1
|
Man Y, Wu C, Yu B, Mao L, Zhu L, Zhang L, Zhang Y, Jiang H, Yuan S, Zheng Y, Liu X. Abiotic transformation of kresoxim-methyl in aquatic environments: Structure elucidation of transformation products by LC-HRMS and toxicity assessment. WATER RESEARCH 2023; 233:119723. [PMID: 36801572 DOI: 10.1016/j.watres.2023.119723] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, abiotic transformation of an important strobilurin fungicide, kresoxim-methyl, was investigated under controlled laboratory conditions for the first time by studying its kinetics of hydrolysis and photolysis, degradation pathways and toxicity of possibly formed transformation products (TPs). The results indicated that kresoxim-methyl showed a fast degradation in pH9 solutions with DT50 of 0.5 d but relatively stable under neutral or acidic environments in the dark. It was prone to photochemical reactions under simulated sunlight, and the photolysis behavior was easily affected by different natural substances such as humic acid (HA), Fe3+and NO3-which are ubiquitous in natural water, showing the complexity of degradation mechanisms and pathways of this chemical compound. The potential multiple photo-transformation pathways via photoisomerization, hydrolyzation of methyl ester, hydroxylation, cleavage of oxime ether and cleavage of benzyl ether were observed. 18 TPs generated from these transformations were structurally elucidated based on an integrated workflow combining suspect and nontarget screening by high resolution mass spectrum (HRMS), and two of them were confirmed with reference standards. Most of TPs, as far as we know, have never been described before. The in-silico toxicity assessment showed that some of TPs were still toxic or very toxic to aquatic organisms, although they exhibit lower aquatic toxicity compared to the parent compound. Therefore, the potential hazards of the TPs of kresoxim-methyl merits further evaluation.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bochi Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Villaverde JJ, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156000. [PMID: 35597336 DOI: 10.1016/j.scitotenv.2022.156000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Any active substance with phytosanitary capacity intended to be marketed in Europe must pass exhaustive controls to assess its risk before being marketed and used in European agriculture. Since the implementation of Regulation (EC) No 1107/2009, agrochemical companies have been obliged to study the formation of pesticide transformation products (TPs) during the treatment of drinking water containing pesticide residues. However, there is no consensus on how to address this requirement. In this research work, the open literature collection on alloxydim was used to propose potential chlorination paths from alloxydim isomers. Furthermore, several QSAR/QSPR models have been used to fill the of knowledge gap relative to some key parameters in the physico-chemical, environmental and ecotoxicological areas of potential alloxydim TPs from chlorinated water for which little information exists. In this way, it has been possible to estimate the state of aggregation of these TPs (they exist mainly as liquids) as well as their ease of transit between the different phases, to predict their possible behaviour in the three environmental compartments (e.g., thermophysical properties point to a change in their evolution with respect to the parent alloxydim isomers) and to anticipate their potential risk to human and animal health (e.g., all of them cause developmental toxicity). These and other results highlight that the hazards of several TPs, i.e., both chlorinated and nonchlorinated from parent alloxydim or from those obtained after cleavage of the N - O bond and the subsequent reaction with chlorine, should be seriously considered. The obtained results reopen the debate on the implications of the use of QSAR/QSPR models for pesticide risk assessment in the legislative framework.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Beatriz Sevilla-Morán
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| | - José Luis Alonso-Prados
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Pilar Sandín-España
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| |
Collapse
|
3
|
Li X, He W, Zhao Y, Chen B, Zhu Z, Kang Q, Zhang B. Dermal exposure to synthetic musks: Human health risk assessment, mechanism, and control strategy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113463. [PMID: 35367890 DOI: 10.1016/j.ecoenv.2022.113463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Synthetic musks (SMs) have been widely used as odor additives in personal care products (PCPs). Dermal exposure to SMs is the main pathway of the accumulation of these chemicals in human kerateins and poses potential health risks. In this study, in silico methods were established to reduce the human health risk of SMs from dermal exposure by investigating the risk mechanisms, designing lower bioaccumulation ability SMs and suggesting proper PCP ingredients using molecular docking, molecular dynamics simulation, and quantitative structure-activity relationship (QSAR) models. The binding energy, a parameter reflecting the binding ability of SMs and human keratin protein (4ZRY), was used as the indicator to assess the human health risk of SMs. According to the mechanism analysis, total energy was found as the most influential molecular structural feature influencing the bioaccumulation ability of a SM, and as one of the main factors influencing the function (i.e., odor sensitivity) of an SM. The 3D-QSAR models were constructed to control the human health risk of SMs by designing lower-risk SMs derivatives. The phantolide (PHAN)- 58 was determined to be the optimum SM derivative with lower bioaccumulation ability (reduced 17.25%) and improved odor sensitivity (increased 7.91%). A further reduction of bioaccumulation ability of PHAN-58 was found when adding proper body wash ingredients (i.e., alkyl ethoxylate sulfate (AES), dimethyloldimethyl (DMDM), EDTA-Na4, ethylene glycol distearate (EGDS), hydroxyethyl cellulose (HEC), lemon yellow and octyl glucose), leading to a significant reduction of the bioaccumulation ability (42.27%) compared with that of PHAN. Results demonstrated that the proposed theoretical mechanism and control strategies could effectively reduce the human health risk of SMs from dermal exposure.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| | - Wei He
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| | - Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
4
|
Guo Y, Huang Y, Pang S, Zhou T, Lin Z, Yu H, Zhang G, Bhatt P, Chen S. Novel Mechanism and Kinetics of Tetramethrin Degradation Using an Indigenous Gordonia cholesterolivorans A16. Int J Mol Sci 2021; 22:ijms22179242. [PMID: 34502147 PMCID: PMC8431606 DOI: 10.3390/ijms22179242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Tetramethrin is a pyrethroid insecticide that is commonly used worldwide. The toxicity of this insecticide into the living system is an important concern. In this study, a novel tetramethrin-degrading bacterial strain named A16 was isolated from the activated sludge and identified as Gordonia cholesterolivorans. Strain A16 exhibited superior tetramethrin degradation activity, and utilized tetramethrin as the sole carbon source for growth in a mineral salt medium (MSM). High-performance liquid chromatography (HPLC) analysis revealed that the A16 strain was able to completely degrade 25 mg·L−1 of tetramethrin after 9 days of incubation. Strain A16 effectively degraded tetramethrin at temperature 20–40 °C, pH 5–9, and initial tetramethrin 25–800 mg·L−1. The maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were determined to be 0.4561 day−1, 7.3 mg·L−1, and 75.2 mg·L−1, respectively. The Box–Behnken design was used to optimize degradation conditions, and maximum degradation was observed at pH 8.5 and a temperature of 38 °C. Five intermediate metabolites were identified after analyzing the degradation products through gas chromatography–mass spectrometry (GC-MS), which suggested that tetramethrin could be degraded first by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and its subsequent metabolism. This is the first report of a metabolic pathway of tetramethrin in a microorganism. Furthermore, bioaugmentation of tetramethrin-contaminated soils (50 mg·kg−1) with strain A16 (1.0 × 107 cells g−1 of soil) significantly accelerated the degradation rate of tetramethrin, and 74.1% and 82.9% of tetramethrin was removed from sterile and non-sterile soils within 11 days, respectively. The strain A16 was also capable of efficiently degrading a broad spectrum of synthetic pyrethroids including D-cyphenothrin, chlorempenthrin, prallethrin, and allethrin, with a degradation efficiency of 68.3%, 60.7%, 91.6%, and 94.7%, respectively, after being cultured under the same conditions for 11 days. The results of the present study confirmed the bioremediation potential of strain A16 from a contaminated environment.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tianhao Zhou
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongxiao Yu
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
| | - Guorui Zhang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
| | - Pankaj Bhatt
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (P.B.); (S.C.); Tel.: +86-20-8528-8229 (P.B. & S.C.); Fax: +86-20-8528-0292 (P.B. & S.C.)
| | - Shaohua Chen
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (Y.H.); (S.P.); (T.Z.); (Z.L.); (H.Y.); (G.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (P.B.); (S.C.); Tel.: +86-20-8528-8229 (P.B. & S.C.); Fax: +86-20-8528-0292 (P.B. & S.C.)
| |
Collapse
|
5
|
Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P. QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:49-72. [PMID: 31766890 DOI: 10.1080/1062936x.2019.1692368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In Europe, agencies and official organizations involved in the pesticide control such as the EFSA, ECHA, JRC and ECETOC or even the OECD are pointing out that the software tools based on quantitative structure relationship models, i.e. QSAR and QSPR, have a huge potential to improve the pesticide risk assessment process. In this sense, these non-animal test methods can promote the competitiveness of agriculture in this region: the consumer safety is increased with them due to the possibility of perform an overall better risk assessment of the degradation products and metabolites from pesticides. However, the use of theses computational-based (in silico) tools must be much more systematised and harmonised, improving their validation and including case studies to test them. To open databases, incorporating critical data in an orderly manner for building the models, becomes also necessary. Moreover, quantum chemistry through the Density Functional Theory should be promoted as tool for calculation of quantum descriptors, especially for the study of similar compounds with the same carbon skeleton but differing substitution patterns, e.g. isomers.
Collapse
Affiliation(s)
| | | | - C López-Goti
- Unit of Plant Protection Products, INIA, Madrid, Spain
| | | | | |
Collapse
|
6
|
Du M, Zhang D, Hou Y, Zhao X, Li Y. Combined 2D-QSAR, Principal Component Analysis and Sensitivity Analysis Studies on Fluoroquinolones' Genotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4156. [PMID: 31661905 PMCID: PMC6862474 DOI: 10.3390/ijerph16214156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/19/2023]
Abstract
In this paper, two-dimensional quantitative structure-activity relationship (2D-QSAR) and principal component analysis (PCA) methods were employed to screen the main parameters affecting the genotoxicity of fluoroquinolones (FQs), and the rules affecting the genetic toxicity of FQs were investigated by combining 2D-QSAR and PCA with the sensitivity analysis method. First, four types of parameters were calculated, namely, the geometric parameters (7), electronic parameters (5), physical and chemical parameters (8), and spectral parameters (7), but the physical and chemical parameters heat of formation (HF) and critical volume (CV) were excluded after the establishment of the 2D-QSAR model. Then, after PCA, it was found that the first principal component represented the main driving factors affecting the molecular genetic toxicity of FQs. In addition, after comprehensive analysis of the factor loading of the first, second, and third principal components, seven parameters affecting the genotoxicity of the FQs were screened out, namely, total energy (TE), critical temperature (CT), and molecular weight (Mol Wt) (increased with increasing genotoxicity of the FQs) and steric parameter (MR), quadrupole moment QXX (QXX), quadrupole moment QYY (QYY), and boiling point (BP) (decreased with increasing genotoxicity of the FQs); the above key parameters were also verified by sensitivity analysis. The obtained rules could be used to determine the substitution sites and the substitution groups associated with higher genotoxicity in the process of FQ modification, and these rules agreed well with the hologram quantitative structure-activity relationship (HQSAR) model. Finally, it was also found through SPSS analysis that the parameters screened in this paper were significantly correlated with FQ derivatives' genetic toxicity.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Dan Zhang
- Jilin Province Shize Environmental Protection Technology Co., Ltd, Jilin 130012, China.
| | - Yilin Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
7
|
Villaverde JJ, Sandín-España P, Alonso-Prados JL, Lamsabhi AM, Alcamí M. Pesticide byproducts formation: Theoretical study of the protonation of alloxydim degradation products. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P. Computational-Based Study of QuEChERS Extraction of Cyclohexanedione Herbicide Residues in Soil by Chemometric Modeling. Molecules 2018; 23:molecules23082009. [PMID: 30103524 PMCID: PMC6222645 DOI: 10.3390/molecules23082009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022] Open
Abstract
Assessment of two buffered QuEChERS (quick, easy, cheap, effective, rugged, and safe) versions (i.e., citrate and acetate) modified by including methanol to recover the residues of three cyclohexanedione oxime (CHD) herbicides and three of their byproducts from agricultural soil was performed. In this context, a full second-order face-centered factorial experimental design was developed to quantify the influences of the main five variables (i.e., extraction time, water content, soil weight, and extraction solvent volume and composition) on the target compound recoveries. The fitting equations satisfactorily described the extraction process behavior. The mathematical models also showed the most influencing independent variables (i.e., extraction solvent composition and soil weight). Handling simpler expressions was possible with the acetate QuEChERS but not with the citrate QuEChERS. The recoveries of the CHD residues were close to 100% after performing the extraction under suitable conditions. Furthermore, dispersive solid-phase extraction (dSPE) clean-up steps were assessed to reduce the matrix effect in mass spectrometry. In this sense, the citrate QuEChERS in combination with the PSA + C18 clean-up step was the best option for the extraction of CHD residues.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| | - Beatriz Sevilla-Morán
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| | - Carmen López-Goti
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| | | | - Pilar Sandín-España
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| |
Collapse
|