1
|
Wang H, She F, Chen F, Li K, Qin S. Selenium-Chitosan Protects Porcine Endometrial Epithelial Cells from Zearalenone-induced Apoptosis via the JNK/SAPK Signaling Pathway. Biol Trace Elem Res 2024; 202:2075-2084. [PMID: 37610602 DOI: 10.1007/s12011-023-03816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
This study was designed to assess whether selenium-chitosan (Se-CTS) can protect porcine endometrial epithelial cells (PEECs) against damage and apoptosis induced by zearalenone (ZEA) via modulating the JNK/SAPK signaling pathway. The cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and apoptosis rates of porcine endometrial epithelial cells were determined, as well as the expression levels of genes related to the SAPK/JNK signaling pathway. The results showed that 3.0 µmol/L Se-CTS decreased the percentage of ZEA-induced G1 phase in PEECs (P < 0.01), whereas 1.5 and 3.0 µmol/L Se-CTS increased the percentage of ZEA-induced percentage of G2 phase of PEECs (P < 0.01). Further, Se-CTS at 1.5 and 3.0 µmol/L improved the ZEA-induced decrease in MMP (P < 0.01), whereas Se-CTS at 0.5, 1.5, and 3.0 µmol/L reduced the increase in ROS levels and apoptosis rate induced by ZEA in PEECs (P < 0.01 or P < 0.05). Furthermore, 3.0 µmol/L Se-CTS ameliorated the increase in the expression of c-Jun N-terminal kinase (JNK), apoptosis signal-regulated kinase (ASK1), and c-Jun induced by ZEA (P < 0.01) and the reduction in mitogen-activated protein kinase kinase 4 (MKK4) and protein 53 (p53) expression (P < 0.01), while 1.5 µmol/L Se-CTS improved the expression of ASK1 and c-Jun induced by ZEA (P < 0.05). The results proved that Se-CTS alleviates ZEA-induced cell cycle stagnation, cell mitochondrial damage, and cell apoptosis via decreasing ZEA-produced ROS and modulating the JNK/SAPK signaling pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Chengyang District, No 700 Changcheng Road, Qingdao, 266109, China.
| | - Kun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China.
- Department of Agricultural Science and Technology, Hotan Vocational and Technical College, 10 Jinghuai Avenue, Beijing Industrial Zone, Hotan, 848000, China.
| |
Collapse
|
2
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
4
|
Wu J, Li J, Wu Y, Yang M, Chen Y, Wang N, Wang J, Yuan Z, Yi J, Yang C. Betulinic acid mitigates zearalenone-induced liver injury by ERS/MAPK/Nrf2 signaling pathways in mice. Food Chem Toxicol 2023; 177:113811. [PMID: 37179046 DOI: 10.1016/j.fct.2023.113811] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin commonly found in cereals and feedstuffs, which can induce oxidative stress and inflammation to cause liver damage in humans and animals. Betulinic acid (BA) is extracted from pentacyclic triterpenoids of many natural plants and has anti-inflammatory, and anti-oxidation biological activities in many studies. However, the protective effect of BA on liver injury induced by ZEA has not been reported. Therefore, this study aims to explore the protective effect of BA on ZEA-induced liver injury and its possible mechanism. In the mice experiment, ZEA exposure increased the liver index and caused histopathological impairment, oxidative damage, hepatic inflammatory responses, and increased hepatocyte apoptosis. However, when combined with BA, it could inhibit the production of ROS, up-regulate the proteins expression of Nrf2 and HO-1 and down-regulate the expression of Keap1, and alleviate oxidative damage and inflammation in the liver of mice. In addition, BA could alleviate ZEA-induced apoptosis and liver injury in mice by inhibiting the endoplasmic reticulum stress (ERS) and MAPK signaling pathways. In conclusion, this study revealed the protective effect of BA on the hepatotoxicity of ZEA for the first time, providing a new perspective for the development of ZEA antidote and the application of BA.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - You Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Mengran Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Naidong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, Changsha, 410128, China
| | - Ji Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China.
| | - Chenglin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Li X, Wang J, Zhang F, Yu M, Zuo N, Li L, Tan J, Shen W. Cyanidin-3-O-Glucoside Rescues Zearalenone-Induced Apoptosis via the ITGA7-PI3K-AKT Signaling Pathway in Porcine Ovarian Granulosa Cells. Int J Mol Sci 2023; 24:ijms24054441. [PMID: 36901882 PMCID: PMC10002597 DOI: 10.3390/ijms24054441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingya Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fali Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Wei Shen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: ; Tel.: +86-0532-58957316
| |
Collapse
|
6
|
Chen Z, Wang F, Zhang W, Zhou S, Wen D, Mu R. Chronic exposure to zearalenone induces intestinal inflammation and oxidative injury in adult Drosophila melanogaster midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114555. [PMID: 36680988 DOI: 10.1016/j.ecoenv.2023.114555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In the past decade, mycotoxin zearalenone (ZEN)-induced gastrointestinal adverse effects have been increasingly attracting worldwide attention. This study aimed to determine the gastrointestinal adverse effects of ZEN in Drosophila melanogaster (D. melanogaster) and reveal possible mechanisms of action of ZEN in insects. Here, chronic exposure of D. melanogaster to ZEN killed flies in a dose-dependent manner (2-20 µM). ZEN (20 µM) decreased the survival rates and climbing ability of flies, and activated immune deficiency-mediated intestinal immunity in midgut, leading to the production of antimicrobial peptides. Meanwhile, ZEN exposure induced morphological alteration of adult midgut. Further study suggested that high levels of oxidative stress was observed in ZEN-treated midgut due to the imbalance between the production of reactive oxygen species and the expression and activities of cellular antioxidant enzyme, including superoxide dismutase and catalase. ZEN-induced oxidative stress then caused cell death, impaired gut barrier function and increased gut permeability, leading to oxidative injury in midgut. Subsequently, ZEN-induce midgut injury further disrupted intestinal stem cell (ISC) homeostasis, stimulating ISC proliferation and tissue regeneration, but did not alter cell fate specification of ISC. Additionally, activation of Jun N-terminal kinase pathway was involved in ZEN-induced oxidative injury and tissue regeneration in midgut. Antioxidant vitamin E alleviated ZEN-induced oxidative injury to midgut epithelium. Collectively, this study provided additional evidences for ZEN-induced gastrointestinal adverse effects from an invertebrate model, extended our understanding of the mechanisms mediating mycotoxin toxicity in organisms.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Wen Zhang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Shuangshuang Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
7
|
Zearalenone Exposure Affects the Keap1-Nrf2 Signaling Pathway and Glucose Nutrient Absorption Related Genes of Porcine Jejunal Epithelial Cells. Toxins (Basel) 2022; 14:toxins14110793. [PMID: 36422967 PMCID: PMC9696209 DOI: 10.3390/toxins14110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
This study aims to examine the impact of zearalenone (ZEA) on glucose nutrient absorption and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in zearalenone-induced oxidative stress of porcine jejunal epithelial cells (IPEC-J2). For 24 and 36 h, the IPEC-J2 cells were exposed to ZEA at concentrations of 0, 10, 20, and 40 (Control, ZEA10, ZEA20, ZEA40) mol/L. With the increase of ZEA concentration and prolongation of the action time, the apoptosis rate and malondialdehyde level and relative expression of sodium-dependent glucose co-transporter 1 (Sglt1), glucose transporter 2 (Glut2), Nrf2, quinone oxidoreductase 1 (Nqo1), and hemeoxygenase 1 (Ho1) at mRNA and protein level, fluorescence intensity of Nrf2 and reactive oxygen species increased significantly (p < 0.05), total superoxide dismutase and glutathione peroxidase activities and relative expression of Keap1 at mRNA and protein level, fluorescence intensity of Sglt1 around the cytoplasm and the cell membrane of IPEC-J2 reduced significantly (p < 0.05). In conclusion, ZEA can impact glucose absorption by affecting the expression of Sglt1 and Glut2, and ZEA can activate the Keap1-Nrf2 signaling pathway by enhancing Nrf2, Nqo1, and Ho1 expression of IPEC-J2.
Collapse
|
8
|
Lin J, Zuo C, Liang T, Huang Y, Kang P, Xiao K, Liu Y. Lycopene alleviates multiple-mycotoxin-induced toxicity by inhibiting mitochondrial damage and ferroptosis in the mouse jejunum. Food Funct 2022; 13:11532-11542. [PMID: 36318035 DOI: 10.1039/d2fo02994d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Multiple mycotoxins contamination in foods and feeds threatens human and animal health after they accumulate in the food chain, producing various toxic effects. The common mycotoxins contaimination in feeds are zearalenone (ZEN), deoxynivalenol (DON), and aflatoxin B1 (AFB1), but the effects of their co-exposure on the jejunum are not well understood. Lycopene (LYC) has been reported to have antioxidant activity that alleviates jejunal damage. In this study, we investigated the possible role of LYC as a treatment to mitigate the combined effects of ZEN, DON, and AFB1 on the jejunum of mice. Eighty male specific-pathogen-free ICR mice were randomly allocated to treatments with LYC (10 mg kg-1) and/or ZEN + DON + AFB1 (10 mg kg-1 ZEN, 1 mg kg-1 DON, and 0.5 mg kg-1 AFB1). The results indicated that LYC alleviated ZEN + DON + AFB1-induced jejunal injury by ameliorating the jejunal structural injury and increasing the villus height/crypt depth ratio and the levels of tight junction proteins (zonula occludens 1 [ZO1], occludin1 and claudin1) in the mouse jejunum. LYC also inhibited the oxidative stress induced by co-exposure to ZEN, DON, and AFB1 via reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and enhancing the total antioxidant capacity (T-AOC). LYC also alleviated jejunal mitochondrial damage in the ZEN + DON + AFB1-affected mice, evident as an increase in mitochondrial fission 1 (Fis1) transcription and a reduction in mitochondrial mitofusin 1 (Mfn1) and Mfn2 transcription. Co-exposure to ZEN, DON, and AFB1 also significantly increased the transcription of ferroptosis-related genes (transferrin receptor 1 (Tfr1), ferritin heavy chain 1 [Fth1], solute carrier family 3 member 2 [Slc3a2], and glutathione peroxidase 4 [Gpx4]), TFR1 and Fe2+ concentration. Notably, LYC potentially alleviated ZEN + DON + AFB1-induced jejunal ferroptosis. These results demonstrate that LYC alleviates ZEN + DON + AFB1-induced jejunal toxicity by inhibiting oxidative stress-mediated ferroptosis and mitochondrial damage in mice.
Collapse
Affiliation(s)
- Jia Lin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Cuige Zuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Ping Kang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
9
|
Ma P, Sun C, Liu M, You H, Shen Y, Kang Y, Sun Y, Yang Z, Ma P, Yang L, Xue F. Metagenomic insights into the rumen epithelial integrity responses to the vitamin B1 supplement under high-concentrate diets treatments. Front Microbiol 2022; 13:1008373. [PMID: 36386689 PMCID: PMC9642323 DOI: 10.3389/fmicb.2022.1008373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Subacute ruminal acidosis (SARA) becomes the most common nutritional metabolic disease in high-yielding dairy cows and later fatting beef cattle because of the increasing consumption of high-concentrate diets in modern feeding patterns. Our previous research found a certain piece of evidence that adding 180 mg thiamine/kg DMI could increase the rumen pH and regulate the structure of the rumen microbial community in vivo. However, there is still limited experimental data on the effects of SARA on thiamine status, the damage to the structure of rumen epithelial cells, and the underlying mechanism of the epithelium alterations. For this purpose, a total of 18 Angus bulls (average 22.0-months-old) with an average live weight of 567.6 ± 27.4 kg were randomly allocated into a control treatment (CON), a high-concentrate diet treatment (HC), and a high-concentrate diet with the vitamin B1 supplement treatment (HCB). All bulls were conducted with a 7-day adjustment period followed by a 60-day-long main feeding procedure. Results indicated that ADFI and ADG significantly decreased in the HC treatment compared with CON (P < 0.05), while significantly increased after the VB1 supplement (P < 0.05). Besides, ruminal acetate content was significantly downregulated while propionate was significantly upregulated under the HC treatment compared with CON (P < 0.05); however, these alterations showed a completely inverse regulatory effect on the VB1 supplement compared with HC (P < 0.05). These changes causatively induced a significant decrease in the A/P ratio in the HC treatment compared with CON and HCB treatments (P < 0.05). Bacterial communities in the HC treatment could be separated from those in CON through PCoA axes 1 and 2. Meanwhile, the VB1 supplement significantly altered the bacterial communities compared with the HC treatment, except for HCB-3. Furthermore, the HC treatment significantly upregulated the expression of JNK, Bax, Caspase-8, Caspase-3, Caspase-9, and Cyt-C compared with CON, while significantly downregulated the expression of Bcl-2. The VB1 supplement showed a complete converse gene expression compared with HC. In conclusion, the VB1 supplement could effectively attenuate the alterations that occurred when exposed to high-concentrate diets, and help promote production performance through increased fermentability.
Collapse
Affiliation(s)
- Peng Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Anyou Biotechnology Group Co., Ltd., Taicang, Jiangsu, China
| | - Chaoqun Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minze Liu
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
| | - Hongnan You
- School of Foreign Language, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yao Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajie Kang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqin Sun
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
| | - Zhengang Yang
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
| | - Pengyun Ma
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Yangxin Yiliyuan Halal Meat Co., Ltd., Yangxin, Shandong, China
- *Correspondence: Fuguang Xue,
| |
Collapse
|
10
|
Qin S, She F, Zhao F, Li L, Chen F. Selenium-chitosan alleviates the toxic effects of Zearalenone on antioxidant and immune function in mice. Front Vet Sci 2022; 9:1036104. [PMID: 36277059 PMCID: PMC9582340 DOI: 10.3389/fvets.2022.1036104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study assessed the protective effects of selenium-chitosan (SC) against antioxidant and immune function-related damage induced by zearalenone (ZEN) in mice. In total, 150 female mice were allotted to five groups for a 30-day study. Control mice were fed a basal diet. Mice in the ZEN, ZEN-Se1, ZEN-Se2 and ZEN-Se3 groups were fed the basal diet supplemented with same dose of ZEN (2 mg/kg) and different doses of SC, 0.0, 0.2, 0.4 and 0.6 mg/kg, respectively (calculated by selenium). After 30 days, the total antioxidant capacity (T-AOC) level, glutathione peroxidase (GSH-Px) activity, total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) content in plasma and liver, as well as Con A-induced splenocyte proliferation, plasma interleukins concentrations and liver interleukin mRNA expression levels were determined. The plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, interleukin (IL) contents and mRNA expression levels in the ZEN group were significantly lower than in the control group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN group were significantly higher than in the control group (P < 0.01 or P < 0.05). Additionally, plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, IL-1β, IL-17A, IL-2 and IL-6 contents and mRNA expression levels in ZEN+Se2 and ZEN+Se3 groups were significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN+Se2 and ZEN+Se3 groups were significantly lower than in the ZEN group (P < 0.01 or P < 0.05). The plasma and liver GSH-Px activities, Con A-induced splenocyte proliferation, IL-1β and IL-6 contents, IL-2 and IL-17A mRNA expression levels in the ZEN+Se1 group were also significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas the plasma MDA content in the ZEN+Se1 group was also significantly lower than in the ZEN group (P < 0.01). Thus, SC may alleviate antioxidant function-related damage and immunosuppression induced by ZEN in mice.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fanghong Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Fu Chen
| |
Collapse
|
11
|
Xue F, Liu Y, Lv Z, Zhang J, Xiong S, Zha L, Liu Z, Shu J. Regulatory effects of differential dietary energy levels on spermatogenesis and sperm motility of yellow-feathered breeder cocks. Front Vet Sci 2022; 9:964620. [PMID: 36246315 PMCID: PMC9556827 DOI: 10.3389/fvets.2022.964620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
The semen quality of breeder cocks profoundly impacted the numbers of matched layer hens and the economic benefits of the poultry industry. Adequacy and balance of poultry nutrition, especially the energy provision, critically modulated the reproductive potential of breeder cocks, however, the underlying mechanism was still unclear. For the purpose of this study, a total of 90 yellow-feathered 13-week-old roosters with the same age in days and similar body weight (1,437 ± 44.3 g) were selected and randomly divided into the low energy diet (LE), the moderate energy diet (ME), and the high energy diet (HE) treatments. The phenotypic parameters related to reproduction include semen quality, fertility, and hatchability, and the testis morphological parameters, including seminiferous epithelium length (SEL), seminiferous tubule perimeter (STP), seminiferous tubule area (STA), and Johnsen score, were measured to investigate the regulatory effects of different energy diets on reproductive performances. Furthermore, spermatogenesis and sperm motility-related genes, which included the sry-related high mobility group box (SOX) gene family and sperm-associated antigen (SPAG) gene family, and mitochondria apoptosis-related genes, such as Cyt-C, Bcl-2, and Bax, were measured to determine the underlying mechanism of energy on the reproductive performances. The The results showed that the gonadosomatic index and sperm motility in the ME treatment significantly increased compared with the LE treatment. Chickens in the ME treatment showed a preferable performance of testis development, especially a significant increment of SEL and Johnsen Score, compared with the LE and HE treatments. Finally, spermatogenesis-related genes, which included SPAG6, SPAG16, SOX5, SOX6, and SOX13, and apoptosis-related genes of mitochondria, such as the Cyt-C and Bcl-2, were significantly upregulated in the ME treatment. This study concluded that proper energy provision stimulated regular energy metabolism for spermatogenesis and sperm capacitation, which finally increased semen quality and reproductive performances of breeder cocks.
Collapse
Affiliation(s)
- Fuguang Xue
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Ziyang Lv
- College of Economics and Management, Jiangxi Agricultural University, Nanchang, China
| | - Jian Zhang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shiyuan Xiong
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Liqing Zha
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyu Liu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- *Correspondence: Jingting Shu
| |
Collapse
|
12
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
13
|
Wang X, Wang T, Nepovimova E, Long M, Wu W, Kuca K. Progress on the detoxification of aflatoxin B1 using natural anti-oxidants. Food Chem Toxicol 2022; 169:113417. [PMID: 36096290 DOI: 10.1016/j.fct.2022.113417] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi. The most toxic among them is Aflatoxin B1 (AFB1) which is known to have genotoxic, immunotoxic, teratogenic, carcinogenic, and mutagenic toxic effects (amongst others). The mechanisms responsible for its toxicity include the induction of oxidative stress, cytotoxicity, and DNAdamage. Studies have found that natural anti-oxidants can reduce the damage that AFB1 inflicts on the body by alleviating oxidative stress and inhibiting the biotransformation of AFB1. Therefore, this review outlines the latest progress in research on the use of natural anti-oxidants as antidotes to aflatoxin poisoning and their detoxification mechanisms. It also considers the problems that may possibly arise from their use and their application prospects. Our aim is to provide a useful reference for the prevention and treatment of AFB1 poisoning.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tiancheng Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
14
|
Proanthocyanidins Activate Nrf2/ARE Signaling Pathway in Intestinal Epithelial Cells by Inhibiting the Ubiquitinated Degradation of Nrf2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8562795. [PMID: 36033575 PMCID: PMC9410805 DOI: 10.1155/2022/8562795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
Nrf2 plays a key role in the antioxidant system, and many antioxidants can activate the Nrf2/ARE signaling pathway and alleviate oxidative stress. However, the underlying mechanisms of antioxidants, such as proanthocyanidin- (PC-) induced Nrf2 activation, remain poorly understood. In this study, PC was used on MODE-K cells at different concentrations (0, 1, 2.5, and 5 μg/mL) and different times (0, 3, 6, 12, and 24 h); then, immunoprecipitation, immunofluorescence, and Western blotting were performed to test Nrf2, Bach1, Keap1, HO-1, and NQO1 protein expressions in MODE-K cells. Results showed that PC increased Nrf2, HO-1, and NQO1 protein expressions, decreased Keap1 and Bach1 protein expressions, and enhanced ARE gene activity. PC also decreased the ubiquitinated degradation of the Nrf2 protein, increased Nrf2 protein stability, and increased Nrf2 protein expression by inhibiting Keap1-dependent Nrf2 protein degradation, promoted Nrf2 entry into the nucleus, competed with Bach1, and activated ARE elements, which in turn initiated the Nrf2/ARE signaling pathway. Thus, we conclude that PC activates the Nrf2/ARE signaling pathway in intestinal epithelial cells by inhibiting the ubiquitinated degradation of Nrf2, increasing Nrf2 protein stability and expression, and then regulating key antioxidant enzymes such as HO-1 and NQO1 to initiate cytoprotective effects.
Collapse
|
15
|
Sun HY, Gu AX, Huang BY, Zhang T, Li JP, Shan AS. Dietary Grape Seed Proanthocyanidin Alleviates the Liver Injury Induced by Long-Term High-Fat Diets in Sprague Dawley Rats. Front Vet Sci 2022; 9:959906. [PMID: 35990272 PMCID: PMC9382112 DOI: 10.3389/fvets.2022.959906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
In mammals, the liver is the most important organ that plays a vital function in lipid metabolism. Grape seed proanthocyanidin (GSPE) is a kind of natural polyphenolic compound primarily obtained from grape skin and seeds. Recent research found it had high bioavailability in defending against obesity, hyperlipidemia, inflammatory, oxidative stress, and targeting liver tissue. However, the mechanism of GSPE in regulating obesity induced by dietary high-fat (HF) was not fully understood, particularly the influences on liver functions. Therefore, this study aimed to investigate the effects of GSPE supplementation on the liver function and lipid metabolic parameters in rats fed HF diets long-term. A total of 40 healthy female Sprague Dawley rats were selected. After 8 weeks of obesity model feeding, the rats were randomly divided into four treatments: NC, standard diet; NC + GSPE, standard diet + 500 mg/kg body weight GSPE; HF, high-fat diet; HG + GSPE, high fat diet + 500 mg/kg body weight GSPE. Results indicated that long-term HF feeding caused severe liver problems including megalohepatia, steatosis, inflammation, and hepatocyte apoptosis. The supplementation of GSPE alleviated these symptoms. The results of the current experiment confirmed that GSPE addition up-regulated the expression of the Wnt3a/β-catenin signaling pathway, thereby restraining the liver cell endoplasmic reticulum stress and hepatocyte apoptosis. Furthermore, the microRNA-103 may play a role in this signal-regulated pathway. In summary, GSPE had a protective effect on the liver and the current experiment provided a reference for the application of GSPE in animal nutrition as a kind of natural feed additive.
Collapse
Affiliation(s)
| | | | | | | | - Jian Ping Li
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - An Shan Shan
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
17
|
Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon 2021; 202:115-122. [PMID: 34562499 DOI: 10.1016/j.toxicon.2021.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Fusarium graminearum invasion and Zearalenone (ZEN)-mycotoxin contamination are considered the most global threat to food and feed. This study investigates the effect Lactobacillus plantarum MON03 viable cells (LPVC) and LP free cells supernatant (LPFCS) against Fusarium graminearum growth and ZEN production in vitro and evaluates if treatment with LP viable cells can counteract the negative effect of ZEN on inflammation and oxidative stress in mesenteric lymph nodes and serum biochemical parameters in mice. For the in vitro study, 7 days of LPVC, LPFCS and F. graminearum co-incubation at different concentrations was done in order to determine the antifungal activity and ZEN- production inhibition. Regarding the in vivo study, Balb/c mice were treated as following: Control, ZEN group, LP group and ZEN + LP group for 30 days. In vitro, LPVC showed an excellent antifungal activity after 7 days of co-incubation (103 CFU/ml). LPVC was succeeded also to inhibit ZEN production by the fungi. In vivo, ZEN has shown an important oxidative damage. As a result of the exposure to ZEN, an increase cytokines, as effectors of an inflammatory response, were observed in the mesenteric lymph nodes (MLN) of intoxicated mice. In parallel, a serum biochemical change was also observed. LPVC induced a reduction of ZEN-induced oxidative stress and counteracts also the biochemical parameters damage and the inflammatory markers increased by ZEN. LPVC can be valorized as an anti-cating agent in the vitro and in the gastro-intestinal tract to decrease ZEN-toxic effects.
Collapse
|
18
|
Zheng Y, Zhang B, Guan H, Jiao X, Yang J, Cai J, Liu Q, Zhang Z. Selenium deficiency causes apoptosis through endoplasmic reticulum stress in swine small intestine. Biofactors 2021; 47:788-800. [PMID: 34128579 DOI: 10.1002/biof.1762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
Selenium (Se) plays a crucial role in intestinal health. However, the specific mechanism by which deficiency of Se causes intestinal damage remains unclear. This study was to explore whether Se deficiency can cause ER stress and induce apoptosis in swine small intestine. We established the Se deficiency swine model in vivo and the intestinal epithelial (IPEC-J2) cell Se deficiency model in vitro. The results of morphological observation showed that Se deficiency caused structural damage in intestinal villi and the decrease of goblet cell structure. The apoptotic characteristics such as nucleolar condensation, mitochondrial swelling, and apoptotic bodies were observed in the IPEC-J2 cells. The results of acridine orange/ethidium bromide and mitochondrial membrane potential fluorescence staining in vitro showed that there were more apoptotic cells in the Se-deficiency group than that in the control group. The protein and/or mRNA expression levels of Bax, Bcl-2, caspase 3, caspase 8, caspase 9, cytc, PERK, ATF6, IRE, XBP1, CHOP, GRP78, which are related to ER stress-apoptosis pathway, were significantly increased in the Se-deficient group which compared with the control group in vivo and in vitro were consistent. These results indicated that Se deficiency induced ER stress and increased the apoptosis in swine small intestine and IPEC-J2 cells and then caused the damage in swine small intestinal tissue. Besides, the results of gene expressions in our experiment proved that ER stress induced by Se deficiency promoted apoptosis. These results filled the blank in the mechanism of Se deficiency-induced intestinal injury in swine.
Collapse
Affiliation(s)
- Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bo Zhang
- Fushun Center for Animal Epidemic Disease Prevention and Control, Fushun, China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
20
|
Zearalenone and the Immune Response. Toxins (Basel) 2021; 13:toxins13040248. [PMID: 33807171 PMCID: PMC8066068 DOI: 10.3390/toxins13040248] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic fusariotoxin, being classified as a phytoestrogen, or as a mycoestrogen. ZEA and its metabolites are able to bind to estrogen receptors, 17β-estradiol specific receptors, leading to reproductive disorders which include low fertility, abnormal fetal development, reduced litter size and modification at the level of reproductive hormones especially in female pigs. ZEA has also significant effects on immune response with immunostimulatory or immunosuppressive results. This review presents the effects of ZEA and its derivatives on all levels of the immune response such as innate immunity with its principal component inflammatory response as well as the acquired immunity with two components, humoral and cellular immune response. The mechanisms involved by ZEA in triggering its effects are addressed. The review cited more than 150 publications and discuss the results obtained from in vitro and in vivo experiments exploring the immunotoxicity produced by ZEA on different type of immune cells (phagocytes related to innate immunity and lymphocytes related to acquired immunity) as well as on immune organs. The review indicates that despite the increasing number of studies analyzing the mechanisms used by ZEA to modulate the immune response the available data are unsubstantial and needs further works.
Collapse
|
21
|
Cerda-Opazo P, Gotteland M, Oyarzun-Ampuero FA, Garcia L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies. Int J Mol Sci 2020; 22:ijms22010217. [PMID: 33379332 PMCID: PMC7794799 DOI: 10.3390/ijms22010217] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, kaempferol (KFL) shows hepatoprotective activity against zearalenone (ZEA)-induced oxidative stress and its underlying mechanisms in in vitro and in vivo models were investigated. Oxidative stress plays a critical role in the pathophysiology of various hepatic ailments and is normally regulated by reactive oxygen species (ROS). ZEA is a mycotoxin known to exert toxicity via inflammation and ROS accumulation. This study aims to explore the protective role of KFL against ZEA-triggered hepatic injury via the PI3K/Akt-regulated Nrf2 pathway. KFL augmented the phosphorylation of PI3K and Akt, which may stimulate antioxidative and antiapoptotic signaling in hepatic cells. KFL upregulated Nrf2 phosphorylation and the expression of antioxidant genes HO-1 and NQO-1 in a dose-dependent manner under ZEA-induced oxidative stress. Nrf2 knockdown via small-interfering RNA (siRNA) inhibited the KFL-mediated defence against ZEA-induced hepatotoxicity. In vivo studies showed that KFL decreased inflammation and lipid peroxidation and increased H2O2 scavenging and biochemical marker enzyme expression. KFL was able to normalize the expression of liver antioxidant enzymes SOD, CAT and GSH and showed a protective effect against ZEA-induced pathophysiology in the livers of mice. These outcomes demonstrate that KFL possesses notable hepatoprotective roles against ZEA-induced damage in vivo and in vitro. These protective properties of KFL may occur through the stimulation of Nrf2/HO-1 cascades and PI3K/Akt signaling.
Collapse
|
23
|
Analysis of CASP12 diagnostic and prognostic values in cervical cancer based on TCGA database. Biosci Rep 2020; 39:221421. [PMID: 31804677 PMCID: PMC6923337 DOI: 10.1042/bsr20192706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aims to find a differential protein-coding gene caspase 12 (CASP12) in cervical cancer (CC) based on the (TCGA) database and verify its clinical diagnostic and prognostic values. The transcriptome and clinicopathological data of CC were downloaded from the TCGA database and through screening, we found that PDE2A and CASP12 were independent prognostic factors for CC patients. According to the median expression, the patients were divided into groups with high and low CASP12 and PDE2A expression. There was no difference in survival between PDE2A high and low expression groups (P=0.099), whereas there was a significant difference between CASP12 high and low expression groups (P=0.033). The serum from 68 CC patients (experimental group) and 50 healthy people (control group) was collected to detect the relative expression of CASP12 using qRT-PCR and plotted the ROC curve. The relative expression of CASP12 in the experimental group was significantly lower than in the control group (P<0.05). The area under the curve (AUC) of CASP12 was 0.865. There were statistically significant differences between CASP12 groups with high and low expression in terms of differentiation, lymph node metastasis, tumor size, FIGO staging, and clinical outcomes (P<0.05), but not in terms of age, HPV types and pathological types (P>0.05). The 3-year survival in the CASP12 low expression group was significantly worse than in the CASP12 high expression group (P=0.028). In conclusion, the expression level of CASP12 can be used as a diagnostic and prognostic biomarker for patients with CC.
Collapse
|
24
|
Chen S, Yang S, Wang M, Chen J, Huang S, Wei Z, Cheng Z, Wang H, Long M, Li P. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in Leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway. Food Chem Toxicol 2020; 141:111385. [DOI: 10.1016/j.fct.2020.111385] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
|
25
|
Shi W, Guo Z, Ji Y, Feng J. The protective effect of recombinant globular adiponectin on testis by modulating autophagy, endoplasmic reticulum stress and oxidative stress in streptozotocin-induced diabetic mice. Eur J Pharmacol 2020; 879:173132. [PMID: 32353359 DOI: 10.1016/j.ejphar.2020.173132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
This study was to investigate whether recombinant globular adiponectin produced its protective effect on the testis of diabetic mice by modulating autophagy, endoplasmic reticulum stress and oxidative stress. Male mice were randomly divided into control, diabetic, diabetic treated with low and high dose of adiponectin. Mice were killed at the termination after 4 weeks and 8 weeks of adiponectin treatment. Serum levels of glucose, lipids, testosterone, insulin, LH and FSH were measured. The protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Caspase12, Beclin1, microtubule-associated protein light chain 3 (LC3) and p62 was determined by western blotting. The mRNA expression of adiponectin receptor 1 (AdipoR1), p22phox, p47phox, nuclear factor erythroid2-related factor 2 (Nrf2), NAD(P)H-quinone oxidoreductase 1(NQO1), heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) were determined by real-time fluorescence quantitative PCR. The testicular weight, the sperm number and motility, and the serum levels of testosterone and insulin were significantly decreased in diabetic mice (P < 0.05). The expression of Beclin1, LC3, Nrf2, NQO1, HO-1, SOD and AdipoR1 were significantly decreased (P < 0.05), while the expression of GRP78, CHOP, Caspase12, p62, p22phox and p47phox were notably increased in the testes of diabetic mice (P < 0.05). Adiponectin treatment significantly reversed the above-mentioned changes in the testes of diabetic mice, some of which were dose- and time-dependent (P < 0.05). These data suggested that recombinant globular adiponectin may produce the protective effect on the testes of diabetic mice by inducing autophagy and inhibiting ER stress and oxidative stress.
Collapse
Affiliation(s)
- Wenjiao Shi
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, 030001, China; Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhixin Guo
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yun Ji
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Jingyi Feng
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
26
|
Cheng Q, Jiang S, Huang L, Wang Y, Yang W, Yang Z, Ge J. Effects of zearalenone-induced oxidative stress and Keap1-Nrf2 signaling pathway-related gene expression in the ileum and mesenteric lymph nodes of post-weaning gilts. Toxicology 2019; 429:152337. [PMID: 31760079 DOI: 10.1016/j.tox.2019.152337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022]
Abstract
Zearalenone (ZEA) contamination of feed affects animal husbandry and the human health. Currently, the molecular mechanism underlying small intestine-related diseases caused by ZEA-induced oxidative stress is not well understood. In this study, we aimed to identify the mechanisms involved in ZEA (0.5-1.5 mg/kg)-induced oxidative stress in the ileum and mesenteric lymph nodes (MLNs) and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in post-weaning gilts. Forty post-weaning gilts (Landrace × Yorkshire × Duroc) with an average body weight of 14.01 ± 0.86 kg were randomly allocated to four groups and fed a corn-soybean meal basal diet supplemented with < 0.1, 0.5, 1.0, or 1.5 mg/kg ZEA. The results showed that the activity of total superoxide dismutase and glutathione peroxidase decreased (p < 0.05) linearly and quadratically and that the content of malondialdehyde increased (p < 0.05) quadratically in the ileum and MLNs with increasing ZEA in the diet. Immunohistochemical analysis showed that the expression of Nrf2 and glutathione peroxidase 1 (Gpx1) immunoreactive proteins in the ileum and MLNs were significantly enhanced with increasing ZEA. The relative mRNA and protein expression of Nrf2, Gpx1, quinone oxidoreductase 1 (Nqo1), hemeoxygenase 1 (Ho1), modifier subunit of glutamate-cysteine ligase (Gclm), and catalytic subunit of glutamate-cysteine ligase (Gclc) increased (p < 0.05) linearly and quadratically, and the relative mRNA and protein expression of Keap1 decreased (p < 0.05) linearly and quadratically in the ileum with increasing ZEA concentrations in the diet. Further, the relative mRNA and protein expression of Nrf2 and Gpx1 increased (p < 0.05) linearly and quadratically, and the relative mRNA and protein expression of Nqo1, Ho1, and Gclm decreased (p < 0.05) quadratically in the MLNs as ZEA concentrations increased in the diet. Our results provide valuable genetic information on ZEA-induced oxidative stress in the ileum and MLNs of post-weaning gilts and have elucidated the key regulatory genes involved in the Keap1-Nrf2 signaling pathway. Results indicated that the Keap1-Nrf2 signaling pathway might be a key target to further prevent and treat ZEA-induced injury to the ileum in post-weaning gilts.
Collapse
Affiliation(s)
- Qun Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Zaibin Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jinshan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd, No. 226 Gongye 2 Road, Feicheng City, Shandong,271600, China
| |
Collapse
|
27
|
Wei W, Peng J, Li J. Curcumin attenuates hypoxia/reoxygenation‑induced myocardial injury. Mol Med Rep 2019; 20:4821-4830. [PMID: 31638219 PMCID: PMC6854596 DOI: 10.3892/mmr.2019.10742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 06/28/2019] [Indexed: 12/26/2022] Open
Abstract
Curcumin (Cur) has been reported to function as an antioxidant and anti-inflammatory agent and to play a role in anti-atherosclerosis. The present study aimed to explore the protective effect of Cur on hypoxia/reoxygenation (H/R) injury. The morphological changes in H9c2 cardiomyocytes were observed under an inverted microscope. Cell viability was determined by Cell Counting Kit-8 (CCK-8). Lactate dehydrogenase (LDH) level, malondialdehyde (MDA) level and the antioxidant superoxide dismutase (SOD) activity were determined by corresponding kits. Apoptosis and reactive oxygen species (ROS) levels were determined by flow cytometry. Endoplasmic reticulum (ER) stress-related factors, which were examined by quantitative real-time polymerase chain reaction (qPCR) and western blot analysis, included 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP). Extracellular signal regulating kinase 1/2 (ERK1/2), p38, c-Jun NH2-terminal kinase (JNK) and the phosphorylation levels of key proteins in the mitogen-activated protein kinase (MAPK) signaling pathway were all determined by western blot analysis. Compared to the control group, the cell morphology of the H9c2 cells was obviously altered upon H/R. Cell viability was significantly decreased, while apoptosis was significantly increased by H/R. We also observed that the levels of LDH and MDA were elevated and the activity of SOD was decreased in the H/R group. Notably, LDH, MDA and SOD levels were reversed following treatment with Cur; while apoptosis and ROS levels in the H/R injury group were decreased by Cur. H/R injury-triggered ER stress and the MAPK signaling pathway were suppressed by Cur. These results demonstrated that Cur has a protective effect on cardiomyocytes via suppression of ER stress and the MAPK pathway.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Cardiology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Jun Peng
- Department of Cardiology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Jian Li
- Department of Pharmacy, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang 315400, P.R. China
| |
Collapse
|
28
|
Cai P, Feng N, Zheng W, Zheng H, Zou H, Yuan Y, Liu X, Liu Z, Gu J, Bian J. Treatment with, Resveratrol, a SIRT1 Activator, Prevents Zearalenone-Induced Lactic Acid Metabolism Disorder in Rat Sertoli Cells. Molecules 2019; 24:E2474. [PMID: 31284444 PMCID: PMC6651738 DOI: 10.3390/molecules24132474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Zearalenone (ZEA) interferes with the function of the male reproductive system, but its molecular mechanism has yet to be completely elucidated. Sertoli cells (SCs) are important in the male reproductive system. Silencing information regulator 1 (SIRT1) is a cell metabolism sensor and resveratrol (RSV) is an activator of SIRT1. In this study we investigated whether SIRT1 is involved in the regulation of ZEA-induced lactate metabolism disorder in SCs. The results showed that the cytotoxicity of ZEA toward SCs increased with increasing ZEA concentration. Moreover, ZEA induced a decrease in the production of lactic acid and pyruvate of SCs and inhibited the expression of glycolytic genes and lactic acid production-related proteins. ZEA also led to a decreased expression of SIRT1 in energy receptors and decreased ATP levels in SCs. However, the ZEA-induced cytotoxicity and decline in lactic acid production in SCs were alleviated by the use of RSV, which is an activator of SIRT1. In summary, ZEA decreased lactic acid production in SCs, while the treatment with an SIRT1 activator, RSV, restored the inhibition of lactic acid production in SCs and reduced cytotoxicity of ZEA toward SCs.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hao Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
29
|
Zhang J, Cao P, Gui J, Wang X, Han J, Wang Y, Wang G. Arctigenin ameliorates renal impairment and inhibits endoplasmic reticulum stress in diabetic db/db mice. Life Sci 2019; 223:194-201. [PMID: 30898648 DOI: 10.1016/j.lfs.2019.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
AIMS Diabetic nephropathy (DN) is the most common complication of diabetes mellitus. Endoplasmic reticulum (ER) plays an important role in the development and progression of DN. Arctigenin (ATG), a lignan extract from Fructus Arctii, exhibits anti-inflammatory, anticarcinogenic, anti-oxidative stress and immunomodulatory properties. The present research aimed to investigate whether ATG could protect against diabetes-related renal injury and inhibit ER stress in db/db mice. MAIN METHODS Male db/db mice were randomly divided into two groups: DN group and ATG treatment group (DN + ATG). db/m mice were defined as the normal control group (NC). ATG was dissolved in 0.5% carboxymethyl cellulose sodium salt solution and administered orally at a dose of 80 mg/kg to mice in the DN + ATG group once daily for 8 consecutive weeks. HK2 cells were used to determine the effects of ATG on ER stress and cell apoptosis in vitro. KEY FINDINGS ATG administration significantly reduced blood glucose, urine albumin excretion, and urine albumin to creatinine ratio, and attenuated renal pathological injury when compared with untreated db/db mice. These changes were accompanied by decreased expression of both ER stress-related markers and caspase 12 level in the kidneys of db/db mice. In vitro, high glucose activated ER stress signal transduction pathway and induced cell apoptosis in HK2 cells, which were blocked by ATG. SIGNIFICANCE Our results suggest that ATG exerts renoprotective effects on diabetes-related renal injury in db/db mice and cytoprotective effects on high glucose induced cell apoptosis and inhibits ER stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Peng Cao
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jingjing Gui
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Xin Wang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jun Han
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Yuwei Wang
- Department of Nephrology, the First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China.
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
30
|
Rajput SA, Zhang C, Feng Y, Wei XT, Khalil MM, Rajput IR, Baloch DM, Shaukat A, Rajput N, Qamar H, Hassan M, Qi D. Proanthocyanidins Alleviates AflatoxinB₁-Induced Oxidative Stress and Apoptosis through Mitochondrial Pathway in the Bursa of Fabricius of Broilers. Toxins (Basel) 2019; 11:E157. [PMID: 30857375 PMCID: PMC6468869 DOI: 10.3390/toxins11030157] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Aflatoxin B₁ (AFB₁) is a serious threat to the poultry industry. Proanthocyanidins (PCs) demonstrates a broad range of biological, pharmacological, therapeutic, and chemoprotective properties. The aim of this study was to investigate the ameliorative effects of PCs against AFB₁-induced histopathology, oxidative stress, and apoptosis via the mitochondrial pathway in the bursa of Fabricius (BF) of broilers. One hundred forty-four one-day old Cobb chicks were randomly assigned into four treatment groups of six replicates (6 birds each replicate) for 28 days. Groups were fed on the following four diets; (1) Basal diet without addition of PCs or AFB₁ (Control); (2) basal diet supplemented with 1 mg/kg AFB₁ from contaminated corn (AFB₁); (3) basal diet supplemented with 250 mg/kg PCs (PCs); and (4) basal diet supplemented with 1 mg/kg AFB₁ + 250 mg/kg PCs (AFB₁+ PCs). The present study results showed that antioxidant enzymes activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST) in AFB₁ treated group were (p < 0.05) decreased, whereas malondialdehyde (MDA) contents were significantly increased in comparison with the control group. Furthermore, we found that dietary PCs treatment ameliorated AFB₁-induced oxidative stress in the BF through inhibiting the accumulation of MDA content and enhancing the antioxidant enzymes activities (T-SOD, CAT, GSH-Px, and GST). Similarly, PCs markedly enhanced messenger RNA (mRNA) expression of antioxidant genes (SOD, CAT, GPx1, and GST) in comparison with AFB₁ group. Moreover, histological results showed that PCs alleviated AFB₁-induced apoptotic cells in the BF of broilers. In addition, both mRNA and protein expression results manifested that mitochondrial-apoptosis-associated genes (Bax, caspase-9, caspase-3, and p53 and cytochrome c) showed up-regulation, while (Bcl-2) showed down-regulation in AFB₁ fed group. The supplementation of PCs to AFB₁ diet significantly reversed the mRNA and protein expression of these apoptosis-associated genes, as compared to the AFB₁ group. Our results demonstrated that PCs ameliorated AFB₁-induced oxidative stress by modulating the antioxidant defense system and apoptosis in the BF through mitochondrial pathway in broilers.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Tian Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mahmoud Mohamed Khalil
- Animal Production Department, Faculty of Agriculture, Benha University, 13736 Banha, Egypt.
| | - Imran Rashid Rajput
- Faculty of Veterinary and Animal Science, Department of Biotechnology, Lasbela Univesity of Agriculture Water and Marine Science, 89250 Uthal, Balochistan, Pakistan.
| | - Dost Muhammad Baloch
- Faculty of Veterinary and Animal Science, Department of Biotechnology, Lasbela Univesity of Agriculture Water and Marine Science, 89250 Uthal, Balochistan, Pakistan.
| | - Aftab Shaukat
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nasir Rajput
- Department of Poultry Husbandry, Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University, 70060 Tandojam, Pakistan.
| | - Hammad Qamar
- Research Center of Animal Nutrition and Metabolic Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mubashar Hassan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Cardoso SM. Special Issue: The Antioxidant Capacities of Natural Products. Molecules 2019; 24:molecules24030492. [PMID: 30704064 PMCID: PMC6384626 DOI: 10.3390/molecules24030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Rai A, Dixit S, Singh SP, Gautam NK, Das M, Tripathi A. Presence of Zearalenone in Cereal Grains and Its Exposure Risk Assessment in Indian Population. J Food Sci 2018; 83:3126-3133. [PMID: 30466136 DOI: 10.1111/1750-3841.14404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Zearalenone (ZEA) is a toxic metabolite of Fusarium genera that frequently contaminates cereal grains. India being a tropical country provides suitable conditions for fungal invasion to the cereals. In the absence of any regulatory limits for ZEA in India, the present study was carried out to analyze the contamination levels of ZEA in different cereal samples consumed by Indian population and its exposure assessment through intake. Out of 117 cereal samples comprising of wheat, rice, corn, and oats, 70 (84%) were found to be positive for ZEA contamination, among which 24 (33%) samples exceeded the permissible limits proposed by European Union when analyzed by high-performance liquid chromatography. The positive samples were further validated by Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis. Based on the quantitative estimation of ZEA contamination in cereals and their daily consumption values, the probable daily intake of ZEA was found to be 16.9- and 7.9-fold higher in rice and wheat samples, respectively, than the tolerable daily intake prescribed by European Food Safety Authority. The presence of ZEA at high levels indicates a higher exposure risk for Indian population as wheat and rice are staple foods in India. Thus, there is an immediate need to set the permissible levels of ZEA in India to safeguard the health of 1.34 billion people. PRACTICAL APPLICATION: High levels of ZEA contaminated wheat and rice samples suggest that the consumers are at a greater exposure risk. The study will help the Indian regulatory bodies to set the permissible level of ZEA in different cereal grains so as to safeguard the health of common masses. This can happen by simply adopting to European Food Safety Authority standards or depending on the consumption pattern of food and its occurrence, the new safe limit can be prescribed in India like in other Asian countries.
Collapse
Affiliation(s)
- Ankita Rai
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Inst. of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Sumita Dixit
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Inst. of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Sheelendra Pratap Singh
- Analytical Chemistry Laboratory/Pesticide Toxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Inst. of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Inst. of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Mukul Das
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Inst. of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Anurag Tripathi
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Inst. of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| |
Collapse
|