1
|
Lama R, Galster SL, Xu C, Davison LW, Chemler SR, Wang X. Dual Targeting of MDM4 and FTH1 by MMRi71 for Induced Protein Degradation and p53-Independent Apoptosis in Leukemia Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227665. [PMID: 36431769 PMCID: PMC9695299 DOI: 10.3390/molecules27227665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
MDM2 and MDM4 are cancer drug targets validated in multiple models for p53-based cancer therapies. The RING domains of MDM2 and non-p53-binder MDM2 splice isoforms form RING domain heterodimer polyubiquitin E3 ligases with MDM4, which regulate p53 stability in vivo and promote tumorigenesis independent of p53. Despite the importance of the MDM2 RING domain in p53 regulation and cancer development, small molecule inhibitors targeting the E3 ligase activity of MDM2-MDM4 are poorly explored. Here, we describe the synthesis and characterization of quinolinol derivatives for the identification of analogs that are capable of targeting the MDM2-MDM4 heterodimer E3 ligase and inducing apoptosis in cells. The structure-activity-relationship (SAR) study identified structural moieties critical for the inhibitory effects toward MDM2-MDM4 E3 ligase, the targeted degradation of MDM4 and FTH1 in cells, and anti-proliferation activity. Lead optimization led to the development of compound MMRi71 with improved activity. In addition to accumulating p53 proteins in wt-p53 bearing cancer cells as expected of any MDM2 inhibitors, MMRi71 effectively kills p53-null leukemia cells, an activity that conventional MDM2-p53 disrupting inhibitors lack. This study provides a prototype structure for developing MDM4/FTH1 dual-targeting inhibitors as potential cancer therapeutics.
Collapse
Affiliation(s)
- Rati Lama
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Samuel L. Galster
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Chao Xu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Luke W. Davison
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sherry R. Chemler
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Correspondence: (S.R.C.); (X.W.)
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: (S.R.C.); (X.W.)
| |
Collapse
|
2
|
Gémes N, Makra Z, Neuperger P, Szabó E, Balog JÁ, Flink LB, Kari B, Hackler L, Puskás LG, Kanizsai I, Szebeni GJ. A cytotoxic survey on
2‐amino‐1H‐imidazol
based synthetic marine sponge alkaloid analogues. Drug Dev Res 2022; 83:1906-1922. [PMID: 36322473 PMCID: PMC10091778 DOI: 10.1002/ddr.22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Here, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential. Viability of healthy human fibroblasts and peripheral blood mononuclear cells upon treatment was less hampered compared to cancer cell lines supporting tumor cell specific cytotoxicity of our compounds. The most cytotoxic compounds resulted the following IC50 values 28: 2.91 µM on HL-60 cells, and 29: 3.1 µM on 4T1 cells. The A549 cells were less sensitive to the treatments with IC50 15 µM for both 28 and 29. Flow cytometry demonstrated the apoptotic effect of the most active seven compounds inducing phosphatidylserine exposure and sub-G1 fragmentation of nuclear DNA. Cell cycle arrest was also observed. Four compounds caused depolarization of the mitochondrial membrane potential as an early event of apoptosis. Two lead compounds inhibited tumor growth in vivo in the 4T1 triple negative breast cancer and A549 human lung adenocarcinoma xenograft models. Novel marine sponge alkaloid analogues are demonstrated as potential anticancer agents for further development.
Collapse
Affiliation(s)
- Nikolett Gémes
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
- PhD School in Biology University of Szeged Szeged Hungary
| | | | - Patrícia Neuperger
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
| | - Enikő Szabó
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology University of Szeged Szeged Hungary
| | | | | | - László. G. Puskás
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
- Avidin Ltd Szeged Hungary
| | | | - Gábor J. Szebeni
- Laboratory of Functional Genomics Biological Research Centre Szeged Hungary
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics University of Szeged Szeged Hungary
| |
Collapse
|
3
|
Lama R, Xu C, Galster SL, Querol-García J, Portwood S, Mavis CK, Ruiz FM, Martin D, Wu J, Giorgi MC, Bargonetti J, Wang ES, Hernandez-Ilizaliturri FJ, Koudelka GB, Chemler SR, Muñoz IG, Wang X. Small molecule MMRi62 targets MDM4 for degradation and induces leukemic cell apoptosis regardless of p53 status. Front Oncol 2022; 12:933446. [PMID: 35992795 PMCID: PMC9389462 DOI: 10.3389/fonc.2022.933446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
MDM2 and MDM4 proteins are key negative regulators of tumor suppressor p53. MDM2 and MDM4 interact via their RING domains and form a heterodimer polyubiquitin E3 ligase essential for p53 degradation. MDM4 also forms heterodimer E3 ligases with MDM2 isoforms that lack p53-binding domains, which regulate p53 and MDM4 stability. We are working to identify small-molecule inhibitors targeting the RING domain of MDM2-MDM4 (MMRi) that can inactivate the total oncogenic activity of MDM2-MDM4 heterodimers. Here, we describe the identification and characterization of MMRi62 as an MDM4-degrader and apoptosis inducer in leukemia cells. Biochemically, in our experiments, MMRi62 bound to preformed RING domain heterodimers altered the substrate preference toward MDM4 ubiquitination and promoted MDM2-dependent MDM4 degradation in cells. This MDM4-degrader activity of MMRi62 was found to be associated with potent apoptosis induction in leukemia cells. Interestingly, MMRi62 effectively induced apoptosis in p53 mutant, multidrug-resistant leukemia cells and patient samples in addition to p53 wild-type cells. In contrast, MMRi67 as a RING heterodimer disruptor and an enzymatic inhibitor of the MDM2-MDM4 E3 complex lacked MDM4-degrader activity and failed to induce apoptosis in these cells. In summary, this study identifies MMRi62 as a novel MDM2-MDM4-targeting agent and suggests that small molecules capable of promoting MDM4 degradation may be a viable new approach to killing leukemia cells bearing non-functional p53 by apoptosis.
Collapse
Affiliation(s)
- Rati Lama
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Chao Xu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samuel L. Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Javier Querol-García
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Cory K. Mavis
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Federico M. Ruiz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Martin
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marianna C. Giorgi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, United States
| | - Eunice S. Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | - Gerald B. Koudelka
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Sherry R. Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Inés G. Muñoz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Xinjiang Wang,
| |
Collapse
|
4
|
Joaquim AR, Boff RT, Adam FC, Lima-Morales D, Cesare MA, Kaminski TF, Teixeira ML, Fuentefria AM, Andrade SF, Martins AF. Antibacterial and synergistic activity of a new 8-hydroxyquinoline derivative against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:425-436. [PMID: 35289685 DOI: 10.2217/fmb-2021-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To evaluate the antibacterial and synergistic effect of a new 8-hydroxyquinoline derivative (PH176) against MRSA. Materials & methods: PH176 activity was determined by broth microdilution against 38 Staphylococcus aureus clinical isolates. The antibacterial and synergistic effects with oxacillin and nitroxoline were evaluated by time-kill assays to five MRSA isolates. Toxicity was evaluated by in vitro and ex vivo models. Results: The MIC50 and MIC90 of PH176 were 16 and 32 μg/ml, respectively. The PH176 and nitroxoline led to a reduction in colony count for four isolates and the combination of PH176 and oxacillin acted synergically for three isolates. Furthermore, PH176 was determined to be noncytotoxic/nonirritant. Conclusion: These results demonstrate that PH176 has revealed promising results to be a potential candidate to treat MRSA infections.
Collapse
Affiliation(s)
- Angélica R Joaquim
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Roberta T Boff
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Franciele C Adam
- Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Daiana Lima-Morales
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Porto Alegre, 90035-903, Brazil
| | - Maycon A Cesare
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Taís Fa Kaminski
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Mário L Teixeira
- Laboratório de Farmacologia, Instituto Federal Catarinense, Campus Concórdia, Concórdia, 89703-720, Brazil
| | - Alexandre M Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Saulo F Andrade
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Andreza F Martins
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil.,Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil.,Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Porto Alegre, 90035-903, Brazil
| |
Collapse
|
5
|
Li J, Lama R, Galster SL, Inigo JR, Wu J, Chandra D, Chemler SR, Wang X. Small Molecule MMRi62 Induces Ferroptosis and Inhibits Metastasis in Pancreatic Cancer via Degradation of Ferritin Heavy Chain and Mutant p53. Mol Cancer Ther 2022; 21:535-545. [PMID: 35131878 DOI: 10.1158/1535-7163.mct-21-0728] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
High frequency of KRAS and TP53 mutations is a unique genetic feature of pancreatic ductal adenocarcinoma (PDAC). TP53 mutation not only renders PDAC resistance to chemotherapies but also drives PDAC invasiveness. Therapies targeting activating mutant KRAS are not available and the outcomes of current PDAC treatment are extremely poor. Here we report that MMRi62, initially identified as an MDM2-MDM4-targeting small molecule with p53-independent pro-apoptotic activity, shows anti-PDAC activity in vitro and in vivo. We show that MMRi62 inhibits proliferation, clonogenic and spheroid growth of PDAC cells by induction of cell death. MMRi62-induced cell death in PDAC is characteristic of ferroptosis which is associated with increased autophagy, increased reactive oxygen species and lysosomal degradation of NCOA4 and Ferritin Heavy Chain (FTH1). In addition to induced degradation of FTH1, MMRi62 also induces proteasomal degradation of mutant p53. Interestingly, MMRi62-induced ferroptosis occurs in PDAC cell lines harboring either KRAS and TP53 double mutations or single TP53 mutation. In orthotopic xenograft PDAC mouse models, MMRi62 was capable of inhibiting tumor growth in mice associated with downregulation of NCOA4 and mutant p53 in vivo. Strikingly, MMRi62 completely abrogated metastasis of orthotopic tumors to distant organs, which is consistent with MMRi62's ability to inhibit cell migration and invasion in vitro. These findings identified MMRi62 as a novel ferroptosis inducer capable of suppressing PDAC growth and overcoming metastasis.
Collapse
Affiliation(s)
- Junhui Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Rati Lama
- Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center
| | - Samuel L Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo
| | - Joseph R Inigo
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center
| | - Jin Wu
- Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center
| | - Dhyan Chandra
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo
| | - Sherry R Chemler
- Department of Chemistry, University at Buffalo, State University of New York
| | - Xinjiang Wang
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center
| |
Collapse
|
6
|
Sompol P, Gollihue JL, Kraner SD, Artiushin IA, Cloyd RA, Chishti EA, Koren SA, Nation GK, Abisambra JF, Huzian O, Nagy LI, Santha M, Hackler L, Puskas LG, Norris CM. Q134R: Small chemical compound with NFAT inhibitory properties improves behavioral performance and synapse function in mouse models of amyloid pathology. Aging Cell 2021; 20:e13416. [PMID: 34117818 PMCID: PMC8282246 DOI: 10.1111/acel.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aβ peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aβ plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jenna L. Gollihue
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Susan D. Kraner
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Irina A. Artiushin
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Ryan A. Cloyd
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Emad A. Chishti
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Shon A. Koren
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Grant K. Nation
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jose F. Abisambra
- Center for Translational Research in Neurodegenerative Disease University of Florida Gainesville FL USA
| | | | | | | | | | | | - Christopher M. Norris
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| |
Collapse
|
7
|
Dash RC, Wen J, Zaino AM, Morel SR, Chau LQ, Wechsler-Reya RJ, Hadden MK. Structure-based virtual screening identifies an 8-hydroxyquinoline as a small molecule GLI1 inhibitor. Mol Ther Oncolytics 2021; 20:265-276. [PMID: 33614910 PMCID: PMC7873571 DOI: 10.1016/j.omto.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
The glioma-associated family of transcription factors (GLI) have emerged as a promising therapeutic target for a variety of human cancers. In particular, GLI1 plays a central role as a transcriptional regulator for multiple oncogenic signaling pathways, including the hedgehog (Hh) signaling pathway. We undertook a computational screening approach to identify small molecules that directly bind GLI1 for potential development as inhibitors of GLI-mediated transcription. Through these studies, we identified compound 1, which is an 8-hydroxyquinoline, as a high-affinity binder of GLI1. Compound 1 inhibits GLI1-mediated transcriptional activity in several Hh-dependent cellular models, including a primary model of murine medulloblastoma. We also performed a series of computational analyses to define more clearly the mechanism(s) through which 1 inhibits GLI1 function after binding. Our results strongly suggest that binding of 1 to GLI1 does not prevent GLI1/DNA binding nor disrupt the GLI1/DNA complex, but rather, it induces specific conformational changes in the overall complex that prevent proper GLI function. These results highlight the potential of this compound for further development as an anti-cancer agent that targets GLI1.
Collapse
Affiliation(s)
- Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Jiachen Wen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Angela M. Zaino
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Shana R. Morel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Lianne Q. Chau
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert J. Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - M. Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| |
Collapse
|
8
|
Hackler L, Gyuris M, Huzián O, Alföldi R, Szebeni GJ, Madácsi R, Knapp L, Kanizsai I, Puskás LG. Enantioselective Synthesis of 8-Hydroxyquinoline Derivative, Q134 as a Hypoxic Adaptation Inducing Agent. Molecules 2019; 24:molecules24234269. [PMID: 31771153 PMCID: PMC6930632 DOI: 10.3390/molecules24234269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer’s disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.
Collapse
Affiliation(s)
- László Hackler
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Márió Gyuris
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Orsolya Huzián
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Róbert Alföldi
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Gábor J. Szebeni
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Ramóna Madácsi
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Levente Knapp
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Iván Kanizsai
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - László G. Puskás
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
- Aperus Pharma Co. Ltd., 6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-202107
| |
Collapse
|
9
|
Szebeni GJ, Balog JA, Demjén A, Alföldi R, Végi VL, Fehér LZ, Mán I, Kotogány E, Gubán B, Batár P, Hackler L, Kanizsai I, Puskás LG. Imidazo[1,2- b]pyrazole-7-carboxamides Induce Apoptosis in Human Leukemia Cells at Nanomolar Concentrations. Molecules 2018; 23:E2845. [PMID: 30388846 PMCID: PMC6278434 DOI: 10.3390/molecules23112845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023] Open
Abstract
Leukemia, the malignancy of the hematopoietic system accounts for 10% of cancer cases with poor overall survival rate in adults; therefore, there is a high unmet medical need for the development of novel therapeutics. Eight imidazo[1,2-b]pyrazole-7-carboxamides have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4), biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro. Imidazo[1,2-b]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with different potential. Optimization through structure activity relationship resulted in the following IC50 values for the most effective lead compound DU385: 16.54 nM, 27.24 nM, and 32.25 nM on HL-60, MOLT-4, MV-4-11 cells, respectively. Human primary fibroblasts were much less sensitive in the applied concentration range. Both monolayer or spheroid cultures of murine 4T1 and human MCF7 breast cancer cells were less sensitive to treatment with 1.5⁻10.8 μM IC50 values. Flow cytometry confirmed the absence of necrosis and revealed 60% late apoptotic population for MV-4-11, and 50% early apoptotic population for HL-60. MOLT-4 cells showed only about 30% of total apoptotic population. Toxicogenomic study of DU385 on the most sensitive MV-4-11 cells revealed altered expression of sixteen genes as early (6 h), midterm (12 h), and late response (24 h) genes upon treatment. Changes in ALOX5AP, TXN, and SOD1 expression suggested that DU385 causes oxidative stress, which was confirmed by depletion of cellular glutathione and mitochondrial membrane depolarization induction. Imidazo[1,2-b]pyrazole-7-carboxamides reported herein induced apoptosis in human leukemia cells at nanomolar concentrations.
Collapse
Affiliation(s)
- Gábor J Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - József A Balog
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - András Demjén
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| | - Róbert Alföldi
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| | - Vanessza L Végi
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| | | | - Imola Mán
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| | - Edit Kotogány
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Barbara Gubán
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary.
| | - Péter Batár
- Department of Hematology, Institute of Internal Medicine, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary.
| | - László Hackler
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| | - Iván Kanizsai
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Avidin Ltd., Alsó kikötő sor 11/D, H-6726 Szeged, Hungary.
| |
Collapse
|