE had the best emulsifying properties for PP and the CPY was 11.56% in conditions of pH = 1.5, a temperature of 69°C, an extraction time of 29 min, and a 32% amplitude. The use of PP pectin resulted in a significant increase in the apparent viscosity of ice cream mix and also the first dripping time and the hardness of ice cream over commercial emulsifier. Melting properties and hardness values of ice cream with WP pectin were comparatively closer to those of ice cream with commercial emulsifier. On the other hand, the first dripping time and hardness value of ice cream with PP pectin having 60.25 min and 3.84 N, respectively, were higher than those of commercial ice cream having 53.75 min and 2.14 N, respectively. Practical Application: The utilization of WP and PP, which are good sources for pectin production, benefits both a sustainable environment and a sustainable food industry. Pectin extracted from WP and PP as an emulsifier in ice cream can ensure the production of ice creams with good melting properties. Pectin can be used as a healthy, sustainable, and economical alternative emulsifier in the ice cream industry.
Collapse
Affiliation(s)
- Esra Fırat
- Faculty of Engineering, Department of Food Engineering, Ege University, Izmir, Türkiye
| | - Nurcan Koca
- Faculty of Engineering, Department of Food Engineering, Ege University, Izmir, Türkiye
| | - Figen Kaymak-Ertekin
- Faculty of Engineering, Department of Food Engineering, Ege University, Izmir, Türkiye
| |
Collapse
|
6
|
Yang B, Chen H, Chen W, Chen W, Zhong Q, Zhang M, Pei J. Edible Quality Analysis of Different Areca Nuts: Compositions, Texture Characteristics and Flavor Release Behaviors. Foods 2023; 12:foods12091749. [PMID: 37174288 PMCID: PMC10177903 DOI: 10.3390/foods12091749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The areca nut is one of the most important cash crops in the tropics and has substantial economic value. However, the research information about the edible quality of different areca nuts is still insufficient. This study compared the composition, texture characteristics and flavor release behaviors of four different areca nuts (AN1, AN2, AN3 and AN4) and two commercially dried areca nuts (CAN1 and CAN2). Results showed that AN1 had higher soluble fiber and lower lignin, which was the basis of its lower hardness. Meanwhile, the total soluble solid (TSS) of AN1 was the highest, which indicated that AN1 had a moister and more succulent mouthfeel. After the drying process, the lignification degree of AN1 was the lowest. Through textural analyses, the hardness of AN1 was relatively low compared to the other dried areca nuts. AN1, CAN1 and CAN2 had higher alkaline pectin content and viscosity, and better flavor retention, which indicated better edible quality. The present study revealed the differences of various areca nuts and provided vital information to further advance the study of areca nuts.
Collapse
Affiliation(s)
- Bowen Yang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Huachuang Institute of Areca Research-Hainan, 88 People Road, Haikou 570208, China
| | - Weijun Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiuping Zhong
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream. Foods 2023; 12:foods12030650. [PMID: 36766178 PMCID: PMC9914183 DOI: 10.3390/foods12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the potential use of cold-pressed coconut oil by-products (COB) as a low-cost alternative source for plant-based drink and ice cream production. Firstly, a plant-based drink was produced from cold-pressed coconut oil by-products (COB drink) and compared with a commercial coconut drink. The fat, protein, and zeta potential values of coconut drink obtained from COB were higher than those of the commercial samples. In addition, the particle size value of the drink obtained from COB was found to be lower than that of the commercial drink. In the second stage, full-fat and low-fat plant-based ice cream samples using COB drink were produced and compared to control ice cream samples (produced by the commercial coconut drink) in terms of rheological, sensorial, and thermal properties. Rheological analysis showed that all plant-based ice cream samples indicated pseudoplastic, solid-like, and recoverable characteristics. Low-fat commercial control ice cream samples (C1) indicated the lowest K value (9.05 Pasn), whereas the low-fat plant-based ice cream sample produced by the COB drink (COB-3) exhibited the highest K value (17.69 Pasn). ΔHf values of the plant-based ice cream samples varied from 144.70 J/g to 172.70 J/g. The low-fat COB ice cream stabilized with 3% COB and full-fat COB ice cream samples showed lower ΔHf values than control ice cream samples, indicating that the COB ice cream showed desired thermal properties. The COB drink may be utilized in plant-based ice cream without altering sensory qualities, and low-fat ice cream could be manufactured in the same manner to attain full-fat ice cream quality characteristics. The results of this study demonstrated that COB can be successfully used as an inexpensive raw material source in the production of full-fat and reduced-fat vegetable-based ice cream.
Collapse
|
8
|
Licorice extract/whey protein isolate/sodium alginate ternary complex-based bioactive food foams as a novel strategy to substitute fat and sugar in ice cream. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
ARSLAN A, SAGDIC O, KARASU S, TEKIN-CAKMAK ZH. The effect of the use of salep powder obtained from different wild orchid species in Turkey on the rheological, thermal, and sensory properties of ice cream. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aysen ARSLAN
- Istinye University, Turkey; Yıldız Technical University, Turkey
| | | | | | | |
Collapse
|
10
|
A novel pectic polysaccharide-based hydrogel derived from okra (Abelmoschus esculentusL. Moench) for chronic diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Sharma P, Vishvakarma R, Gautam K, Vimal A, Kumar Gaur V, Farooqui A, Varjani S, Younis K. Valorization of citrus peel waste for the sustainable production of value-added products. BIORESOURCE TECHNOLOGY 2022; 351:127064. [PMID: 35351555 DOI: 10.1016/j.biortech.2022.127064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Krishna Gautam
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Archana Vimal
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India.
| |
Collapse
|
12
|
Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study investigated the potential use of dietary fibers (psyllium and pectin fibers added in different proportions of 0–10%) to improve the rheological, textural, and sensory characteristics of vegetable ice cream using vegetable milk (almond and hemp milk). Hemp milk was obtained from the peeled seeds of the industrial hemp plant, which includes varieties of Cannabis sativa, which have a low content of the psychotropic substance tetrahydrocannabinol (THC) and are grown for food. The rheological characteristics of the mix and ice cream were determined by using the Haake Mars rheometer. Compared with the control sample, the viscosities of the mix in all samples analyzed were enhanced with the addition of dietary fibers, due to the occurrence of interactions and stabilizations. The viscoelastic modules G′ G″ were determined on ice cream samples at a temperature of −10 °C. The elastic and viscous modulus showed high values with the increase of the addition of 6% dietary fibers. The textural characteristics were assessed by the shear strength of a layer of ice cream at a temperature of −4 °C. Hardness, firmness, and adhesiveness were influenced by the size of their ice crystals, the fat content, and the percentage of dietary fibers added. The sensory analysis of the ice cream showed higher overall scores for the almond milk ice cream, because the sweet taste was appreciated with a maximum score, while the hemp milk ice cream was evaluated for flavor and taste.
Collapse
|
13
|
XU X, ZHANG H, LI L, SUN L, JIA B, YANG H, ZUO F. Preparation of fat substitute based on the high-methoxyl pectin of citrus and application in moon-cake skin. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.92121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xinyu XU
- Heilongjiang Bayi Agricultural University Food College, China
| | - Huimin ZHANG
- Heilongjiang Bayi Agricultural University Food College, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, China
| | - Lin LI
- Heilongjiang Bayi Agricultural University Food College, China; Engineering Research Center of Processing and Utilization of Grain By-products, China
| | - Lilan SUN
- Heilongjiang Bayi Agricultural University Food College, China
| | - Bin JIA
- Heilongjiang Bayi Agricultural University Food College, China
| | - Hujun YANG
- Heilongjiang Bayi Agricultural University Food College, China
| | - Feng ZUO
- Heilongjiang Bayi Agricultural University Food College, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, China
| |
Collapse
|
14
|
Chu J, Metcalfe P, Linford HV, Zhao S, Goycoolea FM, Chen S, Ye X, Holmes M, Orfila C. Short-time acoustic and hydrodynamic cavitation improves dispersibility and functionality of pectin-rich biopolymers from citrus waste. JOURNAL OF CLEANER PRODUCTION 2022; 330:129789. [PMID: 35095219 PMCID: PMC8783060 DOI: 10.1016/j.jclepro.2021.129789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/05/2023]
Abstract
Pectin is a valuable biopolymer used as a natural, clean label additive for thickening and gelling. However, industry faces issues with dispersibility and stability of pectin formulations. To address these issues, the effect of short processing time (30-180 s) with hydrodynamic (HC) and acoustic cavitation (AC) on the dispersibility and gelling functionality of mandarin pectin-rich polysaccharide (M-PRP) was investigated. Short-time processing with HC and AC did not affect polymer composition. HC, but not AC, decreased polydispersity index (PDI) from 0.78 to 0.68 compared to the control. Electron and atomic force microscopy showed that HC and AC decreased aggregation of fibrous and matrix polymers. Both treatments increased apparent viscosity significantly from 0.059 Pa s to 0.30 Pa s at 10 -s. The pectin dispersions showed good gelling capacity upon addition of calcium (final conc. 35 mM). HC and AC treatments for 150 s led to gels that were 7 and 4 times stronger (as measured by peak force) than the control with more homogeneous, less porous structures. In conclusion, short-time HC and AC can improve the dispersibility and functionality of citrus pectin without affecting composition, and are promising technologies to facilitate the use of pectin in industry applications.
Collapse
Affiliation(s)
- Jin Chu
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | - Siying Zhao
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
- Corresponding author.
| |
Collapse
|
15
|
Shen S, Cheng H, Liu Y, Chen Y, Chen S, Liu D, Ye X, Chen J. New electrolyte beverages prepared by the citrus canning processing water through chemical improvement. Food Chem X 2021; 12:100155. [PMID: 34816121 PMCID: PMC8591342 DOI: 10.1016/j.fochx.2021.100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 12/01/2022] Open
Abstract
Citrus segment membrane removal during canning was improved for clean process. The improved process using mixed acid (alkali) showed good membrane removal result. The processing water was fully used for preparing a new healthy electrolyte drink. The bioactive compounds in the canning processing water were completely recoverd. This green process with economic viability has great society benefits.
In the production of canned citrus, large amounts of processing water were discharged during the segment membrane removal process, causing severe pollution. In order to reduce pollution and recover the bioactive compounds in the processing water, the production of canned satsuma mandarin, sweet orange and grapefruit were studied, and improved acid (0.1% HCl, 0.4% citric acid) and alkali (0.1% KOH, 0.2% NaOH) were used to conduct the new chemical hydrolysis process to remove the segment membrane. The obtained acid and alkali processing water were firstly explored the potential to make novel beverages, which contain electrolytes (Na: 472–945 ppm; K: 208–279 ppm; Cl: 364–411 ppm; citrate: 1105–1653 ppm) and potential prebiotics such as pectin and flavonoids. The improved segment membrane removal process realized the conversion of wastewater into drinkable beverages at low costs. The bioactive compounds were fully recovered without wastewater discharging, which produced great environmental, economic and health value.
Collapse
Affiliation(s)
- Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ying Liu
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.,NingboTech University, Ningbo 315100, China
| |
Collapse
|
16
|
Atik I, Tekin Cakmak ZH, Avcı E, Karasu S. The Effect of Cold Press Chia Seed Oil By-Products on the Rheological, Microstructural, Thermal, and Sensory Properties of Low-Fat Ice Cream. Foods 2021; 10:foods10102302. [PMID: 34681350 PMCID: PMC8535298 DOI: 10.3390/foods10102302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the utilization of cold-pressed chia-seed oil by-products (CSOB) in a low-fat ice cream formulation as a fat replacer and stabilizer. In the study, ice cream emulsion mixtures were formulated by using 0.2–0.4% xanthan gum (XG), 2.5–12.5% fat, and 1–3% CSOB. Optimization was performed using the response surface methodology (RSM) and full factorial central composite design (CCD) based on the flow behavior rheological properties of the emulsions obtained from 17 different experimental points. All of the emulsion samples showed non-Newtonian shear-thinning flow behavior. The consistency coefficient (Κ) values of the emulsion samples were found to be 4.01–26.05 Pasn and were significantly affected by optimization parameters (p < 0.05). The optimum formulation was determined as 0.29% XG, 2.5% CSOB, 2.5% fat. The low-fat (LF-IC) and full-fat control samples (FF-IC) were compared to samples produced with an optimum formulation (CBLF-IC) based on the steady shear, frequency sweep, and 3-ITT (three interval thixotropy test) rheological properties, thermal properties, emulsion stability, light microscope images, and sensory quality. CBLF-IC showed similar rheological behavior to FF-IC. The mix of CBLF-IC showed higher emulsion stability and lower poly-dispersity index (PDI) value and fat globule diameters than those of FF-IC and LF-IC. The thermal properties of the samples were significantly affected by the addition of CSOB in an ice cream mix. CBLF-IC exhibited a lower temperature range (ΔT), enthalpy of fusion (ΔHf), and freezing point temperature (Tf) than those of FF-IC and LF-IC. While CBLF-IC exhibited a higher overrun value than other samples, it showed similar sensory properties to the FF-IC sample. The results of this study suggested that CSOB could be used successfully in low-fat ice cream production. This study also has the potential to gain new perspectives for the evaluation of CSOB as a fat substitute in a low-fat ice cream.
Collapse
Affiliation(s)
- Ilker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey;
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34210, Turkey; (Z.H.T.C.); (E.A.)
| | - Esra Avcı
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34210, Turkey; (Z.H.T.C.); (E.A.)
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34210, Turkey; (Z.H.T.C.); (E.A.)
- Correspondence: ; Tel.: +90-212-383-46-23
| |
Collapse
|
17
|
Wang Y, Ding S, Chen F, Xiao G, Fu X, Wang R. Changes in pectin characteristics of jujube fruits cv "Dongzao" and "Jinsixiaozao" during cold storage. J Food Sci 2021; 86:3001-3013. [PMID: 34146415 DOI: 10.1111/1750-3841.15800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022]
Abstract
Softening is one of the main factors affecting market value and consumer preferences for jujubes, and it was closely related to the modification and depolymerization of pectin. Changes in characteristics of three pectins (water-soluble pectin (WSP), sodium carbonate-soluble pectin (SSP) and chelate-soluble pectin (CSP)), including their contents, degree of methylesterification (DM), neutral sugar compositions, the molecular weight (Mw ) distributions and nanostructures, from two jujube fruits cv Dongzao (DZ) and Jinsixiaozao (JS) during cold storage were assessed. The results showed that variation in pectin characteristics during cold storage was similar between DZ and JS. The reduction of firmness corresponded to a conversion of water-insoluble pectin to WSP during cold storage. DM of WSP presented an increase trend in the late storage. Rhamnose (Rha), arabinose (Ara) and glucose (Glc) were the crucial compositions in three pectins, and most neutral sugar compositions in three pectins first increased and then decreased during cold storage. Changes in the ratio of (galactose (Gal)+Ara)/Rha and Ara/Gal represented that the branch chains of rhamnogalacturonan-I in three pectins depolymerized after storage. The high Mw in WSP and SSP of jujubes were solubilized and extensively depolymerized into pectin with lower Mw after storage. AFM images showed an increase in short chains and branch structures of three pectins after storage. Overall, three pectins in DZ and JS depolymerized and solubilized during cold storage. WSP and SSP were more contributed to the softening of jujubes compared to CSP, and they played the critical role for regulating the softening of jujube fruits during cold storage. PRACTICAL APPLICATION: Softening is one of the main factors affecting market value and consumer preferences for jujubes, and it was closely related to the modification and depolymerization of pectin. Changes in characteristics of three pectins (WSP, SSP, CSP), including their contents, degree of methylesterification, neutral sugar compositions, the molecular weight distributions and nanostructures, from two jujube fruits cv Dongzao (DZ) and Jinsixiaozao (JS) during cold storage were assessed. Three pectins in DZ and JS depolymerized and solubilized during cold storage. WSP and SSP were more contributed to the softening of jujubes compared to CSP, and they played the critical role for regulating the softening of jujube fruits during cold storage. This study would elucidate the mechanism of jujube softening and help to regulate the postharvest quality during cold storage.
Collapse
Affiliation(s)
- Yingrui Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guangjian Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xincheng Fu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Kowalczyk M, Znamirowska A, Buniowska M. Probiotic Sheep Milk Ice Cream with Inulin and Apple Fiber. Foods 2021; 10:foods10030678. [PMID: 33810192 PMCID: PMC8004860 DOI: 10.3390/foods10030678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to assess the effect of the addition of inulin and the replacement of part of the inulin with apple fiber on the physicochemical and organoleptic properties of ice cream. Moreover, the survival of Bifidobacterium animalis ssp. Lactis Bb-12 and Lactobacillus rhamnosus was studied in sheep milk ice cream. There was no effect of the apple fiber and the type of bacteria on the number of bacteria in the probiotics after fermentation. As a result of freezing, in the mixture containing Bifidobacterium animalis ssp. Lactis Bb-12, there was a significant reduction in the bacteria from 0.39 log cfu g-1 to 0.46 log cfu g-1. In all of the ice cream on the 21st day of storage, it exceeded 10 log cfu g-1, which means that the ice cream retained the status of a probiotic product. The Lactobacillus rhamnosus ice cream showed a lower yellow color compared to the Bifidobacterium Bb-12 ice cream. The overrun of the sheep's milk ice cream was within the range of 78.50% to 80.41%. The appearance of the sheep's milk ice cream is influenced significantly by the addition of fiber and the type of bacteria and the interaction between the type of bacteria and the addition of fiber, and storage time and fiber.
Collapse
|
19
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Sun C, Fang Y. Replacement of Fat or Starch. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM. Fruit and vegetable waste management: Conventional and emerging approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110510. [PMID: 32275240 DOI: 10.1016/j.jenvman.2020.110510] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Valorization of Fruit and Vegetable Wastes (FVW) is challenging owing to logistic-related problems, as well as to their perishable nature and heterogeneity, among other factors. In this work, the main existing routes for food waste valorization are critically reviewed. The study focuses on FVW because they constitute an important potential source for valuable natural products and chemicals. It can be concluded that FVW management can be carried out following different processing routes, though nowadays the best solution is to find an adequate balance between conventional waste management methods and some emerging valorization technologies. Presently, both conventional and emerging technologies must be considered in a coordinated manner to enable an integral management of FVW. By doing so, impacts on food safety and on the environment can be minimized whilst wasting of natural resources is avoided. Depending on the characteristics of FVW and on the existing market demand, the most relevant valorization options are extraction of bioactive compounds, production of enzymes and exopolysaccharides, synthesis of bioplastics and biopolymers and production of biofuels. The most efficient emergent processing technologies must be promoted in the long term, in detriment of the conventional ones used nowadays. In consequence, future integral valorization of FVW will probably comprise two stages: direct processing of FVW into value-added products, followed by processing of the residual streams, byproducts and leftover matter by means of conventional waste management technologies.
Collapse
Affiliation(s)
- Irene Esparza
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Fernando Bimbela
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| | - Luis M Gandía
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| |
Collapse
|
22
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Chen H, Zhang H, Tian J, Shi J, Linhardt RJ, Ye TDX, Chen S. Recovery of High Value-Added Nutrients from Fruit and Vegetable Industrial Wastewater. Compr Rev Food Sci Food Saf 2019; 18:1388-1402. [PMID: 33336910 DOI: 10.1111/1541-4337.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023]
Abstract
The industrial processing water of fruit and vegetables has raised serious environmental concerns due to the presence of many important bioactive compounds being disposed in the wastewater. Bioactive compounds have great potential for the food industry to optimize their process and to recover these compounds in order to develop value-added products and to reduce environmental impacts. However, to achieve this goal, some challenges need to be addressed such as safety assurance, technology request, product regulations, cost effectiveness, and customer factors. Therefore, this review aims to summarize the recent advances of bioactive compounds recovery and the current challenges in wastewater from fruit and vegetable processing industry, including fruit and beverage, soybean by-products, starch and edible oil industry. Moreover, future direction for novel and green technology of bioactive compounds recovery are discussed, and a prospect of bioactive compounds reuse and sustainable development is proposed.
Collapse
Affiliation(s)
- Honglin Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Hua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Inst., Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Tian Ding Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| |
Collapse
|
24
|
Bilbao-Sainz C, Sinrod AJG, Chiou BS, McHugh T. Functionality of strawberry powder on frozen dairy desserts. J Texture Stud 2019; 50:556-563. [PMID: 31278753 DOI: 10.1111/jtxs.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/27/2022]
Abstract
This study investigated the potential use of freeze-dried strawberry powder as a stabilizer in frozen dairy desserts. Five different dessert mixes were developed that contained 0%, 2.5%, 3%, 3.5%, and 4% strawberry powder. An additional dessert using strawberry extract was prepared to differentiate the effects of dietary fiber from the effect of polyphenols on sample properties. The rheological and physical characteristics of dessert mixes, fresh dessert, and stored dessert were studied. The addition of strawberry powder to dairy desserts caused an increase in the mix viscosity and a decrease in hardness and meltdown values. Complete avoidance of meltdown was achieved with the addition of 3% or greater amount of strawberry powder. The viscosity of mixes was enhanced due to the increase of total solids in the serum phase and the formation of hydrated and gel-like networks in the presence of cellulosic material, pectin, and calcium. The increase in viscosity and unfrozen water with the addition of strawberry powder also caused a reduction in ice crystallization, which resulted in softer and more stable desserts over time.
Collapse
Affiliation(s)
- Cristina Bilbao-Sainz
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, California
| | - Amanda J G Sinrod
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, California
| | - Bor-Sen Chiou
- Bioproducts Research Unit, U.S. Department of Agriculture, Albany, California
| | - Tara McHugh
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, California
| |
Collapse
|
25
|
Chaves MA, Piati J, Malacarne LT, Gall RE, Colla E, Bittencourt PRS, de Souza AHP, Gomes STM, Matsushita M. Extraction and application of chia mucilage ( Salvia hispanica L.) and locust bean gum ( Ceratonia siliqua L.) in goat milk frozen dessert. Journal of Food Science and Technology 2018; 55:4148-4158. [PMID: 30228413 DOI: 10.1007/s13197-018-3344-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
Abstract
A complete factorial design (23) was used to determine the influence of chia mucilage concentration (CM), locust bean gum (LBG) and base maturation time (BMT) on 14 formulations of goat milk frozen dessert. Chia mucilage was obtained by chia grain hydration (1:40) under stirring for 2 h, at 80 °C and pH of 9.0. The samples were centrifuged, as well as lyophilised to compare yields. The extraction yield of lyophilised CM was lower than 10%. The addition of LBG and CM at higher levels, influenced by BMT, increased the moisture content and the apparent viscosity of the base mixture. These formulations presented higher values for texture and lower of overrun due to the difficulty of incorporating and stabilising bubbles during whipping and freezing processes. The melting rate was also dependent on the variables analysed, and a delay in melting was observed, even in the formulations with lower fat content. CM increased the luminosity parameter proportionally to its content and provided a significant reduction of fat (up to 3.10 g 100 g-1) and energy value. The application of CM reduced the texture value, which was an interesting technological characteristic for frozen dessert.
Collapse
Affiliation(s)
- Marcia A Chaves
- 1Agricultural Sciences Center, State University of Maringa, Av. Colombo, 5790, Maringá, Paraná 87020-900 Brazil
| | - Juliane Piati
- 2Food Technology Department, Federal Technological University of Parana, Av. Brazil, 4232, Medianeira, Paraná 85884-000 Brazil
| | - Luana T Malacarne
- 2Food Technology Department, Federal Technological University of Parana, Av. Brazil, 4232, Medianeira, Paraná 85884-000 Brazil
| | - Ruana E Gall
- 2Food Technology Department, Federal Technological University of Parana, Av. Brazil, 4232, Medianeira, Paraná 85884-000 Brazil
| | - Eliane Colla
- 3Food Engineering Department, Federal Technological University of Parana, Av. Brazil, 4232, Medianeira, Paraná 85884-000 Brazil
| | - Paulo R S Bittencourt
- 4Chemistry Department, Federal Technological University of Parana, Av. Brazil, 4232, Medianeira, Paraná 85884-000 Brazil
| | - Aloisio H P de Souza
- 1Agricultural Sciences Center, State University of Maringa, Av. Colombo, 5790, Maringá, Paraná 87020-900 Brazil
| | - Sandra T M Gomes
- 5Chemistry Department, State University of Maringa, Av. Colombo, 5790, Maringá, Paraná 87020-900 Brazil
| | - Makoto Matsushita
- 1Agricultural Sciences Center, State University of Maringa, Av. Colombo, 5790, Maringá, Paraná 87020-900 Brazil.,5Chemistry Department, State University of Maringa, Av. Colombo, 5790, Maringá, Paraná 87020-900 Brazil
| |
Collapse
|