1
|
Dwivedi M, Singh P, Pandey AK. Botrytis fruit rot management: What have we achieved so far? Food Microbiol 2024; 122:104564. [PMID: 38839226 DOI: 10.1016/j.fm.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.
Collapse
Affiliation(s)
- Mansi Dwivedi
- Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Pooja Singh
- Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Abhay K Pandey
- Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India; Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, 735225, Jalpaiguri, West Bengal, India.
| |
Collapse
|
2
|
Umberath KM, Mischke A, Caspers-Weiffenbach R, Backmann L, Scharfenberger-Schmeer M, Wegmann-Herr P, Schieber A, Weber F. Curse or blessing: Growth- and laccase-modulating properties of polyphenols and their oxidized derivatives on Botrytis cinerea. Food Res Int 2024; 192:114782. [PMID: 39147480 DOI: 10.1016/j.foodres.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Infection of grapevines with the grey mold pathogen Botrytis cinerea results in severe problems for winemakers worldwide. Browning of wine is caused by the laccase-mediated oxidation of polyphenols. In the last decades, Botrytis management has become increasingly difficult due to the rising number of resistances and the genetic variety of Botrytis strains. During the search for sustainable fungicides, polyphenols showed great potential to inhibit fungal growth. The present study revealed two important aspects regarding the effects of grape-specific polyphenols and their polymerized oxidation products on Botrytis wild strains. On the one hand, laccase-mediated oxidized polyphenols, which resemble the products found in infected grapes, showed the same potential for inhibition of growth and laccase activity, but differed from their native forms. On the other hand, the impact of phenolic compounds on mycelial growth is not correlated to the effect on laccase activity. Instead, mycelial growth and relative specific laccase activity appear to be modulated independently. All phenolic compounds showed not only inhibitory but also inductive effects on fungal growth and/or laccase activity, an observation which is reported for the first time. The simultaneous inhibition of growth and laccase activity demonstrated may serve as a basis for the development of a natural botryticide. Yet, the results showed considerable differences between genetically distinguishable strains, impeding the use of a specific phenolic compound against the genetic variety of wild strains. The present findings might have important implications for future understanding of Botrytis cinerea infections and sustainable Botrytis management including the role of polyphenols.
Collapse
Affiliation(s)
- Kim Marie Umberath
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Anna Mischke
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Rita Caspers-Weiffenbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Louis Backmann
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany; Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, D-64287 Darmstadt, Germany.
| | - Maren Scharfenberger-Schmeer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany; Hochschule Kaiserslautern, Weincampus Neustadt, Breitenweg 71, D-67435 Neustadt, Germany.
| | - Pascal Wegmann-Herr
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany.
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Fabian Weber
- Section of Organic Food Quality, University of Kassel, Nordbahnhofstr. 1a, D-37213 Witzenhausen, Germany.
| |
Collapse
|
3
|
Li S, Sun J, Gao Y, Zou A, Cheng J. Enhanced fungicidal efficacy and improved interfacial properties with the co-delivery of prothioconazole and tebuconazole using polylactic acid microspheres. PEST MANAGEMENT SCIENCE 2024; 80:1831-1838. [PMID: 38031966 DOI: 10.1002/ps.7913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Prothioconazole (PTC) is one of the leading fungicide products worldwide. However, excessive use of PTC facilitates the development of resistance. Pesticide compounding technology plays an important role in reducing pesticide resistance. Microspherization technology for the construction of pesticide dual-loaded systems has recently provided a new direction for researching novel and efficient pesticide formulations. In this study, prothioconazole-tebuconazole@polylactic acid microspheres (PTC-TBA@PLA MS) were constructed by combining these two technologies. RESULTS The final PTC-TBA@PLA MS were selected by an orthogonal method, which were uniformly spherical with smooth surface. The resultant drug loading (DL) and average particle size of PTC-TBA@PLA MS were 31.34% and 22.3 μm, respectively. A PTC-TBA@PLA MS suspending agent (SC) with a high suspension rate of 94.3% was prepared according to the suspension rate, dumping ability and stability. Compared with a commercial SC, the PTC-TBA@PLA MS SC had a larger cumulative release and better interfacial properties. Biological experiments showed that PTC-TBA@PLA MS SC had an obviously improved bactericidal effect than the commercial SC. CONCLUSION The constructed PTC-TBA@PLA MS system detailed here is expected to reduce the risk of resistance and the frequency of pesticide use while enhancing fungal control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shujing Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yue Gao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aihua Zou
- Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Li S, Yu Y, Xie P, Zhu X, Yang C, Wang L, Zhang S. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against Botrytis cinerea. Microorganisms 2024; 12:360. [PMID: 38399764 PMCID: PMC10891807 DOI: 10.3390/microorganisms12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Gray mold caused by Botrytis cinerea is a common postharvest fungal disease in fruit and vegetables. The prevention and treatment of postharvest gray mold has been one of the hot research issues addressed by researchers. This study aimed to investigate the effect of L-methionine and L-arginine on Botrytis cinerea in vitro and on cherry tomato fruit. The results of the in vitro experiment showed that L-methionine and L-arginine had significant inhibitory effects on the mycelial growth and spore germination of Botrytis cinerea, and the inhibitory effects were enhanced with increasing L-methionine or L-arginine concentration. In addition, L-methionine and L-arginine treatment increased the leakage of Botrytis cinerea electrolytes, proteins and nucleic acids. The experiment involving propidium iodide staining and malondialdehyde content assay also confirmed that L-methionine and L-arginine treatment could lead to cell membrane rupture and lipid peroxidation. The results of scanning electron microscopy further verified that the morphology of hyphae was damaged, deformed, dented and wrinkled after treatment with L-methionine or L-arginine. Fruit inoculation experiments displayed that L-methionine and L-arginine treatments significantly inhibited the occurrence and development of gray mold in postharvest cherry tomato. Therefore, treatment with L-methionine or L-arginine might be an effective means to control postharvest gray mold in fruit and vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (S.L.); (P.X.); (C.Y.)
| |
Collapse
|
5
|
Zheng L, Huang S, Huang J, Deng Y, Wu Z, Jiang Z, Yu G. Biological control agents colonize litchi fruit during storage and stimulate physiological responses to delay pericarp browning. Front Microbiol 2023; 13:1093699. [PMID: 36687658 PMCID: PMC9849669 DOI: 10.3389/fmicb.2022.1093699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Litchi is an economically important fruit in subtropical countries, but pericarp browning can limit its shelf life outside of controlled storage conditions. Effective and sustainable biological control strategies are needed to protect fruit against postharvest browning. Results and Discussion In this study, we show that the four bacterial strains Bacillus licheniformis HS10, B. amyloliquefaciens LI24 and PP19, and Exiguobacterium acetylicum SI17 can delay fruit browning in both laboratory trials (LTs) and field plus laboratory trials (FLTs). Strains HS10, LI24, PP19 and SI17 showed 47.74%, 35.39%, 33.58% and 32.53% browning-inhibitory efficacy respectively at 180 h in LT. Litchi sarcocarp interior sourced isolate SI17 showed 74.05% inhibit-brown efficacy at 216 h in FLTs, performing better in FLT than in LT. Furthermore, strains PP19 and SI17 colonized the fruit pericarp and increased total phenolic and anthocyanin contents but decreased peroxidase and polyphenol oxidase activity. This is the first report of E. acetylicum (SI17) and B. licheniformis (HS10) strains acting as biological control agents (BCAs) to delay postharvest browning in litchi fruit. We conclude that PP19 and SI17 are promising BCAs against fruit browning, and their application could be effective for prolonging the shelf life of harvested litchi fruit.
Collapse
Affiliation(s)
- Li Zheng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiehao Huang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zhenxian Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, College of Horticulture, Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Ministry of Education, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Guohui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Šunjka D, Mechora Š. An Alternative Source of Biopesticides and Improvement in Their Formulation-Recent Advances. PLANTS (BASEL, SWITZERLAND) 2022; 11:3172. [PMID: 36432901 PMCID: PMC9694139 DOI: 10.3390/plants11223172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Plant protection in contemporary agriculture requires intensive pesticide application. Their use has enabled the increase in yields, simplifying cultivation systems and crop protection strategies, through successful control of harmful organisms. However, it has led to the accumulation of pesticides in agricultural products and the environment, contaminating the ecosystem and causing adverse health effects. Therefore, finding new possibilities for plant protection and effective control of pests without consequences for humans and the environment is imperative for agricultural production. The most important alternatives to the use of chemical plant protection products are biopesticides. However, in order to increase their application and availability, it is necessary to improve efficacy and stability through new active substances and improved formulations. This paper represents an overview of the recent knowledge in the field of biopesticides and discusses the possibilities of the use of some new active substances and the improvement of formulations.
Collapse
Affiliation(s)
- Dragana Šunjka
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Špela Mechora
- Agency for Radwaste Management, Litostrojska 58A, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Raj P, Thandapilly SJ, Wigle J, Zieroth S, Netticadan T. A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. Molecules 2021; 26:6600. [PMID: 34771008 PMCID: PMC8587649 DOI: 10.3390/molecules26216600] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/31/2023] Open
Abstract
Atherosclerosis, myocardial infarction (MI) and heart failure (HF) are the main causes of mortality and morbidity around the globe. New therapies are needed to better manage ischemic heart disease and HF as existing strategies are not curative. Resveratrol is a stilbene polyphenolic compound with favorable biological effects that counter chronic diseases. Current evidence suggests that resveratrol is cardioprotective in animal models of atherosclerosis, ischemic heart disease, and HF. Though clinical studies for resveratrol have been promising, evidence remains inadequate to introduce it to the clinical setting. In this narrative review, we have comprehensively discussed the relevant compelling evidence regarding the efficacy of resveratrol as a new therapeutic agent for the management of atherosclerosis, MI and HF.
Collapse
Affiliation(s)
- Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada;
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada;
| | | | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Shelley Zieroth
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Netticadan
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada;
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
8
|
Matrose NA, Obikeze K, Belay ZA, Caleb OJ. Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Meng Y, Zhong K, Xiao J, Huang Y, Wei Y, Tang L, Chen S, Wu J, Ma J, Cao Z, Liao X, Lu H. Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. CHEMOSPHERE 2020; 255:126889. [PMID: 32388256 DOI: 10.1016/j.chemosphere.2020.126889] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 05/27/2023]
Abstract
Pyrimethanil is a broad-spectrum fungicide commonly used in the prevention and treatment of Botrytis cinerea. However, little information is available in the literature to show the toxicity of Pyrimethanil to cardiac development. In this study, we used an experimental animal model to explore the developmental and cardiac toxicity of Pyrimethanil in aquatic vertebrates; we exposed zebrafish embryos to Pyrimethanil at concentrations of 2, 4, and 6 mg/L from 5.5 to 72 h post fertilisation. We found that Pyrimethanil caused a decrease in the hatching rate, heart rate, and survival rate of zebrafish embryos. Pyrimethanil exposure also resulted in pericardial and yolk sac edema, spinal deformity, and heart loop failure. Moreover, Pyrimethanil increased reactive oxygen stress levels and heightened the activity of superoxide dismutase and catalase. Alterations were induced in the transcription of apoptosis-related genes (p53, Bax, Bcl2, Casp 9, and Casp6l1) and heart development-related genes (Tbx2b, Gata4, Myh6, Vmhc, Nppa, Bmp2b, Bpm 4, and Bpm 10). Our data showed that the activation of Wnt signalling by BML-284 could partially rescue the malformed phenotype caused by Pyrimethanil. Our results provide new evidence for Pyrimethanil's toxicity and the danger of its residues in the environment and agricultural products.
Collapse
Affiliation(s)
- Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lin Tang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Suping Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juan Wu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
10
|
De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020; 9:E1138. [PMID: 32824971 PMCID: PMC7555317 DOI: 10.3390/foods9091138] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Consumers highly appreciate table grapes for their pleasant sensory attributes and as good sources of nutritional and functional compounds. This explains the rising market and global interest in this product. Along with other fruits and vegetables, table grapes are considerably perishable post-harvest due to the growth of undesired microorganisms. Among the microbial spoilers, Botrytis cinerea represents a model organism because of its degrading potential and the huge economic losses caused by its infection. The present review provides an overview of the recent primary physical, chemical, and biological control treatments adopted against the development of B. cinerea in table grapes to extend shelf life. These treatments preserve product quality and safety. This article also focuses on the compliance of different approaches with organic and sustainable production processes. Tailored approaches include those that rely on controlled atmosphere and the application of edible coating and packaging, as well as microbial-based activities. These strategies, applied alone or in combination, are among the most promising solutions in order to prolong table grape quality during cold storage. In general, the innovative design of applications dealing with hurdle technologies holds great promise for future improvements.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Francesco Grieco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | | | | | - Vincenzo Santoro
- A.B.A. Mediterranea s.c.a.r.l., Via Parini, 1, 74013 Ginosa, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Giancarlo Colelli
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| |
Collapse
|
11
|
Improvement of Resveratrol Effects When Combined with Rice Oil in Rat Models of Inflammation. Inflammation 2019; 43:204-219. [PMID: 31720991 DOI: 10.1007/s10753-019-01110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of systemic treatment with a new formulation of resveratrol (RSV) vehicled in rice oil (RSVO) in experimental rat models of inflammation. Male Wistar rats were evaluated in the following in vivo models: carrageenan-induced acute edema, complete Freund's adjuvant (CFA)-evoked sub-chronic edema, and CFA-induced polyarthritis. The animals were treated orally with RSVO (10-15 mg/kg) or RSV (100-200 mg/kg), depending on the experimental protocol. RSV was more effective than RSVO in carrageenan-elicited acute edema when dosed in either prophylactic or therapeutic schemes of administration. However, the repeated RSVO administration, at 10-fold lower doses, exhibited superior anti-inflammatory actions in either the sub-chronic edema or the chronic polyarthritis model elicited by CFA, when compared with RSV. The novel formulation RSVO displayed a lower plasma biotransformation when compared with the RSV-treated group-46% versus 88% of metabolites, respectively. RSVO also prevented polyarthritis-related cartilage destruction, an effect that might rely on the inhibition of the pro-inflammatory cytokine interleukin-6 (IL-6), associated with an increase of the anti-inflammatory cytokine interleukin-10 (IL-10). Noteworthy, the long-term administration of RSVO did not elicit any gastrointestinal harm. Our study revealed that RSVO was notably effective in the long-term inflammatory and degenerative responses triggered by CFA. This innovative formulation might well represent a promising alternative for treating chronic inflammatory diseases, such as arthritis.
Collapse
|
12
|
Zhang S, Meng S, Xie Y, Yang Y, Zhang Y, He L, Wang K, Qi Z, Ji M, Qin P, Li X. Synthesis, Fungicidal Activity and SAR of 2-Thiazolamide/Pyrazolamide-Cyclohexylsulfonamides against Botrytis cinerea. Molecules 2019; 24:molecules24142607. [PMID: 31319619 PMCID: PMC6680688 DOI: 10.3390/molecules24142607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
In order to explore more efficient sulfonamides against Botrytis cinereal, 36 novel cyclohexylsulfonamides were synthesized by N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDCI) and 1-hydroxybenzotriazole (HOBt) condensation reaction using chesulfamide as a lead compound, introducing thiazole and pyrazole active groups. Their structures were characterized by 1H-NMR, 13C-NMR, mass spectrum (MS), and elemental analysis. Compound III -31 was further confirmed by X-ray single crystal diffraction. The in vitro and in vivo fungicidal activities against B. cinerea were evaluated by three bioassay methods. The results of mycelial growth demonstrated that median effective concentration (EC50) values of nine compounds were close to boscalid (EC50 = 1.72 µg/mL) and procymidone (EC50 = 1.79 µg/mL) against B. cinerea (KZ-9). In the spore germination experiment, it was found that compounds III-19 and III-31 inhibited germination 93.89 and 98.00%, respectively; at 10 µg/mL, they approached boscalid (95.97%). In the tomato pot experiment, the control effects of two compounds (III-21 and III-27) were 89.80 and 87.90%, respectively, at 200 µg/mL which were significantly higher than boscalid (81.99%). The structure–activity relationship (SAR) was also discussed, which provided a valuable idea for developing new fungicides.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Siqi Meng
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yong Xie
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- State Key Laboratory of the Discovery and Development of Novel Pesticide (Shenyang Sinochem Agrochemicals R&D Co. Ltd.), Shenyang, 110866, China
| | - Yonggui Yang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yumeng Zhang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Lu He
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Kai Wang
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhiqiu Qi
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Mingshan Ji
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Peiwen Qin
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xinghai Li
- Department of Pesticide Science, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
13
|
Xu D, Deng Y, Xi P, Yu G, Wang Q, Zeng Q, Jiang Z, Gao L. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem 2019; 286:226-233. [PMID: 30827600 DOI: 10.1016/j.foodchem.2019.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Gray mold caused by Botrytis cinerea is a major postharvest disease of table grapes that leads to enormous economic losses during storage and transportation. The objective of this study was to evaluate the effectiveness of fulvic acid on controlling gray mold of table grapes and explore its mechanism of action. The results showed that fulvic acid application significantly reduced downy blight severity in table grapes without exhibiting any antifungal activity in vitro. Fulvic acid induced phenylpropanoid metabolism, as evidenced by accumulation of phenolic compounds and flavonoids, higher activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), up-regulation of genes related to phenylpropanoid biosynthesis (PAL, C4H, 4CL, STS, ROMT and CHS). Our results suggested that fulvic acid induces resistance to B. cinerea mainly through the activation of phenylpropanoid pathway and can be used as a new activator of plant defense responses to control postharvest gray mold in table grapes.
Collapse
Affiliation(s)
- Dandan Xu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Guangdong Institute of Traditional Chinese Medicine, Guangzhou 510640, China
| | - Yizhen Deng
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Ge Yu
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Qingqian Zeng
- Guangdong Institute of Traditional Chinese Medicine, Guangzhou 510640, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Lingwang Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|