1
|
Long Y, Xiao L, Zhou D, Meng Y, Wang L, Shen D. Promising valorisation method of chitin biomass by producing 5-hydroxymethylfurfural using microwave hydrothermal treatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:4576-4584. [PMID: 37711044 DOI: 10.1080/09593330.2023.2260118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Chitin biomass is the second largest biomass resource on Earth but under-utilized. In this study, pretreated shrimp shells were converted into value-added platform chemical 5-hydroxymethylfurfural (HMF) using microwave hydrothermal treatment. Under the combined pretreatment of acid decalcification at room temperature and microwave-assisted alkali deacetylation, the HMF yield could reach 1.8 wt%. The key process parameters, including the holding temperature, holding time, and pH value, were evaluated and optimised. The highest HMF yield of 6.5 wt% was obtained at 202.6°C at a holding time of 5.8 min and a pH value of 1.5. This result demonstrates the potential of synchronously treating waste and recycling it, thereby offering a highly promising valorisation strategy for chitin-biomass utilisation.
Collapse
Affiliation(s)
- Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Liqun Xiao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Hangzhou Shangtuo Environmental Technology Co. Ltd, Hangzhou, People's Republic of China
| | - Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Zhejiang Province Ecological Environment Low Carbon Development Center, Hangzhou, People's Republic of China
| | - Yanjun Meng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- Zhejiang Jiaxing Huanfa Environmental Science and Technology Co. Ltd, Jiaxing, People's Republic of China
| | - Lulu Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Kammoun M, Margellou A, Toteva VB, Aladjadjiyan A, Sousa AF, Luis SV, Garcia-Verdugo E, Triantafyllidis KS, Richel A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv 2023; 13:21395-21420. [PMID: 37469965 PMCID: PMC10352963 DOI: 10.1039/d3ra01533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| | - Antigoni Margellou
- Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Vesislava B Toteva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy Sofia Bulgaria
| | | | - Andreai F Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima-Polo II 3030-790 Coimbra Portugal
| | - Santiago V Luis
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | - Eduardo Garcia-Verdugo
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | | | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| |
Collapse
|
3
|
Ruan C, Heeres HJ, Yue J. 5-Hydroxymethylfurfural synthesis from fructose over deep eutectic solvents in batch reactors and continuous flow microreactors. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
In this work, a deep eutectic solvent (DES) composed of choline chloride (ChCl) and ethylene glycol (EG) was prepared and applied for the conversion of fructose to 5-hydroxymethylfurfural (HMF), catalyzed by HCl in both laboratory batch reactors and continuous flow microreactors. The effects of reaction temperature, batch time, catalyst loading and molar ratio of ChCl to EG on the fructose conversion and HMF yield were first investigated in the monophasic batch system of ChCl/EG DES. To inhibit HMF-involved side reactions (e.g., its polymerization to humins), methyl isobutyl ketone (MIBK) was used as the extraction agent to form a biphasic system with DES in batch reactors. As a result, the maximum HMF yield could be enhanced at an MIBK to DES volume ratio of 3:1, e.g., increased from 48% in the monophasic DES (with a molar ratio ChCl to EG at 1:3) to 63% in the biphasic system at 80°C and 5 mol% of HCl loading. Based on the optimized results in batch reactors, biphasic experiments were conducted in capillary microreactors under slug flow operation, where a maximum HMF yield of ca. 61% could be obtained in 13 min, which is similar to that in batch under otherwise the same conditions. The slight mass transfer limitation in microreactors was confirmed by performing experiments with microreactors of varying length, and comparing the characteristic mass transfer time and reaction time, indicating further room for improvement.
Highlights
• The efficient fructose conversion to HMF in deep eutectic solvents was achieved in batch reactors and microreactors.
• An HMF yield over 60% could be obtained at a fructose conversion above 90% in both reactors at 80°C within 14 min.
• The HMF yield was enhanced from 48% in the monophasic ChCl/EG system to 63% in the DES-MBIK biphasic system in batch.
• A slight mass transfer limitation was found in the biphasic slug flow microreactor.
Graphical Abstract
Collapse
|
4
|
Dong X, Wang X, Song H, Zhang Y, Yuan A, Guo Z, Wang Q, Yang F. Enabling Efficient Aerobic 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid in Water by Interfacial Engineering Reinforced Cu-Mn Oxides Hollow Nanofiber. CHEMSUSCHEM 2022; 15:e202200076. [PMID: 35170240 DOI: 10.1002/cssc.202200076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Herein, a one-dimensional hollow nanofiber catalyst composed of tightly packed multiphase metal oxides of Mn2 O3 and Cu1.4 Mn1.6 O4 was constructed by electrospinning and tailored thermal treatment procedure. The characterization results comprehensively confirmed the special morphology and composition of various comparative catalysts. This strategy endowed the catalyst with abundant interfacial characteristics of components Mn2 O3 and Cu1.4 Mn1.6 O4 nanocrystal. Impressively, the tuning thermal treatment resulted in tailored CuI sites and surface oxygen species of the catalyst, thus affording optimized oxygen vacancies for reinforced oxygen adsorption, while the concomitant enhanced lattice oxygen activity in the constructed composite catalyst ensured the higher catalytic oxidation ability. More importantly, the regulated proportion of oxygen vacancy and lattice oxygen in the composite catalyst was obtained in the best catalyst, beneficial to accelerate the reaction cycle. Compared to other counterparts obtained by different temperatures, the CMO-500 sample exhibited superior selective aerobic 5-hydroxymethylfurfural (HMF) oxidation to 2,5-furandicarboxylic acid (FDCA, 96 % yield) in alkali-bearing aqueous solution using O2 at 120 °C, which resulted from the above-mentioned composition optimization and interfacial engineering reinforced surface oxygen consumption and regeneration cycle. The reaction mechanism was further proposed to uncover the lattice oxygen and oxygen vacancy participating HMF conversion process.
Collapse
Affiliation(s)
- Xuexue Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, P. R. China
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, P. R. China
| | - Hua Song
- China Petroleum Engineering & Construction Corp., North China Company, Jianshe Road, Renqiu 062552, Hebei, P. R. China
| | - Yue Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, P. R. China
| | - Zengjing Guo
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, Shandong, P. R. China
| | - Qian Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, P. R. China
| |
Collapse
|
5
|
Navarro del Hierro J, Cantero-Bahillo E, Fernández-Felipe MT, Martin D. Microwave-Assisted Acid Hydrolysis vs. Conventional Hydrolysis to Produce Sapogenin-Rich Products from Fenugreek Extracts. Foods 2022; 11:foods11131934. [PMID: 35804750 PMCID: PMC9266256 DOI: 10.3390/foods11131934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The acid hydrolysis of saponins is commonly performed by conventional heating to produce sapogenin-rich products of bioactive interest, but alternative hydrolysis methods and their impact on bioactivity have been unexplored. We compared the conventional method with microwave-assisted acid hydrolysis (MAAH) of a commercial saponin-rich extract from a typical saponin source, fenugreek, focusing on the study of temperature (100, 120, 130, 140, 150 °C) and time (10, 20, 30, 40 min) of hydrolysis. The impact of these factors was assayed on both the sapogenin yield and the bioactivity of the hydrolyzed products, specifically their antioxidant and lipase inhibitory activities. The highest sapogenin content (34 g/100 g extract) was achieved by MAAH at 140 °C and 30 min, which was higher than conventional hydrolysis at both reference conditions (100 °C, 60 min, 24.6 g/100 g extract) and comparative conditions (140 °C, 30 min, 17 g/100 g extract) (p < 0.001). Typical steroid artifacts from sapogenins were observed in very small amounts, regardless of the method of hydrolysis. Antioxidant activity of MAAH hydrolyzed extracts (around 80% DPPH inhibition) was barely affected by time and temperature, but pancreatic lipase inhibitory activity was higher (>65%) at lower MAAH temperature (<130 °C) and time (<30 min) of hydrolysis. MAAH is shown as a valid alternative to produce selective sapogenin-rich extracts from fenugreek with minor impact on their bioactivities, and whose magnitude can be modulated by the hydrolysis conditions.
Collapse
Affiliation(s)
- Joaquin Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Emma Cantero-Bahillo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M. Teresa Fernández-Felipe
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-001-7930
| |
Collapse
|
6
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
7
|
Arcile G, Ouazzani J, Betzer JF. Efficient Piancatelli rearrangement on a large scale using the Zippertex technology under subcritical water conditions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of furyl carbinols, which were directly obtained from a bio-sourced raw material, were efficiently transformed into cyclopentenone derivatives in good yields and on a large scale using the Zippertex technology under subcritical water conditions.
Collapse
Affiliation(s)
- Guillaume Arcile
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean-François Betzer
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
Li T, Sun G, Xiong L, Zheng B, Duan Y, Yu R, Jiang J, Wang Y, Yang W. Transition-metal-free decarboxylation of D-glucaric acid to furan catalyzed by SnCl4 in a biphasic system. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
5-HMF production from industrial grade sugar syrups derived from corn and wood using niobium phosphate catalyst in a biphasic continuous-flow tubular reactor. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Torres-Olea B, García-Sancho C, Cecilia J, Oregui-Bengoechea M, Arias P, Moreno-Tost R, Maireles-Torres P. Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hu K, Zhang M, Liu B, Yang Z, Li R, Yan K. Efficient electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using the facilely synthesized 3D porous WO3/Ni electrode. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid using silver oxide supported on calcium carbonate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Barbosa SL, de S Freitas M, Dos Santos WTP, Nelson DL, Klein SI, Clososki GC, Caires FJ, Baroni ACM, Wentz AP. Dehydration of D-fructose to 5-hydroxymethyl-2-furfural in DMSO using a hydrophilic sulfonated silica catalyst in a process promoted by microwave irradiation. Sci Rep 2021; 11:1919. [PMID: 33479324 PMCID: PMC7820282 DOI: 10.1038/s41598-020-80285-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
SiO2-SO3H, with a surface area of 115 m2/g, pore volumes of 0.38 cm3g-1 and 1.32 mmol H+/g, was used as a 10% w/w catalyst for the preparation of 5-hydroxymethyl-2-furfural (HMF) from fructose. A conversion of 100% was achieved in a microwave reactor during 10 min at 150 °C in DMSO, with 100% selectivity for HMF, at a molar ratio of fructose: DMSO equal to 1:56. The catalyst could be re-used three times.
Collapse
Affiliation(s)
- Sandro L Barbosa
- Department of Pharmacy, Universidade Federal dos Vales do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil.
| | - Milton de S Freitas
- Department of Pharmacy, Universidade Federal dos Vales do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Wallans T P Dos Santos
- Department of Pharmacy, Universidade Federal dos Vales do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - David Lee Nelson
- Department of Pharmacy, Universidade Federal dos Vales do Jequitinhonha e Mucuri-UFVJM, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Stanlei I Klein
- Department of General and Inorganic Chemistry, Institute of Chemistry, São Paulo State University-Unesp, R. Prof. Francisco Degni 55, Quitandinha, Araraquara, SP, CEP-14800-900, Brazil
| | - Giuliano Cesar Clososki
- Department of Physics and Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, São Paulo University-USP, Av. do Café s/n, Ribeirão Prêto, SP, CEP-14.040-903, Brazil
| | - Franco J Caires
- Department of Physics and Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, São Paulo University-USP, Av. do Café s/n, Ribeirão Prêto, SP, CEP-14.040-903, Brazil
| | - Adriano C M Baroni
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul - UFMS, Av. Costa e Silva, s.n., Campo Grande, MS, 79070900, Brazil
| | - Alexandre P Wentz
- Centro universitário SENAI-CIMATEC, Av. Orlando Gomes, 1845, Piatã, Salvador, BA, 41650-010, Brazil
| |
Collapse
|
14
|
Su T, Zhao D, Wang Y, Lü H, Varma RS, Len C. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2021; 14:266-280. [PMID: 33200564 DOI: 10.1002/cssc.202002232] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Indexed: 06/11/2023]
Abstract
5-Hydroxymethylfurfural (HMF) has been identified as one of the most promising biomass-based multi-purpose platform molecules. Innovative protocols, namely electrocatalysis, photocatalysis, and microwave (MW)-assisted chemistry, as well as continuous-flow systems, add a new dimension and another promising toolbox for the oxidation of HMF in recent years. This Minireview deals with recent progress in the catalytic oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and other intermediates using noble, non-noble, and metal-free systems deploying emerging protocols. Selective HMF downstream oxidation products could be obtained not only via common catalyst modifications, namely nature of the metal, preparative method, and the property of deployed support, but also by using innovative processes.
Collapse
Affiliation(s)
- Ting Su
- Green Chemistry Center, College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P.R. China
| | - Deyang Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P.R. China
| | - Yantao Wang
- School of Resources Environmental & Chemical Engineering, Nanchang University, No 999 Xuefu Avenue, Honggutan New District, Nanchang, 330031, P.R. China
| | - Hongying Lü
- Green Chemistry Center, College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Christophe Len
- Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France
- Sorbonne Universités, Université de Technologie de Compiegne, Centre de recherches Royallieu, CS, 60319, 60203 Compiegne cedex, France
| |
Collapse
|
15
|
Zhao D, Su T, Wang Y, Varma RS, Len C. Recent advances in catalytic oxidation of 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Flow hydrogenation of 5-acetoxymethylfurfural over Cu-based catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Ranu BC, Ghosh T, Adak L. Recent Progress on Carbon-chalcogen Bond Formation Reaction Under Microwave Irradiation. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213335607666200214130544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carbon-chalcogen bond formation is of much importance as organochalcogenides scaffold,
and in general, it shows by organochalcogenide scaffolds, in general, show promising biological
activities and many compounds containing chalcogenide units are currently used as drugs, agrochemicals
and useful materials. Thus, a plethora of methods has been developed for the formation of carbonchalcogen
bonds. This review covers the recent developments on the formation of carbon-chalcogen
bonds under microwave irradiation and synthesis of useful chalcogenides by employing this process.
Collapse
Affiliation(s)
- Brindaban C. Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tubai Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Laksmikanta Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
18
|
Zheng J, Hu L, He X, Liu Y, Zheng X, Tao S, Lin X. Evaluation of Pore Structure of Polarity-Controllable Post-Cross-Linked Adsorption Resins on the Adsorption Performance of 5-Hydroxymethylfurfural in Both Single- and Ternary-Component Systems. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiayi Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Lei Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xianda He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Yao Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaojie Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Shunhui Tao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
19
|
Delbecq F, Khodadadi MR, Rodriguez Padron D, Varma R, Len C. Isosorbide: Recent advances in catalytic production. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Loste N, Roldán E, Giner B. Is Green Chemistry a feasible tool for the implementation of a circular economy? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6215-6227. [PMID: 31865584 DOI: 10.1007/s11356-019-07177-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The main goal of this research is to evaluate the contributions of Green Chemistry as a potential tool to drive the transition to circularity. For this, we have carried out a bibliographic study, analyzing those documents, process, or experiences that dealt jointly with the Green Chemistry aspects related to circularity such circular economy, industrial ecology, and closed loop. Findings show that few authors have treated that disciplines together in the last 10 years. Based on an analysis of academic literature, common strategies (design, raw materials, life cycle assessment, processes, normative, new business, and collaboration), specific experiences (catalyst, biobased products or methods, recycling, and reusing), and difficulties to overcome (metrics, transdisciplinary research, unawareness, and competitiveness) have been identified. Finally, different kind of measures, as behind such joint metrics, informal open spaces, closer the industry, education, standards and label are proposed to facilitate the development of Green Chemistry, circular economy, industrial ecology, and closed loop with the ultimate goal of improving sustainable development.From the evidences found, we finally conclude that it is possible to use Green Chemistry and its principles as a tool to drive the transition to circularity, being the development of open spaces for exchange information between different actors from academia, governments and regulatory actors, business and industrial sectors, with the aim of promoting disruptive advances in sustainability.
Collapse
Affiliation(s)
- Natalia Loste
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Esther Roldán
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Beatriz Giner
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
21
|
Zhou D, Shen D, Lu W, Song T, Wang M, Feng H, Shentu J, Long Y. Production of 5-Hydroxymethylfurfural from Chitin Biomass: A Review. Molecules 2020; 25:molecules25030541. [PMID: 32012651 PMCID: PMC7036796 DOI: 10.3390/molecules25030541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/12/2023] Open
Abstract
Chitin biomass, a rich renewable resource, is the second most abundant natural polysaccharide after cellulose. Conversion of chitin biomass to high value-added chemicals can play a significant role in alleviating the global energy crisis and environmental pollution. In this review, the recent achievements in converting chitin biomass to high-value chemicals, such as 5-hydroxymethylfurfural (HMF), under different conditions using chitin, chitosan, glucosamine, and N-acetylglucosamine as raw materials are summarized. Related research on pretreatment technology of chitin biomass is also discussed. New approaches for transformation of chitin biomass to HMF are also proposed. This review promotes the development of industrial technologies for degradation of chitin biomass and preparation of HMF. It also provides insight into a sustainable future in terms of renewable resources.
Collapse
Affiliation(s)
- Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China;
| | - Tao Song
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
- Correspondence:
| |
Collapse
|
22
|
Continuous flow conversion of alkyl levulinates into γ-valerolactone in the presence of Ru/C as catalyst. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Faba L, Garcés D, Díaz E, Ordóñez S. Carbon Materials as Phase-Transfer Promoters for Obtaining 5-Hydroxymethylfurfural from Cellulose in a Biphasic System. CHEMSUSCHEM 2019; 12:3769-3777. [PMID: 31240829 DOI: 10.1002/cssc.201901264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Different carbonaceous materials were tested as mass-transfer promoters for increasing the yield of 5-hydroxymethylfurfural (5-HMF) in biphasic cellulose hydrolysis. The benefits of working with a biphasic system (water/methyl isobutyl ketone) under soft acid conditions were taken as starting point (no humins or levulinic acid production), with slow extraction kinetics as the weakest point of this approach. Carbon nanotubes (CNTs) and activated carbon (AC) were proposed to improve 5-HMF liquid-liquid mass transfer. A kinetic analysis of the extraction process indicated the competition between 5-HMF and glucose adsorption as the main cause of the poor results obtained with AC. In contrast, very promising results were obtained with CNTs, mainly at 1.5 wt % loading, with complete transfer of HMF and a high global mass-transfer coefficient. The use of CNTs improved the amount of 5-HMF in the organic phase by more than 270 %.
Collapse
Affiliation(s)
- Laura Faba
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Diego Garcés
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Eva Díaz
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Salvador Ordóñez
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| |
Collapse
|
24
|
Rodriguez Quiroz N, Norton AM, Nguyen H, Vasileiadou E, Vlachos DG. Homogeneous Metal Salt Solutions for Biomass Upgrading and Other Select Organic Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01853] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Natalia Rodriguez Quiroz
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Angela M. Norton
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Hannah Nguyen
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Efterpi Vasileiadou
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
25
|
One-Pot FDCA Diester Synthesis from Mucic Acid and Their Solvent-Free Regioselective Polytransesterification for Production of Glycerol-Based Furanic Polyesters. Molecules 2019; 24:molecules24061030. [PMID: 30875923 PMCID: PMC6471091 DOI: 10.3390/molecules24061030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/03/2023] Open
Abstract
A one pot-two step procedure for the synthesis of diethyl furan-2,5-dicarboxylate (DEFDC) starting from mucic acid without isolation of the intermediate furan dicarboxylic acid (FDCA) was studied. Then, the production of three different kinds of furan-based polyesters— polyethylene-2,5-furan dicarboxylate (PEF), polyhydropropyl-2,5-furan dicarboxylate(PHPF) and polydiglycerol-2,5-furandicarboxylate (PDGF)—was realized through a Co(Ac)2·4H2O catalyzed polytransesterification performed at 160 °C between DEFDC and a defined diol furan-based prepolymer or pure diglycerol. In parallel to polymerization process, an unattended regioselective 1-OH acylation of glycerol by direct microwave-heated FDCA diester transesterification led to the formation of a symmetric prepolymer ready for further polymerization and clearly identified by 2D NMR sequences. Furthermore, the synthesis of a more soluble and hydrophilic diglycerol-based furanic polyester was also achieved. The resulting biobased polymers were characterized by NMR, FT-IR spectroscopy, DSC, TGA and XRD. The morphologies of the resulted polymers were observed by FE-SEM and the purity of the material by EDX.
Collapse
|
26
|
Zhang J, Yang S, Zhang Z, Cui L, Jia J, Zhou D, Zhu B. An Excellent Solid Acid Catalyst Derived from Microalgae Residue for Fructose Dehydration into 5-Hydroxymethylfurural. ChemistrySelect 2019. [DOI: 10.1002/slct.201803528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianghua Zhang
- National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 P.R.China
- School of Light Industry and Chemical Engineering; Dalian Polytechnic University; Dalian 116034 P.R.China
| | - Shasha Yang
- School of Light Industry and Chemical Engineering; Dalian Polytechnic University; Dalian 116034 P.R.China
| | - Zhenxin Zhang
- School of Light Industry and Chemical Engineering; Dalian Polytechnic University; Dalian 116034 P.R.China
| | - Li Cui
- School of Light Industry and Chemical Engineering; Dalian Polytechnic University; Dalian 116034 P.R.China
| | - Jin Jia
- School of Light Industry and Chemical Engineering; Dalian Polytechnic University; Dalian 116034 P.R.China
| | - Dayong Zhou
- National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 P.R.China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood; Dalian Polytechnic University; Dalian 116034 P.R.China
| |
Collapse
|
27
|
Feng Y, Li M, Gao Z, Zhang X, Zeng X, Sun Y, Tang X, Lei T, Lin L. Development of Betaine-Based Sustainable Catalysts for Green Conversion of Carbohydrates and Biomass into 5-Hydroxymethylfurfural. CHEMSUSCHEM 2019; 12:495-502. [PMID: 30375739 DOI: 10.1002/cssc.201802342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Renewable and sustainable betaine-based catalysts (BX) derived from the betaine sugar industry or ChCl were developed for the production of 5-hydroxymethylfurfural (HMF) from various carbohydrates. The HMF yields in the BX-based media reached up to 88 %, 66 %, 37 % and 53 %, for the conversion of fructose, glucose, cellulose, and lignocellulosic biomass, respectively. In addition, choline-O-sulfate was synthesized and demonstrated to be an efficient catalyst for the conversion of fructose to HMF. From the perspective of green and sustainable chemistry, this work demonstrates benefits not only in the preparation of sustainable catalysts but also the green production of HMF from biomass.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
| | - Mengzhu Li
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
| | - Zhebang Gao
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
| | - Xin Zhang
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Tingzhou Lei
- Henan Key Lab of Biomass Energy, Huayuan Road 29, Zhengzhou, Henan, 450008, P.R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, P.R.China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| |
Collapse
|
28
|
Mishra S, Kharkar PS, Pethe AM. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date). Carbohydr Polym 2018; 207:418-427. [PMID: 30600024 DOI: 10.1016/j.carbpol.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Nanocrystalline cellulose (NCC) has gained much popularity over the last decade as a preferred nanomaterial in varied applications, despite its laborious industrial production and higher cost. Its production methods have undergone a great deal of metamorphosis lately. The main emphasis has been on the environment-friendly and green processes, in addition to the sustainable and renewable feedstock. Globally, the researchers have explored biomass and waste cellulosic materials as renewable sources for NCC extraction. Newer and/or improved process alternatives, e.g., ultrasonication, enzymatic hydrolysis and mechanical treatments have been applied successfully for producing high-quality material. Detailed investigations on optimizing the overall yield from cheaper feedstock have yielded obvious benefits. This is still work in progress. The present review majorly focuses on the advances made in the NCC preparation field from biomass and waste cellulosic materials in last three years (2016 - till date). Collaborative efforts between chemical engineers and research scientists are crucial for the success of this really amazing nanomaterial.
Collapse
Affiliation(s)
- Shweta Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Anil M Pethe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|