1
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
2
|
He X, Li Y, Li Y, Guo C, Fu Y, Xun X, Wang Z, Dong Z. In vivo assessment of the pharmacokinetic interactions between donafenib and dapagliflozin, donafenib and canagliflozin in rats. Biomed Pharmacother 2023; 162:114663. [PMID: 37027985 DOI: 10.1016/j.biopha.2023.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Donafenib (DONA), a deuterium derivative of sorafenib, is used for advanced hepatocellular carcinoma (HCC). Dapagliflozin (DAPA) and canagliflozin (CANA) are sodium-glucose co-transporter 2 (SGLT2) inhibitors used for T2DM, which is frequently comorbid with HCC. Three drugs are substrates of UGT1A9 isoenzyme. This study aimed to evaluate donafenib-dapagliflozin and donafenib-canagliflozin pharmacokinetic interactions and explore the potential mechanisms. Rats were divided into seven groups (n = 6) that received donafenib (1), dapagliflozin (2), canagliflozin (3), dapagliflozin and donafenib (4), canagliflozin and donafenib (5), donafenib and dapagliflozin (6), donafenib and canagliflozin (7). The concentrations of drugs were determined by an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The messenger RNA (mRNA) expressions were measured by quantitative RT-PCR. Multiple doses of dapagliflozin caused donafenib maximum plasma concentration (Cmax) to increase 37.01%. Canagliflozin increased donafenib Cmax 1.77-fold and the area under the plasma concentration-time curves (AUC0-t and AUCinf) 1.39- and 1.41-fold, respectively, while reducing the apparent clearance (CLz) 28.38%. Multiple doses of donafenib increased dapagliflozin AUC0-t 1.61-fold, AUCinf 1.77-fold, whereas its CLz reduced 40.50%. Furthermore, donafenib caused similar changes in canagliflozin pharmacokinetics. The PCR results demonstrated that dapagliflozin inhibited the mRNA expression of Ugt1a7 in liver and donafenib decreased the expression of Ugt1a7 mRNA in liver and intestine. Increased exposure to these drugs may be due to their metabolism inhibition mediated by Ugt1a7. These pharmacokinetic interactions observed in this study may be of clinical significance, which may help adjust dose properly and avoid toxicity effects in patients with HCC and T2DM.
Collapse
Affiliation(s)
- Xueru He
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yajing Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Caihui Guo
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yuhao Fu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuejiao Xun
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhi Wang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
3
|
Development of UPLC-MS/MS Method to Study the Pharmacokinetic Interaction between Sorafenib and Dapagliflozin in Rats. Molecules 2022; 27:molecules27196190. [PMID: 36234746 PMCID: PMC9571628 DOI: 10.3390/molecules27196190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sorafenib (SOR), an inhibitor of multiple kinases, is a classic targeted drug for advanced hepatocellular carcinoma (HCC) which often coexists with type 2 diabetes mellitus (T2DM). Dapagliflozin (DAPA), a sodium–glucose cotransporter-2 inhibitor (SGLT2i), is widely used in patients with T2DM. Notably, co-administration of SOR with DAPA is common in clinical settings. Uridine diphosphate-glucuronosyltransferase family 1 member A9 (UGT1A9) is involved in the metabolism of SOR and dapagliflozin (DAPA), and SOR is the inhibitor of UGT1A1 and UGT1A9 (in vitro). Therefore, changes in UGT1A9 activity caused by SOR may lead to pharmacokinetic interactions between the two drugs. The objective of the current study was to develop an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of SOR and DAPA in plasma and to evaluate the effect of the co-administration of SOR and DAPA on their individual pharmacokinetic properties and the mechanism involved. The rats were divided into four groups: SOR (100 mg/kg) alone and co-administered with DAPA (1 mg/kg) for seven days, and DAPA (1 mg/kg) alone and co-administered with SOR (100 mg/kg) for seven days. Liquid–liquid extraction (LLE) was performed for plasma sample preparation, and the chromatographic separation was conducted on Waters XSelect HSS T3 column with a gradient elution of 0.1% formic acid and 5 mM ammonium acetate (Phase A) and acetonitrile (Phase B). The levels of Ugt1a7 messenger RNA (mRNA) were determined in rat liver and intestine using quantitative real-time polymerase chain reaction (qRT-PCR). The method was successfully applied to the study of pharmacokinetic interactions. DAPA caused a significant decrease in the maximum plasma concentrations (Cmax) and the area under the plasma concentration–time curves (AUC0–t) of SOR by 41.6% and 50.5%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance (CLz/F) significantly increased 2.85- and 1.98-fold, respectively. When co-administering DAPA with SOR, the AUC0–t and the elimination half-life (t1/2Z) of DAPA significantly increased 1.66- and 1.80-fold, respectively, whereas the CLz/F significantly decreased by 40%. Results from qRT-PCR showed that, compared with control, seven days of SOR pretreatment decreased Ugt1a7 expression in both liver and intestine tissue. In contrast, seven days of DAPA pretreatment decreased Ugt1a7 expression only in liver tissue. Therefore, pharmacokinetic interactions exist between long-term use of SOR with DAPA, and UGT1A9 may be the targets mediating the interaction. Active surveillance for the treatment outcomes and adverse reactions are required.
Collapse
|
4
|
Lu YY, Fang M, Du ZY, Wang JL, Song JY, Jiang Y, Guo XY, Tu PF. Comparative study on the main active components of Baoyuan decoction in plasma and urine of normal and heart failure rats. Biomed Chromatogr 2021; 36:e5294. [PMID: 34875722 DOI: 10.1002/bmc.5294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022]
Abstract
The global morbidity and mortality of heart failure has been increasing in recent years. Traditional Chinese medicine (TCM) was increasingly used to treat cardiovascular diseases. Baoyuan decoction (BYD) was a famous classical prescription in China. Modern pharmacological studies showed that it had obvious therapeutic effects on cardiovascular diseases, but its pathological pharmacokinetic studies were unclear. In this research, the absorption of 16 bioactive components in plasma and the excretion of 9 representative components in urine of control rats and isoproterenol (ISO)-induced heart failure rats were studied using the large-volume direct-injection LC-MS method established by our research group. The results indicated that flavonoid constituents exhibited quicker absorption and elimination than saponin constituents after oral administration of BYD. The half-life period of some bioactive compounds in the model group was increased, which contributed to the longer therapeutic effect. The cumulative excretion rate of major flavonoid components of BYD decreased significantly in the ISO-induced heart failure rats.
Collapse
Affiliation(s)
- Ying-Yuan Lu
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Meng Fang
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhi-Yong Du
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jin-Long Wang
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jin-Yang Song
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yong Jiang
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiao-Yu Guo
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Peng-Fei Tu
- Pharmaceutical Sciences Department of Natural Medicines, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
5
|
Cao Y, Xie L, Liu K, Liang Y, Dai X, Wang X, Lu J, Zhang X, Li X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol Res 2021; 174:105919. [PMID: 34601080 DOI: 10.1016/j.phrs.2021.105919] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
With the coming of the era of the aging population, hypertension has become a global health burden to be dealt with. Although there are multiple drugs and procedures to control the symptoms of hypertension, the management of it is still a long-term process, and the side effects of conventional drugs pose a burden on patients. Flavonoids, common compounds found in fruits and vegetables as secondary metabolites, are active components in Chinese Herbal Medicine. The flavonoids are proved to have cardiovascular benefits based on a plethora of animal experiments over the last decade. Thus, the flavonoids or flavonoid-rich plant extracts endowed with anti-hypertension activities and probable mechanisms were reviewed. It has been found that flavonoids may affect blood pressure in various ways. Moreover, despite the substantial evidence of the potential for flavonoids in the control of hypertension, it is not sufficient to support the clinical application of flavonoids as an adjuvant or core drug. So the synergistic effects of flavonoids with other drugs, pharmacokinetic studies, clinical trials and the safety of flavonoids are also incorporated in the discussion. It is believed that more breakthrough studies are needed. Overall, this review may shed some new light on the explicit recognition of the mechanisms of anti-hypertension actions of flavonoids, pointing out the limitations of relevant research at the current stage and the aspects that should be strengthened in future researches.
Collapse
Affiliation(s)
- Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
6
|
Hao DC, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research. Curr Drug Metab 2020; 20:556-574. [PMID: 31237211 DOI: 10.2174/1389200220666190618101526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The representative cardiovascular herbs, i.e. Panax, Ligusticum, Carthamus, and Pueraria plants, are traditionally and globally used in the prevention and treatment of various cardiovascular diseases. Modern phytochemical studies have found many medicinal compounds from these plants, and their unique pharmacological activities are being revealed. However, there are few reviews that systematically summarize the current trends of Drug Metabolism/Pharmacokinetic (DMPK) investigations of cardiovascular herbs. METHODS Here, the latest understanding, as well as the knowledge gaps of the DMPK issues in drug development and clinical usage of cardiovascular herbal compounds, was highlighted. RESULTS The complicated herb-herb interactions of cardiovascular Traditional Chinese Medicine (TCM) herb pair/formula significantly impact the PK/pharmacodynamic performance of compounds thereof, which may inspire researchers to develop a novel herbal formula for the optimized outcome of different cardiovascular diseases. While the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/T) of some compounds has been deciphered, DMPK studies should be extended to more cardiovascular compounds of different medicinal parts, species (including animals), and formulations, and could be streamlined by versatile omics platforms and computational analyses. CONCLUSION In the context of systems pharmacology, the DMPK knowledge base is expected to translate bench findings to clinical applications, as well as foster cardiovascular drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 2019; 26:860-869. [PMID: 31524010 PMCID: PMC6758605 DOI: 10.1080/10717544.2019.1660732] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pueraria lobata (Willd.) Ohwi is a medicinal and edible homologous plant with a long history in China. Puerarin, the main component isolated from the root of Pueraria lobata, possesses a wide range of pharmacological properties. Daidzein and glucuronides are the main metabolites of puerarin and are excreted in the urine and feces. As active substrates of P-gp, multidrug resistance-associated protein and multiple metabolic enzymes, the pharmacokinetics of puerarin can be influenced by different pathological conditions and drug-drug interactions. Due to the poor water-solubility and liposolubility, the applications of puerarin are limited. So far, only puerarin injections and eye drops are on the market. Recent years, researches on improving the bioavailability of puerarin are developing rapidly, various nanotechnologies and preparation technologies including microemulsions and SMEDDS, dendrimers, nanoparticles and nanocrystals have been researched to improve the bioavailability of puerarin. In order to achieve biocompatibility and desired activity, more effective quality evaluations of nanocarriers are required. In this review, we summarize the pharmacokinetics and drug delivery systems of puerarin up to date.
Collapse
Affiliation(s)
- Liang Zhang
- College of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
| |
Collapse
|
8
|
Kanthaliya B, Joshi A, Arora J. Evaluation of isoflavonoid content in context to tuber size and seed biology study of Pueraria tuberosa (Roxb.ex.Willd.) DC: a vulnerable medicinal plant. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42535-019-00042-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chen X, Qian L, Wang B, Zhang Z, Liu H, Zhang Y, Liu J. Synergistic Hypoglycemic Effects of Pumpkin Polysaccharides and Puerarin on Type II Diabetes Mellitus Mice. Molecules 2019; 24:E955. [PMID: 30857163 PMCID: PMC6429091 DOI: 10.3390/molecules24050955] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
To investigate the hypoglycemic effect and potential mechanism of pumpkin polysaccharides and puerarin on type II diabetes mellitus (T2DM) mice, mice were fed a high-fat diet and injected intraperitoneally with streptozotacin to induce T2DM. After eight weeks of drug administration, blood samples were withdrawn from tail veins of mice that had been fasted overnight. The results showed that both pumpkin polysaccharides and puerarin, as well as a pumpkin polysaccharides and puerarin combination, could ameliorate T2DM. The pumpkin polysaccharides and puerarin combination had a synergetic hypoglycemic effect on T2DM mice that was greater than the pumpkin polysaccharides' or the puerarin's hypoglycemic effect. Both the pumpkin polysaccharides and the puerarin were found to ameliorate the blood glucose tolerance and insulin resistance of T2DM mice. They showed lipid-lowering activity by reducing the total cholesterol, triglycerides, and low-density lipoprotein levels, and improving the high-density lipoprotein level. They had beneficial effects on the oxidative stress by decreasing the reactive oxygen species and malondialdehyde levels, and increasing the glutathione level and the superoxide dismutase activity. Furthermore, the nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1, and phosphoinositide-3-kinase (PI3K) levels were upregulated, and the Nrf2 and PI3K signalling pathways might be involved in the hypoglycemic mechanism. The combined administration of pumpkin polysaccharides and puerarin could synergistically ameliorate T2DM.
Collapse
Affiliation(s)
- Xue Chen
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Lei Qian
- Tianjin Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
- Key Laboratory of Storage of Agro-products, Ministry of Agriculture, Tianjin 300384, China.
| | - Bujiang Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Zhijun Zhang
- Tianjin Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
- Key Laboratory of Storage of Agro-products, Ministry of Agriculture, Tianjin 300384, China.
| | - Han Liu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Jinfu Liu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|