1
|
Ferreira NB, Dias CT, Chaaban AFA, Beserra-Filho JIA, Ribeiro AM, Lambertucci RH, Mendes-da-Silva C. Improving dietary patterns in obese mice: Effects on body weight, adiposity, anhedonia-like behavior, pro-BDNF expression and 5-HT system. Brain Res 2024; 1838:148996. [PMID: 38744387 DOI: 10.1016/j.brainres.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The excessive fat accumulation in obesity, resulting from an unbalanced diet, can lead to metabolic and neurological disorders and increase the risk of developing anxiety and depression. AIM Assess the impact of dietary intervention (DI) on the serotonergic system, brain-derived neurotrophic factor (BDNF) expression and behaviors of obese mice. METHODS Male C57BL/6 mice, 5 weeks old, received a high-fat diet (HFD) for 10 weeks for the induction of obesity. After this period, for 8 weeks, half of these animals received a control diet (CD), group obese (OB) + control diet (OB + CD, n = 10), and another half continued being fed HFD, group obese + HFD (OB + HFD, n = 10). At the end of the eighth week of intervention, behavioral tests were performed (sucrose preference test, open field, novel object recognition, elevated plus maze and tail suspension). Body weight and food intake were assessed weekly. Visceral adiposity, the hippocampal and hypothalamic protein expression of BDNF, 5-HT1A (5-HT1A serotonin receptor) and TPH2 (key enzyme in serotonin synthesis), were evaluated after euthanasia. RESULTS The dietary intervention involved changing from a HFD to a CD over an 8-week period, effectively reduced body weight gain, adiposity, and anhedonia-like behavior. In the OB + HFD group, we saw a lower sucrose preference and shorter traveled distance in the open field, along with increased pro-BDNF expression in the hypothalamus compared to the OB + CD mice. However, the levels of TPH2 and 5-HT1A remained unchanged. CONCLUSION The HFD model induced both obesity and anhedonia, but the dietary intervention successfully improved these conditions.
Collapse
Affiliation(s)
- Nicoly Bédia Ferreira
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Clarissa Tavares Dias
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Ana Flávia Alves Chaaban
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - José Ivo Araújo Beserra-Filho
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Rafael Herling Lambertucci
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil
| | - Cristiano Mendes-da-Silva
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of Sao Paulo/UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
2
|
Chen N, Cao W, Yuan Y, Wang Y, Zhang X, Chen Y, Yiasmin MN, Tristanto NA, Hua X. Recent advancements in mogrosides: A review on biological activities, synthetic biology, and applications in the food industry. Food Chem 2024; 449:139277. [PMID: 38608607 DOI: 10.1016/j.foodchem.2024.139277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Mogrosides are low-calorie, biologically active sweeteners that face high production costs due to strict cultivation requirements and the low yield of monk fruit. The rapid advancement in synthetic biology holds the potential to overcome this challenge. This review presents mogrosides exhibiting antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and liver protective activities, with their efficacy in diabetes treatment surpassing that of Xiaoke pills (a Chinese diabetes medication). It also discusses the latest elucidated biosynthesis pathways of mogrosides, highlighting the challenges and research gaps in this field. The critical and most challenging step in this pathway is the transformation of mogrol into a variety of mogrosides by different UDP-glucosyltransferases (UGTs), primarily hindered by the poor substrate selectivity, product specificity, and low catalytic efficiency of current UGTs. Finally, the applications of mogrosides in the current food industry and the challenges they face are discussed.
Collapse
Affiliation(s)
- Nuo Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xijia Zhang
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yujie Chen
- Jiangsu Stevia Biotechnology Co., Ltd, Wuxi 214122, China
| | - Mst Nushrat Yiasmin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Guo Y, Chen X, Gong P, Long H, Wang J, Yang W, Yao W. Siraitia grosvenorii As a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6850-6870. [PMID: 38513114 DOI: 10.1021/acs.jafc.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Han M, Liu H, Liu G, Li X, Zhou L, Liu Y, Dou T, Yang S, Tang W, Wang Y, Li L, Ding H, Liu Z, Wang J, Chen X. Mogroside V alleviates inflammation response by modulating miR-21-5P/SPRY1 axis. Food Funct 2024; 15:1909-1922. [PMID: 38258992 DOI: 10.1039/d3fo01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mogroside V (MV) is a natural sweetener extracted from the edible plant Siraitia grosvenorii that possesses anti-inflammatory bioactivity. It has been reported that microRNAs (miRNAs) play an important role in the inflammation response suppression by natural agents. However, whether the anti-inflammation effect of mogroside V is related to miRNAs and the underlying mechanism remains unclear. Our study aimed to identify the key miRNAs important for the anti-inflammation effect of MV and reveal its underlying mechanisms. Our results showed that MV effectively alleviated lung inflammation in ovalbumin-induced (OVA-induced) asthmatic mice. miRNA-seq and mRNA-seq combined analysis identified miR-21-5p as an important miRNA for the inflammation inhibition effect of MV and it predicted SPRY1 to be a target gene of miR-21-5p. We found that MV significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and nitric oxide (NO), as well as the protein expression of p-P65/P65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in OVA-induced asthmatic mice and LPS-treated RAW 264.7 cells. Moreover, the release of ROS increased in LPS-stimulated RAW 264.7 cells but was mitigated by MV pretreatment. In the meantime, the expression of miR-21-5p was decreased by MV, leading to an increase in the expression of SPRY1 in RAW 264.7 cells. Furthermore, miR-21-5p overexpression or SPRY1 knockdown reversed MV's protective effect on inflammatory responses. Conversely, miR-21-5p inhibition or SPRY1 overexpression enhanced MV's effect on inflammatory responses in LPS-exposed RAW 264.7 cells. Therefore, the significant protective effect of mogroside V on inflammation response is related to the downregulation of miR-21-5p and upregulation of SPRY1 in vitro and in vivo, MiR-21-5p/SPRY1 may be novel therapeutic targets of MV for anti-inflammation treatment.
Collapse
Affiliation(s)
- Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Haiping Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, P.R. China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, P.R. China
| | - Sijie Yang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Wei Tang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Yan Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Linjun Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Hongfang Ding
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Zhangchi Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001, P.R. China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| |
Collapse
|
5
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Cui S, Zang Y, Xie L, Mo C, Su J, Jia X, Luo Z, Ma X. Post-Ripening and Key Glycosyltransferase Catalysis to Promote Sweet Mogrosides Accumulation of Siraitia grosvenorii Fruits. Molecules 2023; 28:4697. [PMID: 37375251 DOI: 10.3390/molecules28124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sweet mogrosides are not only the primary bioactive ingredient in Siraitia grosvenorii fruits that exhibit anti-tussive properties and expectorate phlegm, but they are also responsible for the fruit's sweetness. Increasing the content or proportion of sweet mogrosides in Siraitia grosvenorii fruits is significant for improving their quality and industrial production. Post-ripening is an essential step in the post-harvest processing of Siraitia grosvenorii fruits, but the underlying mechanism and condition of post-ripening on Siraitia grosvenorii quality improvement need to be studied systematically. Therefore, this study analyzed the mogroside metabolism in Siraitia grosvenorii fruits under different post-ripening conditions. We further examined the catalytic activity of glycosyltransferase UGT94-289-3 in vitro. The results showed that the post-ripening process of fruits could catalyze the glycosylation of bitter-tasting mogroside IIE and III to form sweet mogrosides containing four to six glucose units. After ripening at 35 °C for two weeks, the content of mogroside V changed significantly, with a maximum increase of 80%, while the increase in mogroside VI was over twice its initial amount. Furthermore, under the suitable catalytic condition, UGT94-289-3 could efficiently convert the mogrosides with less than three glucose units into structurally diverse sweet mogrosides, i.e., with mogroside III as the substrate, 95% of it can converted into sweet mogrosides. These findings suggest that controlling the temperature and related catalytic conditions may activate UGT94-289-3 and promote the accumulation of sweet mogrosides. This study provides an effective method for improving the quality of Siraitia grosvenorii fruits and the accumulation of sweet mogrosides, as well as a new economical, green, and efficient method for producing sweet mogrosides.
Collapse
Affiliation(s)
- Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Biomedicine College, Beijing City University, Beijing 100094, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiaxian Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
7
|
Uno K, Miyajima K, Ogawa S, Suzuki-Kemuriyama N, Nakae D. Effects of Siraitia grosvenorii extract on nonalcoholic steatohepatitis-like lesions in Sprague Dawley rats fed a choline-deficient, methionine-lowered, l-amino acid-defined diet. J Toxicol Pathol 2023; 36:1-10. [PMID: 36683724 PMCID: PMC9837469 DOI: 10.1293/tox.2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
Siraitia grosvenorii is the fruit of a cucurbitaceous vine endemic to China. Its extract has been used as a sweetener and exhibits various anti-inflammatory and anticarcinogenic effects mediated via its antioxidant properties. In the present study, we aimed to clarify the preventive or ameliorative effects of S. grosvenorii extract (SGE) on nonalcoholic steatohepatitis-like lesions induced in male Hsd: Sprague Dawley rats fed a choline-deficient, methionine-lowered, l-amino acid-defined diet for 13 weeks. This diet increased hepatotoxicity parameters and upregulated the expression of inflammation- and fibrosis-related genes in the liver, resulting in the progression of hepatic lesions, oxidative stress, hepatocellular apoptosis, and fibrosis. Furthermore, this diet upregulated the expression of phosphorylated nuclear factor-κB (NF-κB) and CD44. SGE administration inhibited these lesions, similar to CD44, a factor that controls hepatic inflammation and fibrosis. These results revealed that SGE impacts the disease stage via antioxidative effects and regulation of CD44 expression. SGE was found to be useful for preventing and treating steatohepatitis.
Collapse
Affiliation(s)
- Kinuko Uno
- Department of Food and Nutritional Science, Graduate School
of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo
156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya,
Tokyo 156-8502, Japan,*Corresponding authors: K Miyajima (e-mail: ); D Nakae (e-mail: ; )
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School
of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo
156-8502, Japan
| | - Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya,
Tokyo 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya,
Tokyo 156-8502, Japan,Department of Medical Sports, Faculty of Health Care and
Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara, Chiba 290-0193,
Japan
| |
Collapse
|
8
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
9
|
Ning DS, Chen YJ, Lin CJ, Wang CC, Zhao HW, Wang KT, Lee MC, Tayo LL, Chiu WC, Yeh CL, Lee CJ. Hepatoprotective effect of botanical drug formula on high-fat diet-induced non-alcoholic fatty liver disease by inhibiting lipogenesis and promoting anti-oxidation. Front Pharmacol 2022; 13:1026912. [PMID: 36506588 PMCID: PMC9729544 DOI: 10.3389/fphar.2022.1026912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
With the prevalence of obesity and other components of metabolic syndrome, Non-alcoholic fatty liver disease (NAFLD) has become increasingly common. In recent years, much attention has been paid to various plant sources, hoping to find a treatment for NAFLD in plants. The Livsooth authentic herbal formula (LAH, ), a botanical drug formula combined with Puerariae lobatae radix, Lonicerae japonicae flos, Hoveniae semen, and Siraitiae fructus. This study used a network pharmacology approach to predict the potential mechanisms of LAH against NAFLD. Gene Ontology (GO) and KEGG pathway enrichment analyses have identified potential biochemical and signaling pathways. Subsequently, the potential mechanism of action of LAH on NAFLD predicted by network pharmacology analysis was validated in a high-fat diet (HFD)-induced NAFLD model in C57BL/6 mice. Our results demonstrated that LAH ameliorated hepatocyte steatosis in liver tissue by activating the AMPK pathway and decreasing serum triglycerides, low-density lipoprotein, glucose, and cholesterol. Besides, LAH increased the hepatic antioxidant enzymes activities, suggested that LAH improved oxidative stress markers in HFD induced NAFLD mice. In vitro experiments confirmed that the active component of LAH, puerarin, regulates lipid accumulation through the AMPK pathway. In conclusion, our study shows that network pharmacology predictions are consistent with experimental validation. LAH can be a candidate supplement for the prevention of NAFLD.
Collapse
Affiliation(s)
- De-Shan Ning
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Yu-Ju Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan,School of Pharmacy, Taipei Medical University, Taipei, Taiwan,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | - Lemmuel L. Tayo
- School of Chemical, Biological Materials Science and Engineering, Mapúa University, Manila, Philippines
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan,Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan,*Correspondence: Chia-Jung Lee,
| |
Collapse
|
10
|
Thakur K, Partap M, Kumar P, Sharma R, Warghat AR. Understandings of bioactive composition, molecular regulation, and biotechnological interventions in the development and usage of specialized metabolites as health-promoting substances in Siraitia grosvenorii (Swingle) C. Jeffrey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Wu J, Jian Y, Wang H, Huang H, Gong L, Liu G, Yang Y, Wang W. A Review of the Phytochemistry and Pharmacology of the Fruit of Siraitia grosvenorii (Swingle): A Traditional Chinese Medicinal Food. Molecules 2022; 27:6618. [PMID: 36235155 PMCID: PMC9572582 DOI: 10.3390/molecules27196618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey ex Lu et Z. Y. Zhang is a unique economic and medicinal plant of Cucurbitaceae in Southern China. For hundreds of years, Chinese people have used the fruit of S. grosvenorii as an excellent natural sweetener and traditional medicine for lung congestion, sore throat, and constipation. It is one of the first species in China to be classified as a medicinal food homology, which has received considerable attention as a natural product with high development potential. Various natural products, such as triterpenoids, flavonoids, amino acids, and lignans, have been released from this plant by previous phytochemical studies. Phar- macological research of the fruits of S. grosvenorii has attracted extensive attention, and an increasing number of extracts and compounds have been demonstrated to have antitussive, expectorant, antiasthmatic, antioxidant, hypoglycemic, immunologic, hepatoprotective, antibacte- rial, and other activities. In this review, based on a large number of previous studies, we summarized the related research progress of the chemical components and pharmacological effects of S. grosvenorii, which provides theoretical support for further investigation of its biological functions and potential clinical applications.
Collapse
Affiliation(s)
- Juanjiang Wu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huaxue Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Hunan Huacheng Biotech, Inc., High-Tech Zone, Changsha 410205, China
| | - Liming Gong
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Genggui Liu
- Hunan Huacheng Biotech, Inc., High-Tech Zone, Changsha 410205, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
12
|
Lü K, Song X, Zhang P, Zhao W, Zhang N, Yang F, Guan W, Liu J, Huang H, Ho CT, Di R, Zhao H. Effects of Siraitia grosvenorii extracts on high fat diet-induced obese mice:a comparison with artificial sweetener aspartame. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Wang S, Cui K, Liu J, Hu J, Yan K, Xiao P, Lu Y, Yang X, Liang X. Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Front Nutr 2022; 9:870394. [PMID: 35769373 PMCID: PMC9234556 DOI: 10.3389/fnut.2022.870394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Siraitia grosvenorii is a kind of medicinal food plant. The mogroside-rich extract (MGE) of its fruits can effectively ameliorate obesity, but the underlying mechanisms remain underexplored. In this study, we aimed to determine whether MGE can ameliorate obesity by protecting against the divergences of gut microbiota. Mice were challenged with a high-fat diet (HFD) and treated with MGE by oral gavage. Then, the characteristics of the gut microbiota were determined by 16S rDNA analysis. Our findings showed that MGE could significantly reduce body weight gain and fat tissue weight of the mice fed with HFD. Moreover, MGE markedly attenuated fatty liver, and improved glucose tolerance and insulin sensitivity. We further found that the gut microbiota structures were disturbed by HFD feeding. In particular, the abundance of Firmicutes was increased and the abundance of Bacteroidetes was decreased, resulting in an increased proportion of Firmicutes to Bacteroidetes (F/B), which contributes to obesity. Interestingly, the abnormal proportion of F/B of HFD feeding mice was restored to the level of control mice by MGE treatment. Additionally, the abundances of obesogenic microbiota, such as Ruminiclostridium and Oscillibacter were also decreased after MGE treatment. In summary, our findings demonstrate that MGE can modulate gut microbiota in obese mice and shed new light on how it alleviates obesity.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Xiaogan Yang,
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Xingwei Liang,
| |
Collapse
|
14
|
Liu Y, Wang J, Dou T, Zhou L, Guan X, Liu G, Li X, Han M, Chen X. The liver metabolic features of Mogroside V compared to Siraitia grosvenorii fruit extract in allergic pneumonia mice. Mol Immunol 2022; 145:80-87. [PMID: 35305534 DOI: 10.1016/j.molimm.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND For a long time, Siraitia grosvenorii fruit extract (SGFE) and its dominant compounds, mogroside V(MV) were both reported to have therapeutic effects on allergic pneumonia, while previous studies only stay on phenotype and mechanism of the two active ingredients, hardly have any studies compared the two ingredients on the effect of liver metabolic, and revealed the relationship between mechanism and liver metabolism. OBJECTIVE Here we elucidated and compared the curative mechanisms of SGFE and MV on allergic pneumonia through liver metabolomics. METHODS We established allergic pneumonia mice using ovalbumin, then treated the mice with SGFE, MV and positive drug of Suhuang Zhike Jiaonang. The effects of the drugs were evaluated by detecting inflammatory cytokines, pathological examination and liver oxidative stress biomarkers. We explored the metabolic features between SGFE and MV through liver metabolomics consequently. RESULTS At phenotype, we confirmed that MV and SGFE both inhibited the expression of inflammatory cytokines including interleukins-5 (IL-5), IL-13, IL-17 and OVA-induced immunoglobulin E, which can also relieve inflammatory cells infiltration and mesenchymal thickening in lung tissue compared with positive drug. In addition, both of them can alleviate oxidative stress damage in liver, while MV showed a superior effect than SGFE. In metabolomic analysis, the two ingredients were found to ameliorate inflammatory and oxidative reaction mainly in controlling pathways of Riboflavin metabolism and Glutathione metabolism. While SGFE were found to control other metabolic pathways such as Phenylalanine metabolism, Sphingolipid metabolism, Glycerollipid metabolism, Glycine, serine and threonine metabolism and Arginine and proline metabolism. CONCLUSION From the results we can infer that the minor ingredients except MV in SGFE contribute poor function to the treatment of allergic pneumonia and MV may be the main functional constituent that relieve allergic pneumonia in SGFE. This study will be beneficial to figuring out a systematic theory of Siraitia grosvenorii active ingredients and proposing a guidance for pharmacology development.
Collapse
Affiliation(s)
- Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Juan Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, PR China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China; Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| |
Collapse
|
15
|
Du Y, Liu J, Liu S, Hu J, Wang S, Cui K, Yan K, Liu X, Wu NR, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress. Food Funct 2022; 13:121-130. [PMID: 34897342 DOI: 10.1039/d1fo03194e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mogroside-rich extract (MGE), the main bioactive component of dried Siraitia grosvenorii fruit, has long been used as a natural sweetener and traditional Chinese medicine. This extract possesses various types of pharmacological activities, such as anti-inflammatory, antioxidative, hypoglycemic and hypolipemic activities. Moreover, we recently revealed that MGE has beneficial effects on female reproduction. Increasing maternal age leads to a rapid reduction in female fertility; in particular, it dramatically decreases ovarian function. Nevertheless, whether MGE can alleviate ovarian aging and the underlying mechanisms have not yet been explored. In this study, mice were treated with MGE by supplementation in drinking water from 10 to 44 weeks of age. Then, ovarian function and molecular changes were determined. Our findings showed that MGE treatment protected aged mice from estrous cycle disorder. Moreover, MGE treatment significantly increased the ovarian reserves of aged mice. RNA-seq data showed that MGE upregulated the expression of genes related to gonad development, follicular development, and hormone secretion in ovarian tissue. Additionally, inflammatory stress was induced, as indicated by upregulation of inflammation-related gene expression and elevated TNF-α levels in the ovarian tissues of aged mice; however, MGE treatment attenuated inflammatory stress. In summary, our findings demonstrate that MGE can ameliorate age-related estrous cycle disorder and ovarian reserve decline in mice, possibly by alleviating ovarian inflammatory stress.
Collapse
Affiliation(s)
- Ya Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Nian-Rong Wu
- Rid Testing & Certification (Guangxi) Inc., No.19-1 South of Renmin Road, Lingui District, Guilin, Guangxi, 541100, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
16
|
Zhou Y, Hu Z, Ye F, Guo T, Luo Y, Zhou W, Qin D, Tang Y, Cao F, Luo F, Lin Q. Mogroside V exerts anti-inflammatory effect via MAPK-NF-κB/AP-1 and AMPK-PI3K/Akt/mTOR pathways in ulcerative colitis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Li H, Li R, Jiang W, Zhou L. Research progress of pharmacological effects of Siraitia grosvenorii extract. J Pharm Pharmacol 2021; 74:953-960. [PMID: 34718674 DOI: 10.1093/jpp/rgab150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/03/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To summarise the ingredients of Luo Han Guo extract and the different pharmacological activity of the different ingredients. Find and evaluate the research value of Luo Han Guo extract as a therapeutic drug. KEY FINDINGS Siraitia grosvenorii is a fruit native to China and has many years of medicinal history. Because of its low-calorie and sugar-free properties, it is approved as a sweetener substitute in foods for obese and diabetic patients. Experiments have shown that this sweetener is non-toxic. This article summarises much literature on S. grosvenorii extracts, briefly introduces their chemical composition and metabolic distribution and summarises the possible pharmacological effects of each S. grosvenorii extract. Siraitia grosvenorii extract has anti-diabetic, anti-tumour, anti-inflammatory, antioxidant, neuroprotective and lipogenic inhibitory effects. These pharmacological activities suggest the medicinal value of S. grosvenorii. SUMMARY Luo Han Guo extract is a low-calorie, non-toxic substance, and its pharmacological activity and its potential medicinal properties support its further utilisation and research.
Collapse
Affiliation(s)
- He Li
- School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China.,Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liming Zhou
- School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
18
|
Sui L, Yan K, Zhang H, Nie J, Yang X, Xu CL, Liang X. Mogroside V Alleviates Oocyte Meiotic Defects and Quality Deterioration in Benzo(a)pyrene-Exposed Mice. Front Pharmacol 2021; 12:722779. [PMID: 34512349 PMCID: PMC8428525 DOI: 10.3389/fphar.2021.722779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence has demonstrated that benzo(a)pyrene (BaP) exposure adversely affects female reproduction, especially oocyte meiotic maturation and subsequent embryo development. Although we previously found that mogroside V (MV), a major bioactive component of S. grosvenorii, can protect oocytes from quality deterioration caused by certain stresses, whether MV can alleviate BaP exposure-mediated oocyte meiotic defects remains unknown. In this study, female mice were exposed to BaP and treated concomitantly with MV by gavage. We found that BaP exposure reduced the oocyte maturation rate and blastocyst formation rate, which was associated with increased abnormalities in spindle formation and chromosome alignment, reduced acetylated tubulin levels, damaged actin polymerization and reduced Juno levels, indicating that BaP exposure results in oocyte nucleic and cytoplasmic damage. Interestingly, MV treatment significantly alleviated all the BaP exposure-mediated defects mentioned above, indicating that MV can protect oocytes from BaP exposure-mediated nucleic and cytoplasmic damage. Additionally, BaP exposure increased intracellular ROS levels, meanwhile induced DNA damage and early apoptosis in oocytes, but MV treatment ameliorated these defective parameters, therefore it is possible that MV restored BaP-mediated oocyte defects by reducing oxidative stress. In summary, our findings demonstrate that MV might alleviate oocyte meiotic defects and quality deterioration in BaP-exposed mice.
Collapse
Affiliation(s)
- Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chang-Long Xu
- Reproductive Medical Center Nanning Second People's Hospital, Nanning, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Cai X, He L, Zhou G, Li S, Liao X. Mogroside IIe Ameliorates Cardiomyopathy by Suppressing Cardiomyocyte Apoptosis in a Type 2 Diabetic Model. Front Pharmacol 2021; 12:650193. [PMID: 34012399 PMCID: PMC8128068 DOI: 10.3389/fphar.2021.650193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Mogroside IIe is primarily present in the unripe fruit of Siraitia grosvenorii (Swingle) C. Jeffrey, and it is the predominant saponin component. The purpose of this study was to investigate the effects of mogroside IIe (MGE IIe) on myocardial cell apoptosis in diabetic cardiomyopathy (DCM) rats by establishing a high-sugar and high-fat diet–induced model of type 2 diabetes (T2D) in SD rats and a homocysteine (Hcy)-induced apoptotic model in rat H9c2 cardiomyocytes. The results showed that MGE IIe decreased the levels of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels, but increased the levels of high-density lipoprotein (HDL) in the SD rat model. Furthermore, MGE IIe decreased the levels of lactate dehydrogenase 2 (LDH2), creatine phosphokinase isoenzyme (CKMB), and creatine kinase (CK), and improved heart function. Additionally, MGE IIe inhibited the secretion of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α), improved myocardial morphology, and reduced myocardial apoptosis in the SD rat model. Furthermore, MGE IIe inhibited the mRNA and protein expression of active-caspase-3, -8, -9, -12, and Bax and Cyt-C, and promoted the mRNA and protein expression of Bcl-2 in the SD rat model. Furthermore, MGE IIe suppressed homocysteine-induced apoptosis of H9c2 cells by inhibiting the activity of caspases-3, -8, -9, and -12. In conclusion, MGE IIe inhibits the apoptotic pathway, thereby relieving DCM in vivo and in vitro.
Collapse
Affiliation(s)
- Xin Cai
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Lingmin He
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Guoao Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shenghua Li
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Yan K, Cui K, Nie J, Zhang H, Sui L, Zhang H, Yang X, Xu CL, Liang X. Mogroside V Protects Porcine Oocytes From Lipopolysaccharide-Induced Meiotic Defects. Front Cell Dev Biol 2021; 9:639691. [PMID: 33763421 PMCID: PMC7982822 DOI: 10.3389/fcell.2021.639691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has demonstrated that lipopolysaccharide (LPS) compromises female reproduction, especially oocyte maturation and competence. However, methods to protect oocyte quality from LPS-induced deterioration remain largely unexplored. We previously found that mogroside V (MV) can promote oocyte maturation and embryonic development. However, whether MV can alleviate the adverse effects of LPS exposure on oocyte maturation is unclear. Thus, in this study, we used porcine oocytes as a model to explore the effects of MV administration on LPS-induced oocyte meiotic defects. Our findings show that supplementation with MV protected oocytes from the LPS-mediated reduction in the meiotic maturation rate and the subsequent blastocyst formation rate. In addition, MV alleviated the abnormalities in spindle formation and chromosome alignment, decrease in α-tubulin acetylation levels, the disruption of actin polymerization, and the reductions in mitochondrial contents and lipid droplet contents caused by LPS exposure. Meanwhile, LPS reduced m6A levels in oocytes, but MV restored these epigenetic modifications. Furthermore, MV reduced reactive oxygen species (ROS) levels and early apoptosis in oocytes exposed to LPS. In summary, our study demonstrates that MV can protect oocytes from LPS-induced meiotic defects in part by reducing oxidative stress and maintaining m6A levels.
Collapse
Affiliation(s)
- Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hengye Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Xue W, Mao J, Chen Q, Ling W, Sun Y. Mogroside IIIE Alleviates High Glucose-Induced Inflammation, Oxidative Stress and Apoptosis of Podocytes by the Activation of AMPK/SIRT1 Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:3821-3830. [PMID: 33116729 PMCID: PMC7585782 DOI: 10.2147/dmso.s276184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of impaired renal function. The purpose of this study was to investigate the effects of Mogroside IIIE (MG IIIE), a cucurbitane-type compound isolated from Siraitia grosvenorii, in high glucose (HG)-induced podocytes and the possible mechanisms. METHODS MPC-5 cells were cultured under normal glucose or HG conditions. After treatment with MG IIIE, cell viability was examined using a cell counting kit-8 assay. The contents of inflammatory factors and oxidative stress-related markers were determined using the corresponding kits. Additionally, apoptosis of MPC-5 cells was determined using flow cytometry assay and the levels of apoptosis-associated proteins were evaluated by Western blot analysis. Moreover, the expression of proteins in AMPK/SIRT1 signaling was tested and the compound C, an AMPK inhibitor, was used to study whether the effects of MG IIIE on HG-induced MPC-5 cells were mediated by activation of the AMPK/SIRT1 signaling pathway. RESULTS MG IIIE elevated the cell viability of HG-induced MPC-5 cells, reduced the concentrations of inflammatory cytokines and decreased the levels of oxidative stress-related markers. What's more, the apoptosis of podocytes induced by HG was inhibited after MG IIIE intervention, accompanied by the upregulated expression of Bcl-2 and downregulated expression of Bax, cleaved caspase-3 and cleaved caspase-9. It was also found that MG IIIE could activate the AMPK/SIRT1 signaling, but compound C inhibited this pathway and reversed the inhibitory effects of MG IIIE on inflammation, oxidative stress and apoptosis in HG-stimulated podocytes. CONCLUSION MG IIIE can alleviate HG-induced inflammation and oxidative stress of podocytes by the activation of AMPK-SIRT1 signaling.
Collapse
Affiliation(s)
- Wei Xue
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi530011, People’s Republic of China
| | - Juhua Mao
- Center for Drug Control, Lishui Institute for Quality Inspection and Testing, Lishui, Zhejiang323000, People’s Republic of China
| | - Qingjie Chen
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi530011, People’s Republic of China
| | - Weide Ling
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi530011, People’s Republic of China
| | - Yuqi Sun
- Department of Anesthesiology, Guangzhou 12th People’s Hospital, Guangzhou, Guangdong510620, People’s Republic of China
| |
Collapse
|
22
|
Chen J, Jiao D, Li Y, Jiang C, Tang X, Song J, Chen Q. Mogroside V Inhibits Hyperglycemia-induced Lung Cancer Cells Metastasis through Reversing EMT and Damaging Cytoskeleton. Curr Cancer Drug Targets 2020; 19:885-895. [PMID: 31215378 DOI: 10.2174/1568009619666190619154240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/21/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diabetes Mellitus (DM) accelerates progress of lung cancer. Hyperglycemia, a critical feature of DM, promotes lung cancer metastasis. Mogroside V is a triterpenoid glycoside from Siraitia grosvenorii. Interestingly, mogroside V not only plays an anti-diabetic role, but also has anti-tumor effects. OBJECTIVE In this study, we investigated the metastatic efficiency of mogroside V in lung cancer cells cultured in hyperglycemia. METHODS Two lung cancer cell lines-A549 and H1299 were cultured in normoglycemia (5.5mM glucose) and hyperglycemia (25mM glucose). Cellular proliferation was tested by MTT, invasion was examined by transwell assay, migration was measured by wound healing assay, cytoskeleton was stained by Phalloidin-TRITC and the expressions of EMT markers and Rho-GTPase family protein were detected by western blot. RESULTS Hyperglycemia promoted the invasion and migration of A549 and H1299 cells compared with normoglycemia. Mogroside V inhibited the hyperglycemia-induced invasion and migration. Hyperglycemia promoted epithelial-mesenchymal transition (EMT), while mogroside V could reverse this process through up-regulating E-Cadherin expression and down-regulating N-Cadherin, Vimentin, Snail expressions. Furthermore, mogroside V fractured microfilaments and reduced Rho A, Rac1, Cdc42 and p-PAK1 expressions under hyperglycemic conditions. CONCLUSION These results suggest that mogroside V inhibits hyperglycemia-induced lung cancer cells migration and invasion through reversing EMT and damaging cytoskeleton.
Collapse
Affiliation(s)
- Jun Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Demin Jiao
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Chunyan Jiang
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Xiali Tang
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jia Song
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Qingyong Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Luo Z, Xu W, Zhang Y, Di L, Shan J. A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. Pharmacol Res 2020; 160:105088. [PMID: 32683035 DOI: 10.1016/j.phrs.2020.105088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) is a series of symptoms including insulin resistance, obesity, dyslipidemia, elevated fasting blood glucose levels, and hepatic steatosis. As a key criterion in MetS, the onset of insulin resistance is related to abnormal levels of circulating free fatty acids and adipokines. It has been discovered in recent years that metabolites and pathogen-associated molecular patterns of intestinal/gut microbiota are also important factors that cause insulin resistance and MetS. Saponins are the main components of many botanicals and traditional Chinese medicines (TCMs), such as ginseng, platycodon, licorice, and alfalfa. They have poor bioavailability, but can be transformed into secondary glycosides and aglycones by intestinal microbiota, further being absorbed. Based on in vivo and in vitro data, we found that saponins and their secondary metabolites have a preventive effect on MetS, and the effective targets are distributed in the intestine and other organs in human body. Intestinal targets involve pancreatic lipase, dietary cholesterol, and intestinal microbiota. Other targets include central appetite, nuclear receptors such as PPAR and LXR, AMPK signaling pathway and adipokines levels, etc. In view of the poor bioavailability of saponins, it is inferred that targets for prototype-saponins to interfere with MetS is mainly located in the intestine, and the activation of other targets may be related to secondary glycosides and aglycones transformed from saponins by intestinal flora. We suggest that the role of intestinal microbiota in saponin intervention in MetS should be further investigated.
Collapse
Affiliation(s)
- Zichen Luo
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, CA, 95616, USA
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
24
|
Mogroside V Protects against Hepatic Steatosis in Mice on a High-Fat Diet and LO2 Cells Treated with Free Fatty Acids via AMPK Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7826874. [PMID: 32419825 PMCID: PMC7210551 DOI: 10.1155/2020/7826874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
Previous studies presented various beneficial effects of mogrosides extract from Siraitia grosvenorii, which has been included in the list of Medicine Food Homology Species in China. Mogroside V (MV) is one of the main ingredients in mogrosides extract; however, whether and how MV improves impaired lipid metabolism in the liver remains to be elucidated. Herein, we investigated the therapeutic effects of mogroside V upon hepatic steatosis in vivo and in vitro and explored the underlying mechanisms. The results showed that MV significantly ameliorated hepatic steatosis in high-fat diet- (HFD-) fed mice. Furthermore, the increased protein expression of PPAR-γ, SREBP-1, and FASN and mRNA expression of pparg, srebp1, scd1, and fasn in the liver in HFD-fed mice, which contribute to de novo lipogenesis, were dose-dependently reversed by MV treatment. Meanwhile, MV counteracted the suppressed expression of PPAR-α and CPT-1A and mRNA expression of atgl, hsl, ppara, and cpt1a, thus increasing lipolysis and fatty acid oxidation. In addition, in free fatty acids- (FFAs-) incubated LO2 cells MV downregulated de novo lipogenesis and upregulated lipolysis and fatty acid oxidation, thereby attenuating lipid accumulation, which was significantly abrogated by treatment with Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Taken together, these results suggested that MV exerted a pronounced effect upon improving hepatic steatosis through regulating the disequilibrium of lipid metabolism in the liver via an AMPK-dependent pathway, providing a potential lead compound candidate for preventing nonalcoholic fatty liver disease.
Collapse
|
25
|
Liu X, Zhang J, Li Y, Sun L, Xiao Y, Gao W, Zhang Z. Mogroside derivatives exert hypoglycemics effects by decreasing blood glucose level in HepG2 cells and alleviates insulin resistance in T2DM rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Nie J, Sui L, Zhang H, Zhang H, Yan K, Yang X, Lu S, Lu K, Liang X. Mogroside V protects porcine oocytes from in vitro ageing by reducing oxidative stress through SIRT1 upregulation. Aging (Albany NY) 2019; 11:8362-8373. [PMID: 31586990 PMCID: PMC6814602 DOI: 10.18632/aging.102324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Abstract
Postovulatory ageing compromises oocyte quality and subsequent development in various manners. We aimed to assay the protective effects of mogroside V on porcine oocyte quality during in vitro ageing and explore the related causes. We observed that mogroside V can effectively maintain normal oocyte morphology and early embryo development competence after prolonged culture for 24 h. Moreover, mogroside V can markedly reduce reactive oxygen species (ROS) levels, alleviate spindle formation and chromosome alignment abnormalities, improve mitochondrial contents, adenosine triphosphate (ATP) levels and the membrane potential (ΔΨm), and reduce early apoptosis in aged oocytes. We examined the molecular changes and found that SIRT1 expression was decreased in in vitro aged oocytes but was maintained by exposure to mogroside V. However, when SIRT1 was successfully inhibited by the specific inhibitor EX-527, mogroside V could not reduce ROS levels or alleviate abnormal spindle organization and chromosome misalignment. In summary, our results demonstrated that mogroside V can alleviate the deterioration of oocyte quality during in vitro ageing, possibly by reducing oxidative stress through SIRT1 upregulation.
Collapse
Affiliation(s)
- Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Huiting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Hengye Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China.,College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
27
|
Song JL, Qian B, Pan C, Lv F, Wang H, Gao Y, Zhou Y. Protective activity of mogroside V against ovalbumin-induced experimental allergic asthma in Kunming mice. J Food Biochem 2019; 43:e12973. [PMID: 31489660 DOI: 10.1111/jfbc.12973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
We investigated the antiasthmatic effect of mogroside V (Mog V) in mice with ovalbumin (OVA)-induced asthma. Administration of Mog V effectively attenuated OVA-induced airway hyperresponsiveness and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histological examination showed that Mog V reduced the inflammatory infiltration of the lungs in the asthmatic mice. ELISAs suggested that Mog V effectively decreased the levels of IL-4, IL-5, and IL-13 in BALF and serum levels of OVA-specific IgE and IgG1 in the asthmatic mice. A quantitative reverse-transcription PCR assay also indicated that Mog V decreased the mRNA levels of IL-17A, IL-23, and RORγt in the lungs of the asthmatic mice (the opposite effect on Foxp3 mRNA). Furthermore, Mog V significantly reduced the OVA-induced activation of NF-κB in the lungs. This study indicates that Mog V alleviates OVA-induced inflammation in airways, and this effect is associated with a reduction in NF-κB activation. PRACTICAL APPLICATIONS: A traditional Chinese medicine herb has been reported to have a strong curative effect on asthma in clinical practice. Siraitia grosvenorii is known in China as a functional food product with the ability to improve lung function. Mogroside V is a triterpene glycoside isolated from S. grosvenorii. Nonetheless, the antiasthmatic effect of mogroside V has not been evaluated yet. The aim of this study was to investigate the antiasthmatic activity of mogroside V in mice with chemically induced asthma. The data from this study will provide some scientific evidence supporting wider use of S. grosvenorii in functional foods.
Collapse
Affiliation(s)
- Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland.,Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Cailing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Fangfang Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, People's Republic of China
| | - Haipeng Wang
- Department of Nutrition and Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, People's Republic of China
| | - Yanyuan Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
28
|
Ding Y, Qian L, Wang L, Wu C, Li D, Zhang X, Yin Z, Wang Y, Zhang W, Wu X, Ding J, Yang M, Zhang L, Shang J, Wang C, Gao Y. Relationship among porcine lncRNA TCONS_00010987, miR-323, and leptin receptor based on dual luciferase reporter gene assays and expression patterns. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:219-229. [PMID: 31480192 PMCID: PMC6946967 DOI: 10.5713/ajas.19.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Objective Considering the physiological and clinical importance of leptin receptor (LEPR) in regulating obesity and the fact that porcine LEPR expression is not known to be controlled by lncRNAs and miRNAs, we aim to characterize this gene as a potential target of SSC-miR-323 and the lncRNA TCONS_00010987. Methods Bioinformatics analyses revealed that lncRNA TCONS_00010987 and LEPR have SSC-miR-323-binding sites and that LEPR might be a target of lncRNA TCONS_00010987 based on cis prediction. Wild-type and mutant TCONS_00010987-target sequence fragments and wild-type and mutant LEPR 3′-UTR fragments were generated and cloned into pmiR-RB-REPORTTM-Control vectors to construct respective recombinant plasmids. HEK293T cells were co-transfected with the SSC-miR-323 mimics or a negative control with constructs harboring the corresponding binding sites and relative luciferase activities were determined. Tissue expression patterns of lncRNA TCONS_00010987, SSC-miR-323, and LEPR in Anqing six-end-white (AQ, the obese breed) and Large White (LW, the lean breed) pigs were detected by real-time quantitative polymerase chain reaction; backfat expression of LEPR protein was detected by western blotting. Results Target gene fragments were successfully cloned, and the four recombinant vectors were constructed. Compared to the negative control, SSC-miR-323 mimics significantly inhibited luciferase activity from the wild-type TCONS_00010987-target sequence and wild-type LEPR-3′-UTR (p<0.01 for both) but not from the mutant TCONS_00010987-target sequence and mutant LEPR-3′-UTR (p>0.05 for both). Backfat expression levels of TCONS_ 00010987 and LEPR in AQ pigs were significantly higher than those in LW pigs (p<0.01), whereas levels of SSC-miR-323 in AQ pigs were significantly lower than those in LW pigs (p<0.05). LEPR protein levels in the backfat tissues of AQ pigs were markedly higher than those in LW pigs (p<0.01). Conclusion LEPR is a potential target of SSC-miR-323, and TCONS_00010987 might act as a sponge for SSC-miR-323 to regulate LEPR expression.
Collapse
Affiliation(s)
- Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Qian
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chaodong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - DengTao Li
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Liang Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jinnan Shang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yafei Gao
- Anhui Haoxiang Agriculture and Animal Husbandry Co. LTD, Bozhou, Anhui 236700, China
| |
Collapse
|