1
|
Ou Y, Qiao S, Li T, Zheng X, Zhao X, Qu L, Zhao X, Zhang Y. Affinity Chromatographic Method for Determining Drug-Protein Interaction with Enhanced Speed Than Typical Frontal Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10259-10269. [PMID: 37454390 DOI: 10.1021/acs.langmuir.3c01340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Revealing drug-protein interaction is highly important to select a drug candidate with improved drug-like properties in the early stages of drug discovery. This highlights the urgent need to develop assays that enable the analysis of drug-protein interaction with high speed. Herein, this purpose was realized by the development of an affinity chromatographic method with a two-fold higher speed than typical assays like frontal analysis and zonal elution. The method involved synthesis of a stationary phase by immobilizing poly(ADP-ribose) polymerase-1 (PARP1) onto macroporous silica gel through a one-step bioorthogonal reaction, characterization of mutual displacement interaction of two canonical drugs to the immobilized PARP1, determination of the interaction between three (iniparib, rucaparib, and olaparib) drugs and the protein, and validation of these parameters by typical frontal analysis. The numbers of binding sites on the column were (2.85 ± 0.05) × 10-7, (1.89 ± 0.71) × 10-6, and (1.49 ± 0.06) × 10-7 M for iniparib, rucaparib, and olaparib, respectively. On these sites, the association constants of the three drugs to the protein were (9.85 ± 0.56) × 104, (2.85 ± 0.34) × 104, and (1.07 ± 0.35) × 105 M-1. The determined parameters presented a good agreement with the calculation by typical frontal analyses, which indicated that the current continuous competitive frontal analysis method was reliable for determining drug-protein interaction. Application of the methods was achieved by screening tubeimosides I and II as the bioactive compounds against breast cancer in Bolbostemma paniculatum. Their mechanism may be the interference of DNA repair via down-regulating PARP1 and meiotic recombination 11 expressions, thus leading to oncogene mutations and death of cancer cells. The method was high speed since it allowed simultaneous determination of binding parameters between two drugs and a protein with a smaller number of experiments to be performed. Such a feature made the method an attractive alternative for high-speed analysis of drug-protein interaction or the other bindings in a binary system.
Collapse
Affiliation(s)
- Yuanyuan Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sai Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ting Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinxin Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lejing Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Subbiah V, Ebrahimi F, Agar OT, Dunshea FR, Barrow CJ, Suleria HAR. Comparative Study on the Effect of Phenolics and Their Antioxidant Potential of Freeze-Dried Australian Beach-Cast Seaweed Species upon Different Extraction Methodologies. Pharmaceuticals (Basel) 2023; 16:ph16050773. [PMID: 37242556 DOI: 10.3390/ph16050773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Brown seaweed is rich in phenolic compounds and has established health benefits. However, the phenolics present in Australian beach-cast seaweed are still unclear. This study investigated the effect of ultrasonication and conventional methodologies using four different solvents on free and bound phenolics of freeze-dried brown seaweed species obtained from the southeast Australian shoreline. The phenolic content and their antioxidant potential were determined using in vitro assays followed by identification and characterization by LC-ESI-QTOF-MS/MS and quantified by HPLC-PDA. The Cystophora sp. displayed high total phenolic content (TPC) and phlorotannin content (FDA) when extracted using 70% ethanol (ultrasonication method). Cystophora sp., also exhibited strong antioxidant potential in various assays, such as DPPH, ABTS, and FRAP in 70% acetone through ultrasonication. TAC is highly correlated to FRAP, ABTS, and RPA (p < 0.05) in both extraction methodologies. LC-ESI-QTOF-MS/MS analysis identified 94 and 104 compounds in ultrasound and conventional methodologies, respectively. HPLC-PDA quantification showed phenolic acids to be higher for samples extracted using the ultrasonication methodology. Our findings could facilitate the development of nutraceuticals, pharmaceuticals, and functional foods from beach-cast seaweed.
Collapse
Affiliation(s)
- Vigasini Subbiah
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Faezeh Ebrahimi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Osman T Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JKT, UK
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Hafiz A R Suleria
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Han Z, Jin J, Chen X, He Y, Sun H. Adjuvant activity of tubeimosides by mediating the local immune microenvironment. Front Immunol 2023; 14:1108244. [PMID: 36845089 PMCID: PMC9950507 DOI: 10.3389/fimmu.2023.1108244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Rhizoma Bolbostemmatis, the dry tuber of Bolbostemma paniculatum, has being used for the treatment of acute mastitis and tumors in traditional Chinese medicine. In this study, tubeimoside (TBM) I, II, and III from this drug were investigated for the adjuvant activities, structure-activity relationships (SAR), and mechanisms of action. Three TBMs significantly boosted the antigen-specific humoral and cellular immune responses and elicited both Th1/Th2 and Tc1/Tc2 responses towards ovalbumin (OVA) in mice. TBM I also remarkably facilitated mRNA and protein expression of various chemokines and cytokines in the local muscle tissues. Flow cytometry revealed that TBM I promoted the recruitment and antigen uptake of immune cells in the injected muscles, and augmented the migration and antigen transport of immune cells to the draining lymph nodes. Gene expression microarray analysis manifested that TBM I modulated immune, chemotaxis, and inflammation-related genes. The integrated analysis of network pharmacology, transcriptomics, and molecular docking predicted that TBM I exerted adjuvant activity by interaction with SYK and LYN. Further investigation verified that SYK-STAT3 signaling axis was involved in the TBM I-induced inflammatory response in the C2C12 cells. Our results for the first time demonstrated that TBMs might be promising vaccine adjuvant candidates and exert the adjuvant activity through mediating the local immune microenvironment. SAR information contributes to developing the semisynthetic saponin derivatives with adjuvant activities.
Collapse
Affiliation(s)
- Ziyi Han
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,College of Animal Sciences, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Hongxiang Sun,
| |
Collapse
|
4
|
Wang Z, Fu R, Zhu N, Wang J, Zhang X, Huang X, Li Z. Quality marker prediction in Trillium tschonoskii based on UHPLC-MS chemical characterisation and network pharmacology. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:76-91. [PMID: 36285766 DOI: 10.1002/pca.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION As a folk herbal medicine, Trillium tschonoskii has been used for thousands of years. However, due to the complexity of the chemical constituents of this herb, few investigations have acquired a comprehensive understanding of its quality markers. OBJECTIVE This study was conducted to characterise the chemical composition of T. tschonoskii and identify its potential quality markers. MATERIAL AND METHODS A systematic analytical method based on ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to characterise the constituents of T. tschonoskii. Multivariate statistical analysis was performed to investigate the chemical differences between different tissues, as well as the relationship between chemical compositions and habitats. The potential quality markers were predicted via network pharmacology and molecular docking, then confirmed by cellular assays. RESULTS A total of 77 compounds were co-isolated and identified, and among them, 26 were discovered from the genus Trillium for the first time. Ten batches of roots/rhizomes were explicitly clustered into five groups according to the climate types of the habitats, and the clusters of the fruits and roots/rhizomes from the same plants were independent due to the significant difference in chemical composition. Diosgenin had a good docking affinity with the relevant targets within the IL-17 pathway and cytokine pathway and could significantly inhibit TNF-α expression in hypoxic brain microvascular endothelial cells (BMECs). CONCLUSION This is the first study to establish the chemical composition profile of T. tschonoskii by UHPLC-MS systematically, and diosgenin was confirmed to be a potential quality marker of T. tschonoskii for the treatment of headaches.
Collapse
Affiliation(s)
- Zhixin Wang
- College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Rao Fu
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Na Zhu
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Junqi Wang
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Xiaorui Zhang
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Xiulan Huang
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Zhiyong Li
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
5
|
Zhou Y, Liu J, Zhang J, Xu Y, Li W, Gao P, Xing Y, Huang L, Qin X, Jin S. Chinese endemic medicinal plant Bolbostemma paniculatum (Maxim.) Franquet: A comprehensive review. Front Pharmacol 2022; 13:974054. [PMID: 36160391 PMCID: PMC9490187 DOI: 10.3389/fphar.2022.974054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Bolbostemma paniculatum (Maxim.) Franquet is a unique species in China with a long history of medicinal use, which has the effects of detoxifying, dissolving lumps and dispersing swellings. And it is commonly used to treat many diseases, such as carbuncle and sore, acute mastitis, mammary cancer, scrofula and subcutaneous nodule traditionally. Modern clinical studies have found that B. paniculatum and its compounds can be used for the treatment of a variety of cancers, mastitis, hyperplasia of mammary glands, chronic lymphadenitis, cervical lymph tuberculosis and surgical wart skin diseases, and the curative effect is positive. At present, a variety of Chinese patent medicines containing B. paniculatum have been exploited and marketed in China for the treatment of cancers, breast diseases and flat warts. This review article comprehensively discussed the traditional application, botany, chemical components, pharmacological activities, and quality control of B. paniculatum, put forward some noteworthy issues and suggestions in current studies, and briefly discussed the possible development potential of this plant as well as future research perspectives. 96 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids and other components, of which triterpenoid saponins are the main bioactive components. The crude extracts and monomer compounds of B. paniculatum have a wide range of pharmacological activities, such as anti-tumor, antiviral, anti-inflammatory, immunoregulatory, and so on. Moreover, its anti-tumor mechanism involves many aspects, including inhibiting cell proliferation, promoting cell apoptosis, blocking the cell cycle, interfering with cell invasion and metastasis, suppressing angiogenesis, and regulating autophagy. While there is a lack of systematic and in-depth research on its anti-tumor active components and mechanism of action at the moment; and a tight connection between the chemical composition and pharmacological activity of B. paniculatum has also not been established. Besides, a systematic quality determination standard for B. paniculatum should also be built, in order to carry out further research.
Collapse
Affiliation(s)
- Yujiao Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianqiong Zhang
- Pediatric Department, Ya’an City Hospital of Traditional Chinese Medicine, Ya’an, Sichuan, China
| | - Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangni Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pang Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanghuan Xing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lehong Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| | - Shenrui Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| |
Collapse
|
6
|
Wang Y, Ju Z, Li L, Zhang T, Zhang S, Ding L, Zhan C, Wang Z, Yang L. A complementary chromatographic strategy for integrated components characterization of Imperatae Rhizoma based on convergence and liquid chromatography combined with mass spectrometry and molecular network. J Chromatogr A 2022; 1678:463342. [PMID: 35908516 DOI: 10.1016/j.chroma.2022.463342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
The complexity of natural ingredients and the diversity of preparations are the major obstacles to the quality evaluation of traditional Chinese medicines (TCMs). A more comprehensive characterization of herbal compounds using different types of chromatographic separation techniques and covering a diverse polarity range can help evaluate the quality of TCMs. In this study, we first proposed a comprehensive method for characterizing compounds derived from Imperatae Rhizoma by combining the complementary strengths of UPCC-QTOF-MS (ultra-performance convergence chromatography coupled with quadrupole-time of flight mass spectrometry) with UPLC-QTOF-MS (ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry). The method based on the UNIFI scientific platform significantly shortened the analysis time and enabled a more comprehensive characterization of known and unreported compounds. Meanwhile, a feature-based molecular network (FBMN) was established on the Global Natural Product Social (GNPS) to infer potential compounds by rapidly classifying and visualizing these components. A total of 62 compounds in Imperatae Rhizoma were jointly characterizedand classified into six types. In comparison, the UPCC-QTOF-MS technology individually characterized 17 components, including lactones, phenols, aldehydes, phenylpropanoids, and small polar organic acids. The UPLC-QTOF-MS technology characterized 16 compounds mainly phenylpropionic acids, flavonoid glycosides, and chromone glycosides. Furthermore, three types of characteristic compounds could be well aggregated into an FBMN approach. Five possible potential new compounds were detected through the supplementary identification of GNPS and the correlation analysis of vicinal known compounds. The strategy was first applied to Imperatae Rhizoma and facilitated the characterization of a large quantity of data to provide comprehensive chemical composition results. This approach can be easily extended to the study of the material basis of other herbs or preparations in order to improve the accuracy of herb quality evaluation.
Collapse
Affiliation(s)
- Yu Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengcai Ju
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Jemincare Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ting Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Siyu Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd., Shanghai 200331, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Jiatsa Mbouna CD, Tchatat Tali BM, Tsouh Fokou PV, Madiesse Kemgne EA, Keumoe R, Toghueo Kouipou RM, Yamthe Tchokouaha LR, Tchuente Tchuenmogne MA, Kenou DK, Sahal D, Boyom FF. Specific sub fractions from Terminalia mantaly (H. Perrier) extracts potently inhibit Plasmodium falciparum rings, merozoite egress and invasion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114909. [PMID: 34902534 DOI: 10.1016/j.jep.2021.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon. However, there is limited information on the extent of the antiplasmodial potential of their extracts. AIM OF THE STUDY The present study was designed to investigate the antiplasmodial potential of chromatographic sub fractions (SFs) from promising fractions of Terminalia mantaly (Tm) [TmsbwChl, the chloroform fraction from water extract of Tm, IC50 (μg/mL) PfINDO: 0.56, Pf3D7: 1.12; SI > 357 (HEK/PfINDO) & 178 (HEK/Pf3D7)] and Terminalia superba (Ts) [TsrmEA, the ethyl acetate fraction from methanolic extract of Ts, IC50 (μg/mL) PfINDO: 1.82, Pf3D7: 1.65; SI > 109 (HEK/PfINDO) & 121 (HEK/Pf3D7)] obtained from previous studies. The SFs were tested against Plasmodium falciparum 3D7 (Pf3D7-chloroquine sensitive) and INDO (PfINDO-chloroquine resistant) strains in culture. Also, the phytochemical profile of potent SFs was determined and finally, the inhibition of the asexual blood stages of Plasmodium falciparum by the SFs with the highest promise was assessed. MATERIAL AND METHODS Selected SFs were submitted to a second bio-guided fractionation using silica gel column chromatography. The partial phytochemical composition of potent antiplasmodial SFs was determined using gas chromatography coupled to mass spectrometry (GC-MS). The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence or absence of extracts. Microscopy and flow cytometry counting was used to assess the Plasmodium falciparum stage-specific inhibition and post-drug exposure growth suppression by highly potent extracts. RESULTS Twenty-one of the 39 SFs afforded from TmsbwChl showed activity (IC50: 0.29-4.74 μg/mL) against both Pf3D7 and PfINDO strains. Of note, eight SFs namely, Tm25, Tm28-30, Tm34-36 and Tm38, exerted highly potent antiplasmodial activity (IC50 < 1 μg/mL) with IC50PfINDO: 0.41-0.84 μg/mL and IC50Pf3D7: 0.29-0.68 μg/mL. They also displayed very high selectivity (50 < SIPfINDO, SIPf3D7 > 344) on the two Plasmodial strains. On the other hand, 7 SFs (SFs Ts03, Ts04, Ts06, Ts09, Ts10, Ts12 and Ts13) from TsrmEA showed promising inhibitory potential against both parasite strains (IC50: 2.01-5.14 μg/mL). Sub fraction Tm36 (IC50PfINDO: 0.41 μg/mL, SIPfINDO > 243; IC50Pf3D7: 0.29 μg/mL, SIPf3D7 > 344) showed the highest promise. The GC-MS analysis of the 8 selected SFs led to the identification of 99 phytometabolites, with D-limonene (2), benzaldehyde (12), carvone (13), caryophyllene (35), hexadecanoic acid, methyl ester (74) and 9-octadecenoic acid, methyl ester (82) being the main constituents. Sub fractions Tm28, Tm29, Tm30, Tm36 and Tm38 inhibited all the three intraerythrocytic stages of P. falciparum, with strong potency against ring stage development, merozoite egress and invasion processes. CONCLUSIONS This study has identified highly potent antiplasmodial SFs from Terminalia mantaly with significant activity on the intraerythrocytic development of Plasmodium falciparum. These SFs qualify as promising sources of novel antiplasmodial lead compounds. Further purification and characterization studies are expected to unravel molecular targets in rings and merozoites.
Collapse
Affiliation(s)
- Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Brice Mariscal Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Bamenda, PO Box 39, Bambili, Cameroon
| | - Eugenie Aimee Madiesse Kemgne
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rufin Marie Toghueo Kouipou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Institute for Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 6163, Yaoundé, Cameroon
| | - Marthe Aimée Tchuente Tchuenmogne
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Donald Kagho Kenou
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, New Delhi -110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
8
|
Zou X, BK A, Rauf A, Saeed M, Al-Awthan YS, A. Al-Duais M, Bahattab O, Hamayoon Khan M, Suleria HAR. Screening of Polyphenols in Tobacco ( Nicotiana tabacum) and Determination of Their Antioxidant Activity in Different Tobacco Varieties. ACS OMEGA 2021; 6:25361-25371. [PMID: 34632194 PMCID: PMC8495694 DOI: 10.1021/acsomega.1c03275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 05/06/2023]
Abstract
Tobacco (Nicotiana tabacum) is an herbaceous plant originating from South America and processed into cigarettes for consumption. Polyphenols are considered vital components of tobacco in view of their contribution to antioxidant properties. This study aimed to determine the phenolic compounds in different tobacco varieties by applying cold extraction with methanol and distilled water. The extracts were screened for phenolic compound diversity and distribution as well as their antioxidant potential in different tobacco varieties. The results showed that the methanolic extract of tobacco SP-28 exhibited the highest value in the total phenolic content (24.82 ± 0.07 mg GAE/gd.w.) and total flavonoid content (4.42 ± 0.01 mg QE/gd.w.), while the water extract of tobacco SN-2 exhibited the highest value in the total condensed tannin (1.12 ± 0.03 mg CE/gd.w.). The radical scavenging capacities of tobacco SP-28 were relatively high in DPPH (18.20 ± 0.01 mg AAE/gd.w.) and FRAP (3.02 ± 0.10 mg AAE/gd.w.), whereas the ABTS value was the highest in tobacco SN-2 (37.25 ± 0.03 mg AAE/gd.w.), and the total antioxidant capacity was the highest in tobacco SN-1 (7.43 ± 0.18 mg AAE/gd.w.). LC-ESI-QTOF-MS/MS identified a total of 49 phenolic compounds, including phenolic acids (14), flavonoids (30), and other polyphenols (5) in four different tobacco varieties. Tobacco SP-28 showed the highest number of phenolic compounds, especially enriched in flavones. Our study highlights the antioxidant potential of tobacco extracts and reveals the phenolic distribution among different tobacco varieties that could support tobacco utilization in different pharmaceutical industries.
Collapse
Affiliation(s)
- Xinda Zou
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amrit BK
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi 23430, Anbar-23561 KPK, Pakistan
| | - Muhammad Saeed
- Department
of Agriculture, University of Swabi, Swabi 23430, Anbar-23561 KPK, Pakistan
| | - Yahya S. Al-Awthan
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
- Department
of Biology, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Mohammed A. Al-Duais
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
- Biochemistry
Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Omar Bahattab
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Hafiz A. R. Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Subbiah V, Zhong B, Nawaz MA, Barrow CJ, Dunshea FR, Suleria HAR. Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants (Basel) 2020; 10:E26. [PMID: 33383900 PMCID: PMC7824486 DOI: 10.3390/antiox10010026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022] Open
Abstract
Berries are grown worldwide with the most consumed berries being blackberries (Rubus spp.), blueberries (Vaccinium corymbosum), red raspberries (Rubus idaeus) and strawberries (Fragaria spp.). Berries are either consumed fresh, frozen, or processed into wines, juices, and jams. In recent times, researchers have focused their attention on berries due to their abundance in phenolic compounds. The current study aimed to evaluate the phenolic content and their antioxidant potential followed by characterization and quantification using LC-ESI-QTOF-MS/MS and HPLC-PDA. Blueberries were highest in TPC (2.93 ± 0.07 mg GAE/gf.w.) and TFC (70.31 ± 1.21 µg QE/gf.w.), whereas the blackberries had the highest content in TTC (11.32 ± 0.13 mg CE/gf.w.). Blueberries had the highest radical scavenging capacities for the DPPH (1.69 ± 0.09 mg AAE/gf.w.), FRAP (367.43 ± 3.09 µg AAE/gf.w.), TAC (1.47 ± 0.20 mg AAE/gf.w.) and ABTS was highest in strawberries (3.67 ± 0.14 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS study identified a total of 65 compounds including 42 compounds in strawberries, 30 compounds in raspberries, 28 compounds in blueberries and 21 compounds in blackberries. The HPLC-PDA quantification observed phenolic acid (p-hydroxybenzoic) and flavonoid (quercetin-3-rhamnoside) higher in blueberries compared to other berries. Our study showed the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Vigasini Subbiah
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
| | - Biming Zhong
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
| | - Malik A. Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee, VIC 3030, Australia;
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| |
Collapse
|
10
|
Suleria HAR, Barrow CJ, Dunshea FR. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020; 9:E1206. [PMID: 32882848 PMCID: PMC7556026 DOI: 10.3390/foods9091206] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAB (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products.
Collapse
Affiliation(s)
- Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Study on Mechanism of Iridoid Glycosides Derivatives from Fructus Gardeniae in Jiangxi Province by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4062813. [PMID: 32714404 PMCID: PMC7336235 DOI: 10.1155/2020/4062813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/15/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Objective To investigate the pharmacological mechanism of the iridoid glycosides from Fructus Gardeniae in Jiangxi province by network pharmacology. To provide a valuable research strategy for the rational use and in-depth research and development of Fructus Gardeniae from Jiangxi. Method Previous research results of our group show that the contents of iridoid glycosides in Fructus Gardeniae from Jiangxi province have a significant difference compared with other regions (P < 0.05). Based on our previous experimental results, this study selected six characteristic high-content bioactive iridoid glycosides components of Fructus Gardeniae from Jiangxi province as candidate components. TCMSP database was used to obtain the process parameters of absorption, distribution, metabolism, and excretion (ADME) of candidate components. PubChem and SWISS online database were used to predict the related targets. Cytoscape software was used to the construct compound-target-disease (C-T-D) network of the Fructus Gardeniae iridoid glycosides ingredients. Furthermore, the GO biological process analysis and the pathway enrichment analysis were carried out using the CTD online analysis platform; then, an illustrated network that contains the main “chemicals-targets-pathway (C-T-P)” was constructed to analyze main biological pathways for obtaining the deep mechanism of Fructus Gardeniae in Jiangxi. Results 6 iridoid glycosides, namely geniposide, gardenoside, geniposidic acid, genipin 1-gentiobioside, gardoside, and shanzhiside, from Fructus Gardeniae in Jiangxi province were obtained as candidate components through previous work and network pharmacology screening. 36 corresponding targets were acted, such as BCL2, MAPT, F2, BCL2L1, PRKCD, PRKCB, HIF1A, and PRKCA. These targets could joint in pathways, such as signaling by GPCR, neuroactive ligand-receptor interaction, inflammatory mediator regulation of TRP channels, and ion channel transport. Interestingly, these pathways were highly associated with liver diseases, neurological diseases, hypertension, neoplasms, hyperalgesia, and inflammation. Remarkably, we boldly speculate that the Fructus Gardeniae from Jiangxi province can play a pharmacological role in hepatic encephalopathy through regulating multiple signaling pathways in an integrated manner. Conclusion The method based on system pharmacology could help to find the key targets of characteristic high-content chemical constituents of herb from different producing areas, the signaling pathway and disease network of TCM, and provide useful information and data support for giving a further study on traditional Chinese medicine resources in different regions of China.
Collapse
|
12
|
Zhong B, Robinson NA, Warner RD, Barrow CJ, Dunshea FR, Suleria HA. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar Drugs 2020; 18:E331. [PMID: 32599953 PMCID: PMC7344666 DOI: 10.3390/md18060331] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/24/2023] Open
Abstract
Seaweed is an important food widely consumed in Asian countries. Seaweed has a diverse array of bioactive compounds, including dietary fiber, carbohydrate, protein, fatty acid, minerals and polyphenols, which contribute to the health benefits and commercial value of seaweed. Nevertheless, detailed information on polyphenol content in seaweeds is still limited. Therefore, the present work aimed to investigate the phenolic compounds present in eight seaweeds [Chlorophyta (green), Ulva sp., Caulerpa sp. and Codium sp.; Rhodophyta (red), Dasya sp., Grateloupia sp. and Centroceras sp.; Ochrophyta (brown), Ecklonia sp., Sargassum sp.], using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The total phenolic content (TPC), total flavonoid content (TFC) and total tannin content (TTC) were determined. The antioxidant potential of seaweed was assessed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, a 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging assay and a ferric reducing antioxidant power (FRAP) assay. Brown seaweed species showed the highest total polyphenol content, which correlated with the highest antioxidant potential. The LC-ESI-QTOF-MS/MS tentatively identified a total of 54 phenolic compounds present in the eight seaweeds. The largest number of phenolic compounds were present in Centroceras sp. followed by Ecklonia sp. and Caulerpa sp. Using high-performance liquid chromatography-photodiode array (HPLC-PDA) quantification, the most abundant phenolic compound was p-hydroxybenzoic acid, present in Ulva sp. at 846.083 ± 0.02 μg/g fresh weight. The results obtained indicate the importance of seaweed as a promising source of polyphenols with antioxidant properties, consistent with the health potential of seaweed in food, pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
| | - Nicholas A. Robinson
- Sustainable Aquaculture Laboratory-Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), NO-1431 Ås, Norway
| | - Robyn D. Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (B.Z.); (R.D.W.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| |
Collapse
|
13
|
Jiang C, Lin W, Wang L, Lv Y, Song Y, Chen X, Yang H. Fushen Granule, A Traditional Chinese Medicine, ameliorates intestinal mucosal dysfunction in peritoneal dialysis rat model by regulating p38MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112501. [PMID: 31877365 DOI: 10.1016/j.jep.2019.112501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fushen Granule (FSG) is a Chinese medicinal formular prepared in hospital to treat intestinal mucosal dysfunction induced by peritoneal dialysis (PD). However, the mechanisms of this formular has not been studied yet. AIM OF THE STUDY The present study was designed to investigate the effect of FSG against intestinal dysfunction during PD treatment and explore the potential mechanisms using a rat PD model. METHODS AND METHODS In the present study, the effect of FSG on improving intestinal mucosal architecture injury was intuitively shown by hematoxylin-eosin staining, the serum levels of DAO and D-lactate were measured to evaluate the intestinal permeability by the DAO Assay Kit and D-Lactic Acid ELISA Kit. The expression of the intestinal mucosal barrier related inflammation factor by real-time PCR. The main effective constituents of FSG were characterized by UPLC/Q-TOF analysis, and the targets and pathways of the constituents were predicted via TCMSP database and IPA. the activation of p38MAPK signaling pathway by western blotting. RESULTS HE staining results showed that FSG protected against intestinal mucosal injury in pathology in PD rats. FSG decreased the intestinal mucosal permeability by increasing the transepithelial electrical resistance (TER) level and decreasing the intestinal clearance of fluorescein-isothiocyanate dextran (FD4) and the level of D-lactate and diamine oxidase (DAO). FSG significantly decreased the expression of ICAM-1, IL-1β, iNOS and TNF-α, and further inhibited the activation of p38MAPK signaling pathway via down-regulating the expression of P-p38MAPK and up-regulating the expression of DUSP1, occludin, and ZO-1. CONCLUSION This study demonstrates that FSG ameliorated intestinal mucosal dysfunction in PD by decreasing expression of pro-inflammatory cytokines and inhibiting the activation of p38MAPK signaling pathway. The results provide a promising basis for the alternative medicine treatment of intestinal mucosal dysfunction in PD.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yang Lv
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yu Song
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
14
|
Dou JW, Shang RG, Lei XQ, Li KL, Guo ZZ, Ye K, Yang XJ, Li YW, Zhou YY, Yao J, Huang Q. Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:304. [PMID: 31703679 PMCID: PMC6842232 DOI: 10.1186/s12906-019-2708-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/02/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of the present study was to examine the effects of the Bolbostemma paniculatum (Maxim.) Franquet (BP) active compound, BP total saponins (BPTS), on MDA-MB-231 cells, and investigate the underlying mechanism regarding BPTS-mediated attenuation of the PI3K/Akt/mTOR pathway. METHODS The effect of BPTS on cytotoxicity, induction of apoptosis and migration on MDA-MB-231 cells at three different concentrations was investigated. A CCK-8 assay, wound-healing assay and flow cytometry were used to demonstrate the effects of BPTS. Additionally, expression of the primary members of the PI3K/Akt/mTOR signaling pathway was assessed using western blotting. To verify the underlying mechanisms, a PI3K inhibitor and an mTOR inhibitor were used. RESULTS BPTS inhibited proliferation of MDA-MB-231 cells with an IC50 value of 10 μg/mL at 48 h. BPTS inhibited migration of MDA-MB-231 cells, and the western blot results demonstrated that BPTS reduced p-PI3K, p-Akt and p-mTOR protein expression levels in MDA-MB-231 cells. Additionally, the results were confirmed using a PI3K inhibitor and an mTOR inhibitor. BPTS decreased proliferation and migration of MDA-MB-231 cells possibly through inhibiting the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS The results highlight the therapeutic potential of BPTS for treating patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Jian-Wei Dou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rong-Guo Shang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiao-Qin Lei
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Kang-Le Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi Key Laboratory of "Qiyao" Resources And Anti-tumor Activities, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhan-Zi Guo
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Kai Ye
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xiao-Juan Yang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yu-Wei Li
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yun-Yun Zhou
- Department of Ophthalmology, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jia Yao
- Xi'an Hospital of Traditional Chinese Medicine Affiliated to Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Qian Huang
- Xi'an Hospital of Traditional Chinese Medicine Affiliated to Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 710021, People's Republic of China.
| |
Collapse
|
15
|
Wang Z, Liu J, Zhong X, Li J, Wang X, Ji L, Shang X. Rapid Characterization of Chemical Components in Edible Mushroom Sparassis crispa by UPLC-Orbitrap MS Analysis and Potential Inhibitory Effects on Allergic Rhinitis. Molecules 2019; 24:E3014. [PMID: 31434231 PMCID: PMC6720900 DOI: 10.3390/molecules24163014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022] Open
Abstract
Sparassis crispa is a kind of edible fungus widely grows in the north temperate zone, which shows various medicinal properties. Due to the complexity of chemical constitutes of this species, few investigations have acquired a comprehensive configuration for the chemical profile of it. In this study, a strategy based on ultra-high performance liquid chromatography (UPLC) combined with Orbitrap mass spectrometer (MS) was established for rapidly characterizing various chemical components in S. crispa. Through the summarized MS/MS fragmentation patterns of reference compounds and systematic identification strategy, a total of 110 components attributed to six categories were identified for the first time. Moreover, allergic rhinitis (AR) is a worldwide inflammatory disease seriously affecting human health, and the development of drugs to treat AR has been a topic of interest. It has been reported that the extracts of S. crispa showed obvious inhibitory effects on degranulation of mast cell- and allergen-induced IgE and proinflammatory mediators, but the active components and specific mechanism were still not clear. Src family kinases (SFKs) participate in the initial stage of allergy occurrence, which are considered the targets of AR treatment. Herein, on the basis of that self-built chemical database, virtual screening was applied to predict the potential SFKs inhibitors in S. crispa, using known crystal structures of Hck, Lyn, Fyn, and Syk as receptors, followed by the anti-inflammatory activity evaluation for screened hits by intracellular calcium mobilization assay. As results, sparoside A was directly confirmed to have strong anti-inflammatory activity with an IC50 value of 5.06 ± 0.60 μM. This study provides a useful elucidation for the chemical composition of S. crispa, and demonstrated its potential inhibitory effects on AR, which could promote the research and development of effective agents from natural resources.
Collapse
Affiliation(s)
- Zhixin Wang
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China.
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu County, Jinzhong 030801, China
| | - Xiangjian Zhong
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Jinjie Li
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Xin Wang
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Linlin Ji
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Xiaoya Shang
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
16
|
Correlation between Quality and Geographical Origins of Poria cocos Revealed by Qualitative Fingerprint Profiling and Quantitative Determination of Triterpenoid Acids. Molecules 2018; 23:molecules23092200. [PMID: 30200284 PMCID: PMC6225149 DOI: 10.3390/molecules23092200] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/25/2023] Open
Abstract
Poria cocos (Schw.) Wolf (PC) is a well-known saprophytic fungus, and its sclerotium without the epidermis (PCS) is widely used in traditional Chinese medicine and as a functional food in many countries. PCS is normally collected from multiple geographical regions, but whether and how the quality of PCS correlates with where it grows have not been determined. This correlation could be significant both for quality control and optimum utilization of PCS as a natural resource. In this study, a qualitative fingerprint profiling method performed by ultra-performance liquid chromatography (UHPLC) with diode array detection (DAD) combining quadrupole time-of-flight-mass spectrometry (QTOF-MS/MS) and a quantitative UHPLC coupled with triple quadrupole mass spectrometry (QqQ-MS/MS) approach were established to investigate whether and how the quality of PCS correlates with its collection location. A standard fingerprint of PCS was generated by median simulation of 25 tested samples collected from four main producing areas of China, and similarity analysis was applied to evaluate the similarities between the fingerprints of samples and the standard fingerprint. Twenty three common peaks occurring in the fingerprint were unequivocally or tentatively identified by UHPLC-QTOF-MS/MS. Meanwhile, principal component analysis (PCA), supervised orthogonal partial least squares-discriminate analysis (OPLS-DA) and hierarchical cluster analysis (HCA) were employed to classify 25 batches of PCS samples into four groups, which were highly consistent with the four geographical regions. Ten compounds were screened out as potential markers to distinguish the quality of PCS. Nine triterpene acids, including five compounds that played important roles in the clusters between different samples collected from the four collection locations, were simultaneously quantified by using the multiple reaction monitoring (MRM) mode of UHPLC-QqQ-MS/MS. The current strategy not only clearly expounded the correlation between quality and geographical origins of PCS, but also provided a fast, accurate and comprehensive qualitative and quantitative method for assessing the quality of PCS.
Collapse
|
17
|
Chemical Profiling and Screening of the Marker Components in the Fruit of Cassia fistula by HPLC and UHPLC/LTQ-Orbitrap MS n with Chemometrics. Molecules 2018; 23:molecules23071501. [PMID: 29933591 PMCID: PMC6100387 DOI: 10.3390/molecules23071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022] Open
Abstract
Cassia fistula L. which is known as “Golden Shower”, is used as an ornamental plant due to its flowers, and fruit parts of this plant have a high medicinal value. There are few reports providing a comprehensive overview of the chemical composition of its fruit or explaining the differences between samples from different sources because of the complexity of its chemical components. The purpose of the present study was to establish a fingerprint evaluation system based on Similarity Analysis (SA), Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) for the composition identification and quality control of this herb. Twelve samples from Xinjiang and Sichuan provinces in China and India were analyzed by HPLC, and there were fifteen common peaks in the twelve batches. Molecular weight and formula information can be derived from thirty-one peaks by UHPLC/LTQ-Orbitrap MSn, molecular structure information of twenty components was obtained, of which ten compounds were identified by comparison with standard materials. Samples of twelve batches were divided according to their similarity into four groups, which were basically consistent with three different C.fistula fruit-producing areas. Five compounds were finally considered to be chemical markers to determine the quality of this herb. A fingerprints method combined with chemometrics was established to differentiate the origin of the fruit of C. fistula which has the advantages of effectivity and convenience, laying the foundation for the quality evaluation of this herb from different sources.
Collapse
|