1
|
Qiao Y, Xiao G, Zhu X, Wen J, Bu Y, Zhang X, Kong J, Bai Y, Xie Q. Resveratrol Enhances Antioxidant and Anti-Apoptotic Capacities in Chicken Primordial Germ Cells through m6A Methylation: A Preliminary Investigation. Animals (Basel) 2024; 14:2214. [PMID: 39123740 PMCID: PMC11311097 DOI: 10.3390/ani14152214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Avian primordial germ cells (PGCs) are essential in avian transgenic research, germplasm conservation, and disease resistance breeding. However, cultured PGCs are prone to fragmentation and apoptosis, regulated at transcriptional and translational levels, with N6-methyladenosine (m6A) being the most common mRNA modification. Resveratrol (RSV) is known for its antioxidant and anti-apoptotic properties, but its effects on PGCs and the underlying mechanisms are not well understood. This study shows that RSV supplementation in cultured PGCs improves cell morphology, significantly enhances total antioxidant capacity (p < 0.01), reduces malondialdehyde levels (p < 0.05), increases anti-apoptotic BCL2 expression, and decreases Caspase-9 expression (p < 0.05). Additionally, RSV upregulates the expression of m6A reader proteins YTHDF1 and YTHDF3 (p < 0.05). m6A methylation sequencing revealed changes in mRNA m6A levels after RSV treatment, identifying 6245 methylation sites, with 1223 unique to the control group and 798 unique to the RSV group. Combined analysis of m6A peaks and mRNA expression identified 65 mRNAs with significantly altered methylation and expression levels. Sixteen candidate genes were selected, and four were randomly chosen for RT-qPCR validation, showing results consistent with the transcriptome data. Notably, FAM129A and SFRP1 are closely related to apoptosis, indicating potential research value. Overall, our study reveals the protective effects and potential mechanisms of RSV on chicken PGCs, providing new insight into its use as a supplement in reproductive stem cell culture.
Collapse
Affiliation(s)
- Yanzhao Qiao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Animal Genomics and Molecular Breeding of Guangdong Province, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gengsheng Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Animal Genomics and Molecular Breeding of Guangdong Province, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohua Zhu
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precision Breeding, Foshan University, Foshan 528231, China
| | - Jun Wen
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precision Breeding, Foshan University, Foshan 528231, China
| | - Yonghui Bu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Animal Genomics and Molecular Breeding of Guangdong Province, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Kong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Animal Genomics and Molecular Breeding of Guangdong Province, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinshan Bai
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precision Breeding, Foshan University, Foshan 528231, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Animal Genomics and Molecular Breeding of Guangdong Province, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Sy B, Krisa S, Richard T, Courtois A. Resveratrol, ε-Viniferin, and Vitisin B from Vine: Comparison of Their In Vitro Antioxidant Activities and Study of Their Interactions. Molecules 2023; 28:7521. [PMID: 38005243 PMCID: PMC10672907 DOI: 10.3390/molecules28227521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The control of oxidative stress with natural active substances could limit the development of numerous pathologies. Our objective was to study the antiradical effects of resveratrol (RSV), ε-viniferin (VNF), and vitisin B (VB) alone or in combination, and those of a standardized stilbene-enriched vine extract (SSVE). In the DPPH-, FRAP-, and NO-scavenging assays, RSV presented the highest activity with an IC50 of 81.92 ± 9.17, 13.36 ± 0.91, and 200.68 ± 15.40 µM, respectively. All binary combinations resulted in additive interactions in the DPPH- and NO-scavenging assays. In the FRAP assay, a synergic interaction for RSV + VNF, an additive for VNF + VB, and an antagonistic for RSV + VB were observed. The ternary combination of RSV + VNF + VB elicited an additive interaction in the DPPH assay and a synergic interaction in the FRAP- and NO-scavenging assays. There was no significant difference between the antioxidant activity of the SSVE and that of the combination of RSV + VNF. In conclusion, RSV presented the highest effects, followed by VNF and VB. The interactions revealed additive or synergistic effects, depending on the combination of the stilbenes and assay.
Collapse
Affiliation(s)
- Biranty Sy
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
| | - Stéphanie Krisa
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
| | - Tristan Richard
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
| | - Arnaud Courtois
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
- CHU de Bordeaux, Centre Antipoison de Nouvelle Aquitaine, Emergency Building, 33076 Bordeaux, France
| |
Collapse
|
3
|
Zhang X, Gong J, Huang W, Liu W, Ma C, Liang R, Chen Y, Xie Z, Li P, Liao Q. Structural Analysis and Antioxidant and Immunoregulatory Activities of an Exopolysaccharide Isolated from Bifidobacterium longum subsp. longum XZ01. Molecules 2023; 28:7448. [PMID: 37959867 PMCID: PMC10649592 DOI: 10.3390/molecules28217448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Bifidobacterium longum subsp. longum XZ01 (BLSL1) is a new strain (isolated from the intestines of healthy people and deposited with the preservation number GDMCC 61618). An exopolysaccharide, S-EPS-1, was successfully isolated from the strain and then systematically investigated for the first time. Some structural features of S-EPS-1 were analyzed by chemical component, HPLC, ultraviolet, infrared, and nuclear magnetic resonance spectrum analyses. These analyses revealed that S-EPS-1 is a neutral heteropolysaccharide with an α-configuration. It contains mainly mannose and glucose, as well as small amounts of rhamnose and galactose. The molecular weight of S-EPS-1 was calculated to be 638 kDa. Several immunoregulatory activity assays indicated that S-EPS-1 could increase proliferation, phagocytosis, and NO production in vitro. In addition, S-EPS-1 could upregulate the expression of cytokines at the mRNA level through TLR4-mediated activation of the NF-κB signaling pathway in RAW 264.7 cells. Finally, S-EPS-1 was demonstrated to exhibit antioxidant activity by ABTS+• scavenging, DPPH• scavenging, and ferric-ion reducing power assays. Furthermore, S-EPS-1 can protect cells from oxidative stress and shows no cytotoxicity. These beneficial effects can be partly attributed to its antioxidant ability. Thus, the antioxidant S-EPS-1 may be applied as a functional food in the future.
Collapse
Affiliation(s)
- Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Wen Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China; (W.L.); (C.M.); (Z.X.)
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China; (W.L.); (C.M.); (Z.X.)
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518106, China; (W.L.); (C.M.); (Z.X.)
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.Z.); (J.G.); (W.H.); (R.L.); (Y.C.)
| |
Collapse
|
4
|
Agbadua OG, Kúsz N, Berkecz R, Gáti T, Tóth G, Hunyadi A. Oxidized Resveratrol Metabolites as Potent Antioxidants and Xanthine Oxidase Inhibitors. Antioxidants (Basel) 2022; 11:1832. [PMID: 36139906 PMCID: PMC9495788 DOI: 10.3390/antiox11091832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a well-known natural polyphenol with a plethora of pharmacological activities. As a potent antioxidant, resveratrol is highly oxidizable and readily reacts with reactive oxygen species (ROS). Such a reaction not only leads to a decrease in ROS levels in a biological environment but may also generate a wide range of metabolites with altered bioactivities. Inspired by this notion, in the current study, our aim was to take a diversity-oriented chemical approach to study the chemical space of oxidized resveratrol metabolites. Chemical oxidation of resveratrol and a bioactivity-guided isolation strategy using xanthine oxidase (XO) and radical scavenging activities led to the isolation of a diverse group of compounds, including a chlorine-substituted compound (2), two iodine-substituted compounds (3 and 4), two viniferins (5 and 6), an ethoxy-substituted compound (7), and two ethoxy-substitute,0d dimers (8 and 9). Compounds 4, 7, 8, and 9 are reported here for the first time. All compounds without ethoxy substitution exerted stronger XO inhibition than their parent compound, resveratrol. By enzyme kinetic and in silico docking studies, compounds 2 and 4 were identified as potent competitive inhibitors of the enzyme, while compound 3 and the viniferins acted as mixed-type inhibitors. Further, compounds 2 and 9 had better DPPH scavenging activity and oxygen radical absorbing capacity than resveratrol. Our results suggest that the antioxidant activity of resveratrol is modulated by the effect of a cascade of chemically stable oxidized metabolites, several of which have significantly altered target specificity as compared to their parent compound.
Collapse
Affiliation(s)
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Gáti
- Servier Research Institute of Medicinal Chemistry (SRIMC), H-1031 Budapest, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Yang L, Liu Y, Zhang W, Hua Y, Chen B, Wu Q, Chen D, Liu S, Li X. Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP. Molecules 2021; 26:4300. [PMID: 34299576 PMCID: PMC8303713 DOI: 10.3390/molecules26144300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
The search for a safe and effective inhibitor of ferroptosis, a recently described cell death pathway, has attracted increasing interest from scientists. Two hydrolyzable tannins, chebulagic acid and chebulinic acid, were selected for the study. Their optimized conformations were calculated using computational chemistry at the B3LYP-D3(BJ)/6-31G and B3LYP-D3(BJ)/6-311 + G(d,p) levels. The results suggested that (1) chebulagic acid presented a chair conformation, while chebulinic acid presented a skew-boat conformation; (2) the formation of chebulagic acid requires 762.1729 kcal/mol more molecular energy than chebulinic acid; and (3) the 3,6-HHDP (hexahydroxydiphenoyl) moiety was shown to be in an (R)- absolute stereoconfiguration. Subsequently, the ferroptosis inhibition of both tannins was determined using a erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) model and compared to that of ferrostatin-1 (Fer-1). The relative inhibitory levels decreased in the following order: Fer-1 > chebulagic acid > chebulinic acid, as also revealed by the in vitro antioxidant assays. The UHPLC-ESI-Q-TOF-MS analysis suggested that, when treated with 16-(2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy free radicals, Fer-1 generated dimeric products, whereas the two acids did not. In conclusion, two hydrolyzable tannins, chebulagic acid and chebulinic acid, can act as natural ferroptosis inhibitors. Their ferroptosis inhibition is mediated by regular antioxidant pathways (ROS scavenging and iron chelation), rather than the redox-based catalytic recycling pathway exhibited by Fer-1. Through antioxidant pathways, the HHDP moiety in chebulagic acid enables ferroptosis-inhibitory action of hydrolyzable tannins.
Collapse
Affiliation(s)
- Lin Yang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (L.Y.); (D.C.)
| | - Yangping Liu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China;
| | - Wenhui Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Yujie Hua
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Quanzhou Wu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (L.Y.); (D.C.)
| | - Shuqin Liu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| |
Collapse
|
6
|
Ouyang X, Li X, Liu J, Liu Y, Xie Y, Du Z, Xie H, Chen B, Lu W, Chen D. Structure-activity relationship and mechanism of four monostilbenes with respect to ferroptosis inhibition. RSC Adv 2020; 10:31171-31179. [PMID: 35520676 PMCID: PMC9056428 DOI: 10.1039/d0ra04896h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) were prepared and used to compare the ferroptosis inhibitory bioactivities of four monostilbenes, including rhapontigenin (1a), isorhapontigenin (1b), piceatannol-3'-O-glucoside (1c), and rhapontin (1d). Their relative levels were 1c ≈ 1b > 1a ≈ 1d in 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flow cytometric assays. The comparison highlighted two 4'-OH-containing monostilbenes (1c and 1b) in ferroptosis inhibitory bioactivity. Similar structure-activity relationships were also observed in antioxidant assays, including 1,1-diphenyl-2-picryl-hydrazl radical (DPPH˙)-trapping, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO˙)-trapping, and Fe3+-reducing assays. UPLC-ESI-Q-TOF-MS analysis of the DPPH˙-trapping reaction of the monostilbenes revealed that they can inhibit ferroptosis in erastin-treated bmMSCs through a hydrogen donation-based antioxidant pathway. After hydrogen donation, these monostilbenes usually produce the corresponding stable dimers; additionally, the hydrogen donation potential was enhanced by the 4'-OH. The enhancement by 4'-OH can be attributed to the transannular resonance effect. This effect can be used to predict the inhibition potential of other π-π conjugative phenolics.
Collapse
Affiliation(s)
- Xiaojian Ouyang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yangping Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Zhongcun Du
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Wenbiao Lu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| |
Collapse
|
7
|
Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants (Basel) 2020; 9:antiox9030205. [PMID: 32131401 PMCID: PMC7139729 DOI: 10.3390/antiox9030205] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
In this study, the anti-ferroptosis effects of catecholic flavonol quercetin and its metabolite quercetin Diels-Alder anti-dimer (QDAD) were studied using an erastin-treated bone marrow-derived mesenchymal stem cell (bmMSCs) model. Quercetin exhibited higher anti-ferroptosis levels than QDAD, as indicated by 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 2',7'-dichlorodihydrofluoroscein diacetate (H2DCFDA), lactate dehydrogenase (LDH) release, cell counting kit-8 (CCK-8), and flow cytometric assays. To understand the possible pathways involved, the reaction product of quercetin with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH●) was measured using ultra-performance liquid-chromatography coupled with electrospray-ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS). Quercetin was found to produce the same clusters of molecular ion peaks and fragments as standard QDAD. Furthermore, the antioxidant effects of quercetin and QDAD were compared by determining their 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging, Cu2+-reducing, Fe3+-reducing, lipid peroxidation-scavenging, and DPPH●-scavenging activities. Quercetin consistently showed lower IC50 values than QDAD. These findings indicate that quercetin and QDAD can protect bmMSCs from erastin-induced ferroptosis, possibly through the antioxidant pathway. The antioxidant pathway can convert quercetin into QDAD-an inferior ferroptosis-inhibitor and antioxidant. The weakening has highlighted a rule for predicting the relative anti-ferroptosis and antioxidant effects of catecholic flavonols and their Diels-Alder dimer metabolites.
Collapse
|
8
|
Liu J, Li X, Cai R, Ren Z, Zhang A, Deng F, Chen D. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and ( S)-Butin. Molecules 2020; 25:E674. [PMID: 32033283 PMCID: PMC7036861 DOI: 10.3390/molecules25030674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
To elucidate the mechanism of anti-ferroptosis and examine structural optimization in natural phenolics, cellular and chemical assays were performed with 2'-hydroxy chalcone butein and dihydroflavone (S)-butin. C11-BODIPY staining and flow cytometric assays suggest that butein more effectively inhibits ferroptosis in erastin-treated bone marrow-derived mesenchymal stem cells than (S)-butin. Butein also exhibited higher antioxidant percentages than (S)-butin in five antioxidant assays: linoleic acid emulsion assay, Fe3+-reducing antioxidant power assay, Cu2+-reducing antioxidant power assay, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping assay, and α,α-diphenyl-β-picrylhydrazyl radical (DPPH•)-trapping assay. Their reaction products with DPPH• were further analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Butein and (S)-butin produced a butein 5,5-dimer (m/z 542, 271, 253, 225, 135, and 91) and a (S)-butin 5',5'-dimer (m/z 542, 389, 269, 253, and 151), respectively. Interestingly, butein forms a cross dimer with (S)-butin (m/z 542, 523, 433, 419, 415, 406, and 375). Therefore, we conclude that butein and (S)-butin exert anti-ferroptotic action via an antioxidant pathway (especially the hydrogen atom transfer pathway). Following this pathway, butein and (S)-butin yield both self-dimers and cross dimers. Butein displays superior antioxidant or anti-ferroptosis action to (S)-butin. This can be attributed the decrease in π-π conjugation in butein due to saturation of its α,β-double bond and loss of its 2'-hydroxy group upon biocatalytical isomerization.
Collapse
Affiliation(s)
- Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Rongxin Cai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Ziwei Ren
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Aizhen Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Fangdan Deng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
9
|
Comparative Analysis of Radical Adduct Formation (RAF) Products and Antioxidant Pathways between Myricetin-3- O-Galactoside and Myricetin Aglycone. Molecules 2019; 24:molecules24152769. [PMID: 31366105 PMCID: PMC6696482 DOI: 10.3390/molecules24152769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022] Open
Abstract
The biological process, 3-O-galactosylation, is important in plant cells. To understand the mechanism of the reduction of flavonol antioxidative activity by 3-O-galactosylation, myricetin-3-O-galactoside (M3OGa) and myricetin aglycone were each incubated with 2 mol α,α-diphenyl-β-picrylhydrazyl radical (DPPH•) and subsequently comparatively analyzed for radical adduct formation (RAF) products using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS) technology. The analyses revealed that M3OGa afforded an M3OGa–DPPH adduct (m/z 873.1573) and an M3OGa–M3OGa dimer (m/z 958.1620). Similarly, myricetin yielded a myricetin–DPPH adduct (m/z 711.1039) and a myricetin–myricetin dimer (m/z 634.0544). Subsequently, M3OGa and myricetin were compared using three redox-dependent antioxidant analyses, including DPPH•-trapping analysis, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping analysis, and •O2 inhibition analysis. In the three analyses, M3OGa always possessed higher IC50 values than those of myricetin. Conclusively, M3OGa and its myricetin aglycone could trap the free radical via a chain reaction comprising of a propagation step and a termination step. At the propagation step, both M3OGa and myricetin could trap radicals through redox-dependent antioxidant pathways. The 3-O-galactosylation process, however, could limit these pathways; thus, M3OGa is an inferior antioxidant compared to its myricetin aglycone. Nevertheless, 3-O-galactosylation has a negligible effect on the termination step. This 3-O-galactosylation effect has provided novel evidence that the difference in the antioxidative activities of phytophenols exists at the propagation step rather than the termination step.
Collapse
|
10
|
Deng H, Tang G, Fan Z, Liu S, Li Z, Wang Y, Bian Z, Shen W, Tang S, Yang F. Use of autoclave extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze 4-(methylintrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosonornicotine in tobacco. J Chromatogr A 2019; 1595:207-214. [PMID: 30827697 DOI: 10.1016/j.chroma.2019.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023]
Abstract
4-(methylintrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are the most prevalent and toxic tobacco specific nitrosamines (TSNAs). Due to their carcinogenicity, knowledge of the composition of NNK and NNN in tobacco is necessary. Herein, a sensitive and rapid method, which employs autoclave extraction-supercritical fluid chromatography/tandem mass spectrometry (SFC-MS/MS), has been developed for the analysis of NNK and NNN in tobacco. Both water-soluble and matrix-bound NNK and NNN were extracted with 100 mM ammonium acetate in an autoclave (130 °C, 4 h), and the aqueous extract was subjected to solvent replacement prior to SFC-MS/MS analysis. NNK and NNN were effectively separated within 5 min by using supercritical CO2 as the main mobile phase coupled with a co-solvent of methanol. Excellent linearity was obtained with coefficients of determination (R2) greater than 0.9997 in the range of 1-160 ng/mL and 5-800 ng/mL for NNK and NNN, respectively. The recoveries were in the range of 92.5-110.0% at different spiked levels of real samples. 12 tobacco samples which include 3 typical tobacco varieties of burley, flue-cured, and oriental tobaccos had been analyzed, and the fraction of matrix-bound NNK was determined as well. In addition, a comparison between the proposed SFC-MS/MS method and a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) internal standard method was conducted. Both techniques exhibit comparable analysis results, but peak splitting of NNN was observed by LC-MSMS due to the existence of E/Z isomers, while SFC-MS/MS offers great improvement through elution condition optimization, demonstrating the applicability of SFC-MS/MS as an alternative tool for NNK and NNN analysis.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Zhonghao Li
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
3',8″-Dimerization Enhances the Antioxidant Capacity of Flavonoids: Evidence from Acacetin and Isoginkgetin. Molecules 2019; 24:molecules24112039. [PMID: 31142008 PMCID: PMC6600363 DOI: 10.3390/molecules24112039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 01/03/2023] Open
Abstract
To probe the effect of 3',8″-dimerization on antioxidant flavonoids, acacetin and its 3',8″-dimer isoginkgetin were comparatively analyzed using three antioxidant assays, namely, the ·O2- scavenging assay, the Cu2+ reducing assay, and the 2,2'-azino bis(3-ethylbenzothiazolin-6-sulfonic acid) radical scavenging assay. In these assays, acacetin had consistently higher IC50 values than isoginkgetin. Subsequently, the acacetin was incubated with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxy radicals (4-methoxy-TEMPO) and then analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS) technology. The results of the UHPLC-ESI-Q-TOF-MS analysis suggested the presence of a dimer with m/z 565, 550, 413, 389, 374, 345, 330, and 283 peaks. By comparison, standard isoginkgetin yielded peaks at m/z 565, 533, 518, 489, 401, 389, 374, and 151 in the mass spectra. Based on these experimental data, MS interpretation, and the relevant literature, we concluded that isoginkgetin had higher electron transfer potential than its monomer because of the 3',8″-dimerization. Additionally, acacetin can produce a dimer during its antioxidant process; however, the dimer is not isoginkgetin.
Collapse
|
12
|
Cardoso SM. Special Issue: The Antioxidant Capacities of Natural Products. Molecules 2019; 24:molecules24030492. [PMID: 30704064 PMCID: PMC6384626 DOI: 10.3390/molecules24030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|