1
|
Khoramian R, Issakhov M, Pourafshary P, Gabdullin M, Sharipova A. Surface modification of nanoparticles for enhanced applicability of nanofluids in harsh reservoir conditions: A comprehensive review for improved oil recovery. Adv Colloid Interface Sci 2024; 333:103296. [PMID: 39241391 DOI: 10.1016/j.cis.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Nanoparticles improve traditional Enhanced Oil Recovery (EOR) methods but face instability issues. Surface modification resolves these, making it vital to understand its impact on EOR effectiveness. This paper examines how surface-modified nanoparticles can increase oil recovery rates. We discuss post-synthesis modifications like chemical functionalization, surfactant and polymer coatings, surface etching, and oxidation, and during-synthesis modifications like core-shell formation, in-situ ligand exchange, and surface passivation. Oil displacement studies show surface-engineered nanoparticles outperform conventional EOR methods. Coatings or functionalizations alter nanoparticle size by 1-5 nm, ensuring colloidal stability for 7 to 30 days at 25 to 65 °C and 30,000 to 150,000 ppm NaCl. This stability ensures uniform distribution and enhanced penetration through low-permeability (1-10 md) rocks, improving oil recovery by 5 to 50 %. Enhanced recovery is achieved through 1-25 μm oil-in-water emulsions, increased viscosity by ≥30 %, wettability changes from 170° to <10°, and interfacial tension reductions of up to 95 %. Surface oxidation is suitable for carbon-based nanoparticles in high-permeability (≥500 md) reservoirs, leading to 80 % oil recovery in micromodel studies. Surface etching is efficient for all nanoparticle types, and combining it with chemical functionalization enhances resistance to harsh conditions (≥40,000 ppm salinity and ≥ 50 °C). Modifying nanoparticle surfaces with a silane coupling agent before using polymers and surfactants improves EOR parameters and reduces polymer thermal degradation (e.g., only 10 % viscosity decrease after 90 days). Economically, 500 ppm of nanoparticles requires 56.25 kg in a 112,500 m3 reservoir, averaging $200/kg, and 2000 ppm of surface modifiers require 4 kg at $3.39/kg. This results in 188,694.30 barrels, or $16,039,015.50 at $85 per barrel for a 20 % increase in oil recovery. The economic benefits justify the initial costs, highlighting the importance of cost-effective nanoparticles for EOR applications.
Collapse
Affiliation(s)
- Reza Khoramian
- School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | | | - Peyman Pourafshary
- School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan.
| | | | | |
Collapse
|
2
|
İnan-Çınkır N, Ağçam E, Altay F, Akyıldız A. Emulsion electrospinning of zein nanofibers with carotenoid microemulsion: Optimization, characterization and fortification. Food Chem 2024; 430:137005. [PMID: 37527575 DOI: 10.1016/j.foodchem.2023.137005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
In this study, carotenoid microemulsion was encapsulated in zein nanofibers via emulsion electrospinning. Optimization study was applied to determine optimum parameters by response surface methodology. The voltage, flow rate and distance as optimum conditions were determined as 23 kV, 1.7 mL/h and 12.75 cm, respectively. Lycopene, β-carotene, encapsulation efficiency, encapsulation yield and zeta potential of zein nanofibers in optimum conditions were estimated as 4.054 mg/kg, 0.649 mg/kg, 77.78%, 41.76% and -29.73 mV, respectively. The addition of microemulsion affected nanofibers diameter and morphologies. Diffusion coefficient of zein nanofibers decreased with addition of microemulsion under optimum conditions. The electrospinning improved thermal stability of microemulsion. The carotenoid microemulsion could be entrapped into the zein fibers according to ATR-FTIR spectrum. Model foods were fortificated with zein nanofibers. The addition of nanofibers changed color of the foods during the storage. Carotenoid compounds were more stable in nanofibers followed by olive oil, milk and water.
Collapse
Affiliation(s)
- Nuray İnan-Çınkır
- Department of Food Technology, Faculty of Kadirli Applied Science, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Erdal Ağçam
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Filiz Altay
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Asiye Akyıldız
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
3
|
Cheng Q, Cao G, Bai Y, Zhu Z, Zhang N, Li D. Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles. Molecules 2023; 28:molecules28073261. [PMID: 37050024 PMCID: PMC10096346 DOI: 10.3390/molecules28073261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
The solid particles in the produced fluids from the oil wells treated by compound flooding can greatly stabilize the strength of the interfacial film and enhance the stability of the emulsion, increasing the difficulty of processing these produced fluids on the ground. In this paper, the oil phase and the water phase were separated from the SPAN series emulsions by electrical dehydration technology and adding demulsifier agents. The changing trends of the current at both ends of the electrodes were recorded during the process. The efficient demulsification of the emulsion containing solid particles was studied from the perspective of oil-water separation mechanisms. Combined with the method of molecular dynamics simulation, the effect of the addition of a demulsifier on the free movement characteristics of crude oil molecules at the position of the liquid film of the emulsion were further analyzed. The results indicated that the presence of solid particles greatly increased the emulsifying ability of the emulsion and reduced its size. Under the synergistic effect of demulsifier and electric dehydration, the demulsification effect of the emulsion increased significantly, and the demulsification rate could reach more than 82%. The addition of demulsifiers changed the stable surface state of the solid particles. The free movement ability of the surrounding crude oil molecules was enhanced, which led to a decrease in the strength of the emulsion film so that the water droplets in the emulsions were more likely to coalesce and break. These results are of great significance for the efficient treatment of wastewater from oilfields, promoting the sustainability of environment-friendly oilfield development.
Collapse
Affiliation(s)
- Qingchao Cheng
- Key Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, China
| | - Guangsheng Cao
- Key Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, China
| | - Yujie Bai
- Key Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, China
| | - Zhixuan Zhu
- Research Institute of Oil Production Engineering, PetroChina Daqing Oilfield Limited Company, Daqing 163453, China
- Heilongjiang Provincial Key Laboratory of Oil and Gas Reservoir Stimulation, Daqing 163453, China
| | - Ning Zhang
- Key Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, China
| | - Dongju Li
- Key Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, China
| |
Collapse
|
4
|
López D, Chamat NM, Galeano-Caro D, Páramo L, Ramirez D, Jaramillo D, Cortés FB, Franco CA. Use of Nanoparticles in Completion Fluids as Dual Effect Treatments for Well Stimulation and Clay Swelling Damage Inhibition: An Assessment of the Effect of Nanoparticle Chemical Nature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:388. [PMID: 36770349 PMCID: PMC9921731 DOI: 10.3390/nano13030388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The objective of this study is to evaluate the role of nanoparticles with different chemical structures in completion fluids (CF) in providing a positive dual effect for well stimulation and clay swelling damage inhibition. Six types of commercial (C) or synthesized (S) nanoparticles have been incorporated into a commercial completion fluid. Doses varied between 100 and 500 mg·L-1. CF-nanoparticles were evaluated by fluid-fluid, fluid-nanoparticle, and fluid-rock interactions. The adsorption isotherms show different degrees of affinity, which impacts on the reduction of the interfacial tension between the CF and the reservoir fluids. Fluid-fluid interactions based on interfacial tension (IFT) measurements suggest that positively charged nanoparticles exhibit high IFT reductions. Based on contact angle measurements, fluid-rock interactions suggest that ZnO-S, SiO2-C, SiO2-S, and ZrO2 can adequately promote water-wet rock surfaces compared with other nanomaterials. According to the capillary number, ZnO-S and MgO-S have a higher capacity to reduce both interfacial and surface restrictions for crude oil production, suggesting that completion fluid with nanoparticles (NanoCF) can function as a stimulation agent. The clay swelling inhibition test in the presence of ZnO-S-CTAB and MgO-S-CTAB nanoparticles showed a 28.6% decrease in plastic viscosity (PV), indicating a reduction in clay swelling. The results indicate that a high-clay environment can meet the completion fluid's requirements. They also indicate that the degree of clay swelling inhibition of the nanoparticles depends on their chemical nature and dosage. Finally, displacement tests revealed that CF with nanoparticles increased the oil linear displacement efficiency.
Collapse
Affiliation(s)
- Daniel López
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | - Nicolas M. Chamat
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | - Dahiana Galeano-Caro
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | | | - Diego Ramirez
- Parex Resources Colombia Ltd., Bogota 110111, Colombia
| | | | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellin 050034, Colombia
| |
Collapse
|
5
|
Zapata K, Rodríguez Y, Lopera SH, Cortes FB, Franco CA. Development of Bio-Nanofluids Based on the Effect of Nanoparticles' Chemical Nature and Novel Solanum torvum Extract for Chemical Enhanced Oil Recovery (CEOR) Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3214. [PMID: 36145002 PMCID: PMC9504882 DOI: 10.3390/nano12183214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to develop novel bio-nanofluids using Solanum torvum extracts in synergy with nanoparticles of different chemical nature as a proposal sustainable for enhanced oil recovery (EOR) applications. For this, saponin-rich extracts (SRE) were obtained from Solanum torvum fruit using ultrasound-assisted and Soxhlet extraction. The results revealed that Soxhlet is more efficient for obtaining SRE from Solanum torvum and that degreasing does not generate additional yields. SRE was characterized by Fourier transformed infrared spectrophotometry, thermogravimetric analysis, hydrophilic-lipophilic balance, and critical micelle concentration analyses. Bio-nanofluids based on SiO2 (strong acid), ZrO2 (acid), Al2O3 (neutral), and MgO (basic) nanoparticles and SRE were designed to evaluate the effect of the chemical nature of the nanoparticles on the SRE performance. The results show that 100 mg L-1 MgO nanoparticles improved the interfacial tension up to 57% and the capillary number increased by two orders of magnitude using this bio-nanofluid. SRE solutions enhanced with MgO recovered about 21% more than the system in the absence of nanoparticles. The addition of MgO nanoparticles did not cause a loss of injectivity. This is the first study on the surface-active properties of Solanum torvum enhanced with nanomaterials as an environmentally friendly EOR process.
Collapse
Affiliation(s)
- Karol Zapata
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
| | - Yuber Rodríguez
- Yacimientos de Hidrocarburos, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
| | - Sergio H. Lopera
- Yacimientos de Hidrocarburos, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
| | - Farid B. Cortes
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
| | - Camilo A. Franco
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia
| |
Collapse
|
6
|
Tabaeh Hayavi M, Kazemzadeh Y, Riazi M. Application of Surfactant-based Enhanced Oil Recovery in Carbonate Reservoirs: A critical Review of the Opportunities and Challenges. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Liu Z, Zhao G, Brewer M, Lv Q, Sudhölter EJR. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 2021; 294:102467. [PMID: 34175528 DOI: 10.1016/j.cis.2021.102467] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2023]
Abstract
With the increasing demand for efficient extraction of residual oil, enhanced oil recovery (EOR) offers prospects for producing more reservoirs' original oil in place. As one of the most promising methods, chemical EOR (cEOR) is the process of injecting chemicals (polymers, alkalis, and surfactants) into reservoirs. However, the main issue that influences the recovery efficiency in surfactant flooding of cEOR is surfactant losses through adsorption to the reservoir rocks. This review focuses on the key issue of surfactant adsorption in cEOR and addresses major concerns regarding surfactant adsorption processes. We first describe the adsorption behavior of surfactants with particular emphasis on adsorption mechanisms, isotherms, kinetics, thermodynamics, and adsorption structures. Factors that affect surfactant adsorption such as surfactant characteristics, solution chemistry, rock mineralogy, and temperature were discussed systematically. To minimize surfactant adsorption, the chemical additives of alkalis, polymers, nanoparticles, co-solvents, and ionic liquids are highlighted as well as implementing with salinity gradient and low salinity water flooding strategies. Finally, current trends and future challenges related to the harsh conditions in surfactant based EOR are outlined. It is expected to provide solid knowledge to understand surfactant adsorption involved in cEOR and contribute to improved flooding strategies with reduced surfactant loss.
Collapse
Affiliation(s)
- Zilong Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China; Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ge Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China
| | - Mark Brewer
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam (STCA), Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Qichao Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China.
| | - Ernst J R Sudhölter
- Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
8
|
Alsmaeil AW, Hammami MA, Enotiadis A, Kanj MY, Giannelis EP. Encapsulation of an Anionic Surfactant into Hollow Spherical Nanosized Capsules: Size Control, Slow Release, and Potential Use for Enhanced Oil Recovery Applications and Environmental Remediation. ACS OMEGA 2021; 6:5689-5697. [PMID: 33681608 PMCID: PMC7931374 DOI: 10.1021/acsomega.0c06094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 05/06/2023]
Abstract
A new platform that allows encapsulation of anionic surfactants into nanosized capsules and subsequent release upon deployment is described. The system is based on DOWFAX surfactant molecules incorporated into sub-100 nm hollow silica nanoparticles composed of a mesoporous shell. The particles released 40 wt % of the encapsulated surfactant at 70 °C compared to 24 wt % at 25 °C after 21 and 18 days, respectively. The use of the particles for subsurface applications is assessed by studying the effectiveness of the particles to alter the wettability of hydrophobic surfaces and reduction of the interfacial tension. The release of the surfactant molecules in the suspension reduces the contact angle of a substrate from 105 to 25° over 55 min. A sustained release profile is demonstrated by a continuous reduction of the interfacial tension of an oil suspension, where the interfacial tension is reduced from 62 to 2 mN m-1 over a period of 3 days.
Collapse
Affiliation(s)
- Ahmed Wasel Alsmaeil
- Department
of Chemical and Biomolecular Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
- EXPEC
Advanced Research Center, Saudi Aramco, Dhahran 31261, Saudi Arabia
| | - Mohammed Amen Hammami
- Department
of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Apostolos Enotiadis
- Department
of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mazen Yousef Kanj
- College
of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P. Giannelis
- Department
of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Franco CA, Giraldo LJ, Candela CH, Bernal KM, Villamil F, Montes D, Lopera SH, Franco CA, Cortés FB. Design and Tuning of Nanofluids Applied to Chemical Enhanced Oil Recovery Based on the Surfactant-Nanoparticle-Brine Interaction: From Laboratory Experiments to Oil Field Application. NANOMATERIALS 2020; 10:nano10081579. [PMID: 32796762 PMCID: PMC7466570 DOI: 10.3390/nano10081579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
The primary objective of this study is to develop a novel experimental nanofluid based on surfactant–nanoparticle–brine tuning, subsequently evaluate its performance in the laboratory under reservoir conditions, then upscale the design for a field trial of the nanotechnology-enhanced surfactant injection process. Two different mixtures of commercial anionic surfactants (SA and SB) were characterized by their critical micelle concentration (CMC), density, and Fourier transform infrared (FTIR) spectra. Two types of commercial nanoparticles (CNA and CNB) were utilized, and they were characterized by SBET, FTIR spectra, hydrodynamic mean sizes (dp50), isoelectric points (pHIEP), and functional groups. The evaluation of both surfactant–nanoparticle systems demonstrated that the best performance was obtained with a total dissolved solid (TDS) of 0.75% with the SA surfactant and the CNA nanoparticles. A nanofluid formulation with 100 mg·L−1 of CNA provided suitable interfacial tension (IFT) values between 0.18 and 0.15 mN·m−1 for a surfactant dosage range of 750–1000 mg·L−1. Results obtained from adsorption tests indicated that the surfactant adsorption on the rock would be reduced by at least 40% under static and dynamic conditions due to nanoparticle addition. Moreover, during core flooding tests, it was observed that the recovery factor was increased by 22% for the nanofluid usage in contrast with a 17% increase with only the use of the surfactant. These results are related to the estimated capillary number of 3 × 10−5, 3 × 10−4, and 5 × 10−4 for the brine, the surfactant, and the nanofluid, respectively, as well as to the reduction in the surfactant adsorption on the rock which enhances the efficiency of the process. The field trial application was performed with the same nanofluid formulation in the two different injection patterns of a Colombian oil field and represented the first application worldwide of nanoparticles/nanofluids in enhanced oil recovery (EOR) processes. The cumulative incremental oil production was nearly 30,035 Bbls for both injection patterns by May 19, 2020. The decline rate was estimated through an exponential model to be −0.104 month−1 before the intervention, to −0.016 month−1 after the nanofluid injection. The pilot was designed based on a production increment of 3.5%, which was successfully surpassed with this field test with an increment of 27.3%. This application is the first, worldwide, to demonstrate surfactant flooding assisted by nanotechnology in a chemical enhanced oil recovery (CEOR) process in a low interfacial tension region.
Collapse
Affiliation(s)
- Carlos A. Franco
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Lady J. Giraldo
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
| | - Carlos H. Candela
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Karla M. Bernal
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Fabio Villamil
- Gerencia de Desarrollo Sur, Ecopetrol S.A., Neiva, Huila 410010, Colombia; (C.A.F.); (C.H.C.); (K.M.B.); (F.V.)
| | - Daniel Montes
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
| | - Sergio H. Lopera
- Grupo de Investigación en Yacimientos de Hidrocarburos, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia;
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
- Correspondence: (C.A.F.); (F.B.C.); Tel.: +57-(4)-4255000 (ext. 44313) (C.A.F.); +57-(4)-4255137 (F.B.C.)
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Kr 80 No. 65-223, Medellín, Antioquia 050034, Colombia; (L.J.G.); (D.M.)
- Correspondence: (C.A.F.); (F.B.C.); Tel.: +57-(4)-4255000 (ext. 44313) (C.A.F.); +57-(4)-4255137 (F.B.C.)
| |
Collapse
|
10
|
Effects of Foam Microbubbles on Electrical Resistivity and Capillary Pressure of Partially Saturated Porous Media. Molecules 2020; 25:molecules25153385. [PMID: 32722602 PMCID: PMC7436130 DOI: 10.3390/molecules25153385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022] Open
Abstract
Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.
Collapse
|
11
|
Cheng Y, Yuan S. Emulsification of Surfactant on Oil Droplets by Molecular Dynamics Simulation. Molecules 2020; 25:molecules25133008. [PMID: 32630093 PMCID: PMC7412001 DOI: 10.3390/molecules25133008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Heavy oil in crude oil flooding is extremely difficult to extract due to its high viscosity and poor fluidity. In this paper, molecular dynamics simulation was used to study the emulsification behavior of sodium dodecyl sulfonate (SDSn) micelles on heavy oil droplets composed of asphaltenes (ASP) at the molecular level. Some analyzed techniques were used including root mean square displacement, hydrophile-hydrophobic area of an oil droplet, potential of mean force, and the number of hydrogen bonds between oil droplet and water phase. The simulated results showed that the asphaltene with carboxylate groups significantly enhances the hydration layer on the surface of oil droplets, and SDSn molecules can change the strength of the hydration layer around the surface of the oil droplets. The water bridge structure between both polar heads of the surfactant was commonly formed around the hydration layer of the emulsified oil droplet. During the emulsification of heavy oil, the ratio of hydrophilic hydrophobic surface area around an oil droplet is essential. Molecular dynamics method can be considered as a helpful tool for experimental techniques at the molecular level.
Collapse
|
12
|
Pérez-Robles S, Cortés FB, Franco CA. Effect of the nanoparticles in the stability of hydrolyzed polyacrylamide/resorcinol/formaldehyde gel systems for water shut-off/conformance control applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.47568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Saray Pérez-Robles
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas; Universidad Nacional de Colombia, Sede Medellín; 050034, Medellín Colombia
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas; Universidad Nacional de Colombia, Sede Medellín; 050034, Medellín Colombia
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas; Universidad Nacional de Colombia, Sede Medellín; 050034, Medellín Colombia
| |
Collapse
|
13
|
Llanos S, Giraldo LJ, Santamaria O, Franco CA, Cortés FB. Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO 2 Nanoparticles in Polymer Flooding Processes. ACS OMEGA 2018; 3:18673-18684. [PMID: 31458433 PMCID: PMC6643411 DOI: 10.1021/acsomega.8b02944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 06/10/2023]
Abstract
The nanotechnology has been applied recently to increase the efficiency of enhanced oil recovery methods. The main objective of this study is to evaluate the effect of SiO2 nanoparticle functionalization with different loadings of sodium oleate surfactant for polymer flooding processes. The sodium oleate surfactant was synthesized using oleic acid and NaCl. The SiO2 nanoparticles were functionalized by physical adsorption using different surfactant loadings of 2.45, 4.08, and 8.31 wt % and were characterized by thermogravimetric analyses, Fourier-transform infrared spectroscopy, dynamic light scattering, and zeta potential. Adsorption and desorption experiments of partially hydrolyzed polyacrylamide (HPAM) polymer solutions over the unmodified and surface-modified nanoparticles were performed, with higher adsorption capacity as the surfactant loading increases. The adsorption isotherms have a type III behavior, and polymer desorption from the nanoparticle surface was considered null. The effect of nanoparticles in the polymer solutions was evaluated through rheological measurements, interfacial tension (IFT) tests, contact angle measurements, capillary number, and displacement tests in a micromodel. The surface-modified SiO2 nanoparticles showed a slight effect on the viscosity of the polymer solution and high influence on the IFT reduction and wettability alteration of the porous medium leading to an increase of the capillary number. Displacement tests showed that the oil recovery could increase up to 23 and 77% regarding polymer flooding and water flooding, respectively, by including the surface-functionalized materials.
Collapse
Affiliation(s)
- Sebastián Llanos
- Grupo
de Investigación Fenómenos de Superficie-Michael Polanyi,
Facultad de Minas and Grupo de Investigación en Yacimientos de Hidrocarburos,
Facultad de Minas, Universidad Nacional
de Colombia Sede Medellín, Kra 80 No. 65-223, Medellín 050041, Colombia
| | - Lady J. Giraldo
- Grupo
de Investigación Fenómenos de Superficie-Michael Polanyi,
Facultad de Minas and Grupo de Investigación en Yacimientos de Hidrocarburos,
Facultad de Minas, Universidad Nacional
de Colombia Sede Medellín, Kra 80 No. 65-223, Medellín 050041, Colombia
| | - Oveimar Santamaria
- Grupo
de Investigación Fenómenos de Superficie-Michael Polanyi,
Facultad de Minas and Grupo de Investigación en Yacimientos de Hidrocarburos,
Facultad de Minas, Universidad Nacional
de Colombia Sede Medellín, Kra 80 No. 65-223, Medellín 050041, Colombia
| | - Camilo A. Franco
- Grupo
de Investigación Fenómenos de Superficie-Michael Polanyi,
Facultad de Minas and Grupo de Investigación en Yacimientos de Hidrocarburos,
Facultad de Minas, Universidad Nacional
de Colombia Sede Medellín, Kra 80 No. 65-223, Medellín 050041, Colombia
| | - Farid B. Cortés
- Grupo
de Investigación Fenómenos de Superficie-Michael Polanyi,
Facultad de Minas and Grupo de Investigación en Yacimientos de Hidrocarburos,
Facultad de Minas, Universidad Nacional
de Colombia Sede Medellín, Kra 80 No. 65-223, Medellín 050041, Colombia
| |
Collapse
|