1
|
Ji ZH, He S, Xie WY, Zhao PS, Ren WZ, Gao W, Yuan B. Agaricus blazei Polysaccharide Alleviates DSS-Induced Colitis in Mice by Modulating Intestinal Barrier and Remodeling Metabolism. Nutrients 2023; 15:4877. [PMID: 38068735 PMCID: PMC10707896 DOI: 10.3390/nu15234877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic noninfectious intestinal disease that severely affects patients' quality of life. Agaricus blazei Murrill polysaccharide (ABP) is an effective active ingredient extracted from Agaricus blazei Murrill (ABM). It has good efficacy in inhibiting tumor cell growth, lowering blood pressure, and improving atherosclerosis. However, its effect on colitis is unclear. The aim of this study was to analyze the protective effects and potential mechanisms of ABP against dextran sulfate sodium (DSS)-induced acute colitis in mice. The results showed that dietary supplementation with ABP significantly alleviated DSS-induced colitis symptoms, inflammatory responses, and oxidative stress. Meanwhile, ABP intervention was able to maintain the integrity of the intestinal mechanical barrier by promoting the expression of ZO-1 and Occludin tight junction proteins and facilitating mucus secretion. Moreover, 16S rRNA sequencing results suggested that ABP intervention was able to alleviate DSS-induced gut microbiota disruption, and nontargeted metabolomics results indicated that ABP was able to remodel metabolism. In conclusion, these results demonstrate that dietary supplementation with ABP alleviated DSS-induced acute colitis by maintaining intestinal barrier integrity and remodeling metabolism. These results improve our understanding of ABP function and provide a theoretical basis for the use of dietary supplementation with ABP for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Degboé Y, Poupot R, Poupot M. Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. Int J Mol Sci 2022; 23:1496. [PMID: 35163420 PMCID: PMC8835955 DOI: 10.3390/ijms23031496] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes and their tissue counterpart macrophages (MP) constitute the front line of the immune system. Indeed, they are able to rapidly and efficiently detect both external and internal danger signals, thereby activating the immune system to eradicate the disturbing biological, chemical, or physical agents. They are also in charge of the control of the immune response and account for the repair of the damaged tissues, eventually restoring tissue homeostasis. The balance between these dual activities must be thoroughly controlled in space and time. Any sustained unbalanced response of MP leads to pathological disorders, such as chronic inflammation, or favors cancer development and progression. In this review, we take advantage of our expertise in chronic inflammation, especially in rheumatoid arthritis, and in cancer, to highlight the pivotal role of MP in the physiopathology of these disorders and to emphasize the repolarization of unbalanced MP as a promising therapeutic strategy to control these diseases.
Collapse
Affiliation(s)
- Yannick Degboé
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
- Département de Rhumatologie, CHU Toulouse, 31029 Toulouse, France
| | - Rémy Poupot
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
| | - Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université Toulouse, INSERM, UPS, 31037 Toulouse, France;
| |
Collapse
|
4
|
Younas A, Gu H, Zhao Y, Zhang N. Novel approaches of the nanotechnology-based drug delivery systems for knee joint injuries: A review. Int J Pharm 2021; 608:121051. [PMID: 34454029 DOI: 10.1016/j.ijpharm.2021.121051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
The knee joint is one of the largest, most complex, and frequently utilized organs in the body. It is very vulnerable to injuries due to activities, diseases, or accidents, which lead to or cause knee joint injuries in people of all ages. There are several types of knee joint injuries such as contusions, sprains, and strains to the ligament, tendon injuries, cartilage injuries, meniscus injuries, and inflammation of synovial membrane. To date, many drug delivery systems, e.g. nanoparticles, dendrimers, liposomes, micelles, and exosomes, have been used for the treatment of knee joint injuries. They aim to alleviate or reverse the symptoms with an improvement of the function of the knee joint by restoring or curing it. The nanosized structures show good biodegradability, biocompatibility, precise site-specific delivery, prolonged drug release, and enhanced efficacy. They regulate cell proliferation and differentiation, ECM synthesis, proinflammatory factor secretion, etc. to promote repair of injuries. The goal of this review is to outline the finding and studies of the novel strategies of nanotechnology-based drug delivery systems and provide future perspectives to combat the challenges of knee joint injuries by using nanotechnology.
Collapse
Affiliation(s)
- Ayesha Younas
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan, Zhengzhou 450001, Henan, PR China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan, Zhengzhou 450001, Henan, PR China.
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
5
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, Appelhans D, Bryszewska M, Borowiec M, Franiak-Pietryga I. Anti-Tumour Activity of Glycodendrimer Nanoparticles in a Subcutaneous MEC-1 Xenograft Model of Human Chronic Lymphocytic Leukemia. Anticancer Agents Med Chem 2021; 20:325-334. [PMID: 31738155 DOI: 10.2174/1871520619666191019093558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic Lymphocytic Leukaemia (CLL) is an indolent disorder, which mainly affects older adults. Since the advent of chemoimmunotherapy, great progress has been made in its treatment. However, some patients develop a more aggressive form of the disease and are included in the group of high-risk CLL patients with a dismal prognosis and a need for new therapies. OBJECTIVE Maltotriose-modified poly(propylene imine) dendrimers were presented as potential agents in targeted therapy for CLL in the murine xenograft model. METHODS Tumour, brain and internal organs resected from NOD scid gamma mice were subjected to gross and histopathological evaluation. RESULTS The results of ex vivo tissue examination indicated that open-shell glycodendrimers prevented/inhibited the spread of CLL into the brain and internal organs and its transformation into a more aggressive form. CONCLUSION The results of the study have a potentially important impact on the design of future personalized therapies as well as clinical trials.
Collapse
Affiliation(s)
- Barbara Ziemba
- GeneaMed LTD, Lodz, Poland.,Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | | | | | - Wojciech Kuncman
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | - Marian Danilewicz
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- GeneaMed LTD, Lodz, Poland.,Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California, San Diego, CA, United States
| |
Collapse
|
7
|
Mignani S, Shi X, Ceña V, Shcharbin D, Bryszewska M, Majoral JP. In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discov Today 2020; 26:677-689. [PMID: 33285297 DOI: 10.1016/j.drudis.2020.11.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid, Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
8
|
Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. NANOSCALE ADVANCES 2020; 2:5046-5089. [PMID: 36132021 PMCID: PMC9418019 DOI: 10.1039/d0na00478b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/22/2020] [Indexed: 05/04/2023]
Abstract
Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vincent Lenders
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Xanthippi Koutsoumpou
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| |
Collapse
|
9
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
A review on synthesis and applications of dendrimers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
An Anti-Inflammatory Poly(PhosphorHydrazone) Dendrimer Capped with AzaBisPhosphonate Groups to Treat Psoriasis. Biomolecules 2020; 10:biom10060949. [PMID: 32586038 PMCID: PMC7356153 DOI: 10.3390/biom10060949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrimers are nanosized, arborescent macromolecules synthesized in a stepwise fashion with attractive degrees of functionality and structure definition. This is one of the reasons why they are widely used for biomedical applications. Previously, we have shown that a poly(phosphorhydrazone) (PPH) dendrimer capped with anionic azabisphosphonate groups (so-called ABP dendrimer) has immuno-modulatory and anti-inflammatory properties towards human immune cells in vitro. Thereafter, we have shown that the ABP dendrimer has a promising therapeutic efficacy to treat models of acute and chronic inflammatory disorders in animal models. In these models, the active pharmaceutical ingredient was administered systematically (intravenous and oral administrations), but also loco-regionally in the vitreous tissue. Herein, we assessed the therapeutic efficacy of the ABP dendrimer in the preclinical mouse model of psoriasis induced by imiquimod. The ABP dendrimer was administered in phosphate-buffered saline solution via either systemic injection or topical application. We show that the topical application enabled the control of both the clinical and histopathological scores, and the control of the infiltration of macrophages in the skin of treated mice.
Collapse
|
13
|
Lyu LY, Wang Q, Xu Q, Zhao WY, Yang H, Che CY. The expression of lacrimal androgen-binding proteins in mice Pseudomonas aeruginosa keratitis. Int J Ophthalmol 2020; 13:7-10. [PMID: 31956564 DOI: 10.18240/ijo.2020.01.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
AIM To investigate the expression of lacrimal androgen-binding proteins (ABPs) in mice Pseudomonas aeruginosa (P. aeruginosa) keratitis. METHODS P. aeruginosa mice model from different gender was developed by intra-stromal injection. The expression of lacrimal ABPs in lacrimal gland specimens from P. aeruginosa keratitis mice was detected by the quantitative polymerase chain reaction (qRT-PCR). Corneal virulence was evaluated based on clinical scores. To study the mechanism of lacrimal ABPs' expression, experimental subjects were pre-treated with 4E-BP1 inhibitor, and were used to evaluate the expression levels by qRT-PCR. RESULTS Compared with control groups, the expression of ABPα, ABPη and ABPζ in lacrimal gland from P. aeruginosa keratitis mice had no meaningful changes, while ABPε and ABPδ were significantly higher at 1d after infection. The expression of ABPδ in lacrimal gland of male mice was higher than female mice, regardless of whether or not P. aeruginosa keratitis occurred. After 4E-BP1 inhibitor subconjunctival injection or lacrimal injection, the expression of ABPδ and ABPε has no significant change compared with the control group. CONCLUSION ABPδ and ABPε secreted by mice lacrimal gland may involve in the progress of alleviating the severity of corneal damage in P. aeruginosa keratitis. The expression of ABPδ and ABPε upon P. aeruginosa infection is independent of cap-dependent mRNA translation activated by 4E-BP1.
Collapse
Affiliation(s)
- Le-Yu Lyu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Wen-Yi Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
14
|
Fruchon S, Bellard E, Beton N, Goursat C, Oukhrib A, Caminade AM, Blanzat M, Turrin CO, Golzio M, Poupot R. Biodistribution and Biosafety of a Poly(Phosphorhydrazone) Dendrimer, an Anti-Inflammatory Drug-Candidate. Biomolecules 2019; 9:biom9090475. [PMID: 31514434 PMCID: PMC6770054 DOI: 10.3390/biom9090475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/20/2023] Open
Abstract
Dendrimers are nanosized, arborescent polymers of which size and structure are perfectly controlled. This is one reason why they are widely used for biomedical purposes. Previously, we showed that a phosphorus-based dendrimer capped with anionic azabisphosphonate groups (so-called ABP dendrimer) has immuno-modulatory and anti-inflammatory properties towards human immune cells in vitro. Thereafter, we have shown that the ABP dendrimer has a promising therapeutic efficacy to treat models of chronic inflammatory disorders. On the way to clinical translation, the biodistribution and the safety of this drug-candidate has to be thoroughly assessed. In this article, we present preliminary non-clinical data regarding biodistribution, hematological safety, genotoxicity, maximal tolerated doses, and early cardiac safety of the ABP dendrimer. One of the genotoxicity assays reveals a potential mutagen effect of the item at a concentration above 200 µM, i.e., up to 100 times the active dose in vitro on human immune cells. However, as the results obtained for all the other assays show that the ABP dendrimer has promising biodistribution and safety profiles, there is no red flag raised to hamper the regulatory pre-clinical development of the ABP dendrimer.
Collapse
Affiliation(s)
- Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Elisabeth Bellard
- CNRS, UMR 5089, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, IPBS, 205 route de Narbonne, BP 64182, F-31077 Toulouse CEDEX 4, France.
| | - Nicolas Beton
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Cécile Goursat
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Abdelouahd Oukhrib
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Anne-Marie Caminade
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Muriel Blanzat
- CNRS, UMR 5623, Université de Toulouse, UPS, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, IMRCP, 118 route de Narbonne, F-31062 Toulouse CEDEX 9, France.
| | - Cédric-Olivier Turrin
- CNRS, UPR 8241, Laboratoire de Chimie de Coordination, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Muriel Golzio
- CNRS, UMR 5089, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, IPBS, 205 route de Narbonne, BP 64182, F-31077 Toulouse CEDEX 4, France.
| | - Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|
15
|
Wei Y, Chang H, Feng H, Li X, Zhang X, Yin L. Low Serum Interleukin-10 Is an Independent Predictive Factor for the Risk of Second Event in Clinically Isolated Syndromes. Front Neurol 2019; 10:604. [PMID: 31244763 PMCID: PMC6579832 DOI: 10.3389/fneur.2019.00604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To evaluated the prognostic ability of several serum cytokines in clinically isolated syndrome (CIS) patients regarding second events and conversion to multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD). Methods: We enrolled 69 CIS patients whose serum samples were collected during the acute phase of the first onset before immunotherapy. Fifteen other non-inflammatory neurological disorder (OND) patients were also included. The serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-13, IL-17A, IL-21, IL-23, interferon-γ (IFN-γ), and transforming growth factor beta 1 (TGF-β1) were measured using the human cytokine multiplex assay or ELISA. Patients were seen every 3-6 months. Unscheduled visits occur in case of exacerbations. Clinical measures of disease progression were recorded. Results: Twenty CIS cases had second events during follow-up at a mean time of 15.3 ± 9.9 months. Serum IL-10 levels were significantly lower in CIS patients who relapsed compared to patients who did not. Low serum IL-10 levels were associated with higher risk and shorter times to second events. In clinical correlations, a significantly higher CSF white blood cells count, number of T2 lesions, and gadolinium-enhancing (Gd+) lesions in baseline MRI were found in the low serum IL-10 level group. Of the 20 relapsed cases, seven converted to MS, and eight converted to NMOSD. No significant differences were found in any cytokine levels between these patients at first onset. Conclusions: These findings support using serum IL-10 as a biomarker associated with the risk of relapse and the time to second events in patients with CIS. However, serum cytokine levels can not differentiate between the conversion from CIS to MS or NMOSD.
Collapse
Affiliation(s)
- Yuzhen Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xindi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
16
|
Poupot R, Goursat C, Fruchon S. Multivalent nanosystems: targeting monocytes/macrophages. Int J Nanomedicine 2018; 13:5511-5521. [PMID: 30271144 PMCID: PMC6154704 DOI: 10.2147/ijn.s146192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among all the cellular partners involved in inflammatory processes, monocytes and macrophages are the master regulators of inflammation. They are found in almost all the tissues and are nearly the only cells capable of performing each step of inflammation. Consequently, they stand as major relevant therapeutic targets to treat inflammatory disorders and diseases. The physiological phagocytic activity of macrophages prompts them to detect, to recognize, and eventually to engulf any nanosystem cruising in their neighborhood. Interestingly, nanosystems can be rationally engineered to afford multivalent, and multifunctional if needed, entities with multiplexed and/or reinforced biological activities. Indeed, engineered nanosystems bearing moieties specifically targeting macrophages, and loaded with or bound to drugs are promising candidates to modulate, or even eradicate, deleterious macrophages in vivo. In this review we highlight recent articles and concepts of multivalent nanosystems targeting monocytes and macrophages to treat inflammatory disorders.
Collapse
Affiliation(s)
- Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| | - Cécile Goursat
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| | - Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France,
| |
Collapse
|