1
|
Wang X, Yang S, Gao Q, Dai Y, Tian L, Wen L, Yan H, Yang L, Hou X, Liu P, Zhang L. Multi-omics reveals the phyllosphere microbial community and material transformations in cigars. Front Microbiol 2024; 15:1436382. [PMID: 39144227 PMCID: PMC11322134 DOI: 10.3389/fmicb.2024.1436382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shuai Yang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yu’xi, China
| | - Qiang Gao
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Youqing Dai
- Cigar Operating Centre of China Tobacco Shandong Industrial Co., Ltd., Ji’nan, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Liang Wen
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
2
|
Xu M, Du Y, Hou X, Zhang Z, Yan N. Chemical structures, biosynthesis, bioactivities, and utilisation values for the diterpenes produced in tobacco trichomes. PHYTOCHEMISTRY 2024; 223:114117. [PMID: 38697243 DOI: 10.1016/j.phytochem.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Cembranoids and labdanes are two important types of diterpenes in tobacco (Nicotiana genus) that are predominantly found in the leaf and flower glandular trichome secretions. This is the first systematic review of the biosynthesis, chemical structures, bioactivities, and utilisation values of cembranoid and labdane diterpenes in tobacco. A total of 131 natural cembranoid diterpenes have been reported in tobacco since 1962; these were summarised and classified according to their chemical structure characteristics as isopropyl cembranoids (1-88), seco-cembranoids (89-103), chain cembranoids (104-123), and polycyclic cembranoids (124-131). Forty natural labdane diterpenes reported since 1961 were also summarised and divided into epoxy side chain labdanes (132-150) and epoxy-free side chain labdanes (151-171). Tobacco cembranoid and labdane diterpenes are both formed via the methylerythritol 4-phosphate pathway and are synthesised from geranylgeranyl diphosphate. Their biosynthetic pathways and the four key enzymes (cembratrienol synthase, cytochrome P450 hydroxylase, copalyl diphosphate synthase, and Z-abienol cyclase) that affect their biosynthesis have been described in detail. A systematic summary of the bioactivity and utilisation values of the cembranoid and labdane diterpenes is also provided. The agricultural bioactivities associated with cembranoid and labdane diterpenes include antimicrobial and insecticidal activities as well as induced resistance, while the medical bioactivities include cytotoxic and neuroprotective activities. Further research into the cembranoid and labdane diterpenes will help to promote their development and utilisation as plant-derived pesticides and medicines.
Collapse
Affiliation(s)
- Minglei Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Xiaodong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
3
|
Du Z, Tian T, Gao Y, Guan J, Ju F, Bian S, Wang J, Lin X, Wang B, Liao Z, Du Y, Zhang Z, Zhang H. Investigating the spatiotemporal expression of CBTS genes lead to the discovery of tobacco root as a cembranoid-producing organ. FRONTIERS IN PLANT SCIENCE 2024; 15:1341324. [PMID: 38872887 PMCID: PMC11169922 DOI: 10.3389/fpls.2024.1341324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Tobacco cembranoids, known for their anti-insect and antifungal properties, were shown to be mainly present on the surface of leaves and flowers, being biosynthesized by their trichomes. It remains unclear whether they could be biosynthesized in other organs without trichomes. Cembratrien-ol synthases (CBTSs) catalyze the conversion of GGPP to CBT-ols and thus play an important role in cembranoid biosynthesis. This study identified the CBTS family genes in tobacco and examined their spatiotemporal expression patterns. The CBTS genes showed diverse expression patterns in tobacco organs, with the majority highly expressed in leaves and a few highly expressed in flowers. The expression of CBTS genes were also correlated with the development of tobacco plants, and most of them showed the highest expression level at the budding stage. Furthermore, their expression is mediated by the JA (jasmonate) signaling in all tobacco organs. Several CBTS genes were found to be highly expressed in tobacco roots that have no trichomes, which prompted us to determine the cembranoid production in roots and other organs. GC-MS and UPLC assays revealed that cembranoids were produced in all tobacco organs, which was supported by the bioactivity assay results that almost all these CBTS enzymes could catalyze CBT-ol biosyntheis in yeast, and that the content ratio of CBT-ols and CBT-diols in tobacco roots was different to that in leaves. This work sheds insights into the expression profiles of tobacco CBTS genes and provides a feasibility to engineer tobacco roots for industrial production of cembranoids.
Collapse
Affiliation(s)
- Zaifeng Du
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Tian Tian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yulong Gao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Jian Guan
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fuzhu Ju
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shiquan Bian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jiahao Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoyang Lin
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yongmei Du
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Zhao L, Shang S, Tian Y, Gao Y, Song Z, Peng L, Li Z, Wang B. Integrative analysis of sensory evaluation and non-targeted metabolomics to unravel tobacco leaf metabolites associated with sensory quality of heated tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1123100. [PMID: 36844088 PMCID: PMC9944805 DOI: 10.3389/fpls.2023.1123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Heated tobacco (Nicotiana tabacum L.) products are heating tobacco plug at a temperature of 350°C and produce different emissions in aerosol and sensory perceptions of tobacco leaf compared with combustible tobacco. Previous study assessed different tobacco varieties in heated tobacco for sensory quality and analyzed the links between sensory scores of the final products and certain chemical classes in tobacco leaf. However, contribution of individual metabolites to sensory quality of heated tobacco remains largely open for investigation. METHODS In present study, five tobacco varieties were evaluated as heated tobacco for sensory quality by an expert panel and the volatile and non-volatile metabolites were analyzed by non-targeted metabolomics profiling. RESULTS The five tobacco varieties had distinct sensory qualities and can be classified into higher and lower sensory rating classes. Principle component analysis and hierarchical cluster analysis showed that leaf volatile and non-volatile metabolome annotated were grouped and clustered by sensory ratings of heated tobacco. Orthogonal projections to latent structures discriminant analysis followed by variable importance in projection and fold-change analysis revealed 13 volatiles and 345 non-volatiles able to discriminate the tobacco varieties with higher and lower sensory ratings. Some compounds such as β-damascenone, scopoletin, chlorogenic acids, neochlorogenic acids, and flavonol glycosyl derivatives had strong contribution to the prediction of sensory quality of heated tobacco. Several lyso-phosphatidylcholine and lyso-phosphatidylethanolamine lipid species, and reducing and non-reducing sugar molecules were also positively related to sensory quality. DISCUSSION Taken together, these discriminating volatile and non-volatile metabolites support the role of leaf metabolites in affecting the sensory quality of heated tobacco and provide new information on the types of leaf metabolites that can be used to predict applicability of tobacco varieties for heated tobacco products.
Collapse
Affiliation(s)
- Lu Zhao
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Shanzhai Shang
- Research and Development Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, Yunnan, China
| | - Yongfeng Tian
- Research and Development Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, Yunnan, China
| | - Yulong Gao
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Zhongbang Song
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Lijuan Peng
- Laboratory of Tobacco Chemistry, Yunnan Tobacco Quality Supervision and Test Station, Kunming, Yunnan, China
| | - Zhuolin Li
- Department of Technical Support, Malong Branch of Qujing Tobacco Company, Qujing, Yunnan, China
| | - Bingwu Wang
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
5
|
Drapal M, Enfissi EMA, Fraser PD. The chemotype core collection of genus Nicotiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1516-1528. [PMID: 35322494 PMCID: PMC9321557 DOI: 10.1111/tpj.15745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 05/26/2023]
Abstract
Sustainable production of chemicals and improving these biosources by engineering metabolic pathways to create efficient plant-based biofactories relies on the knowledge of available chemical/biosynthetic diversity present in the plant. Nicotiana species are well known for their amenability towards transformation and other new plant breeding techniques. The genus Nicotiana is primarily known through Nicotiana tabacum L., the source of tobacco leaves and all respective tobacco products. Due to the prevalence of the latter, N. tabacum and related Nicotiana species are one of the most extensively studied plants. The majority of studies focused solely on N. tabacum or other individual species for chemotyping. The present study analysed a diversity panel including 17 Nicotiana species and six accessions of Nicotiana benthamiana and created a data set that effectively represents the chemotype core collection of the genus Nicotiana. The utilisation of several analytical platforms and previously published libraries/databases enabled the identification and measurement of over 360 metabolites of a wide range of chemical classes as well as thousands of unknowns with dedicated spectral and chromatographic properties.
Collapse
Affiliation(s)
- Margit Drapal
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | | | - Paul D. Fraser
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| |
Collapse
|
6
|
Deng LL, Yang WW, Jiang JR, Xu L, Zhang JD, Liu CB, Ling J, Kong WS, Li XM, Li YK, Liu X, Zhou T. Two New Anti-Tobacco Mosaic Virus Quinoline Alkaloids from the Stems of Nicotiana tabacum. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Bian S, Sui X, Wang J, Tian T, Wang C, Zhao X, Liu X, Fang N, Zhang Y, Liu Y, Du Y, Wang B, Timko MP, Zhang Z, Zhang H. NtMYB305a binds to the jasmonate-responsive GAG region of NtPMT1a promoter to regulate nicotine biosynthesis. PLANT PHYSIOLOGY 2022; 188:151-166. [PMID: 34601578 PMCID: PMC8774768 DOI: 10.1093/plphys/kiab458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/02/2023]
Abstract
MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter. Yeast one-hybrid analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed that NtMYB305a binds to the GAG region in vitro and in vivo. Binding specifically occurs at the ∼30-bp AT-rich motif in a G/C-base-independent manner, thus defining the AT-rich motif as previously unknown MYB-binding element. NtMYB305a localized in the nucleus of tobacco cells where it is capable of activating the expression of a 4×GAG-driven GUS reporter in an AT-rich motif-dependent manner. NtMYB305a positively regulates nicotine biosynthesis and the expression of NtPMT and other nicotine pathway genes. NtMYB305a acts synergistically with NtMYC2a to regulate nicotine biosynthesis, but no interaction between these two proteins was detected. This identification of NtMYB305a provides insights into the regulation of nicotine biosynthesis and extends the roles played by MYB transcription factors in plant secondary metabolism.
Collapse
Affiliation(s)
- Shiquan Bian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jiahao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tian Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chunkai Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xue Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaofeng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ning Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yu Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
8
|
Yi X, Wang X, Wu L, Wang M, Yang L, Liu X, Chen S, Shi Y. Integrated Analysis of Basic Helix Loop Helix Transcription Factor Family and Targeted Terpenoids Reveals Candidate AarbHLH Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. FRONTIERS IN PLANT SCIENCE 2022; 12:811166. [PMID: 35111184 PMCID: PMC8801783 DOI: 10.3389/fpls.2021.811166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or β-caryophyllene. Protein-protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.
Collapse
Affiliation(s)
- Xiaozhe Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang Y, Bian S, Liu X, Fang N, Wang C, Liu Y, Du Y, Timko MP, Zhang Z, Zhang H. Synthesis of cembratriene-ol and cembratriene-diol in yeast via the MVA pathway. Microb Cell Fact 2021; 20:29. [PMID: 33530990 PMCID: PMC7852193 DOI: 10.1186/s12934-021-01523-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cembranoids are one kind of diterpenoids with multiple biological activities. The tobacco cembratriene-ol (CBT-ol) and cembratriene-diol (CBT-diol) have high anti-insect and anti-fungal activities, which is attracting great attentions for their potential usage in sustainable agriculture. Cembranoids were supposed to be formed through the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, yet the involvement of mevalonate (MVA) pathway in their synthesis remains unclear. Exploring the roles of MVA pathway in cembranoid synthesis could contribute not only to the technical approach but also to the molecular mechanism for cembranoid biosynthesis. Results We constructed vectors to express cembratriene-ol synthase (CBTS1) and its fusion protein (AD-CBTS1) containing an N-terminal GAL4 AD domain as a translation leader in yeast. Eventually, the modified enzyme AD-CBTS1 was successfully expressed, which further resulted in the production of CBT-ol in the yeast strain BY-T20 with enhanced MVA pathway for geranylgeranyl diphosphate (GGPP) production but not in other yeast strains with low GGPP supply. Subsequently, CBT-diol was also synthesized by co-expression of the modified enzyme AD-CBTS1 and BD-CYP450 in the yeast strain BY-T20. Conclusions We demonstrated that yeast is insensitive to the tobacco anti-fungal compound CBT-ol or CBT-diol and could be applied to their biosynthesis. This study further established a feasibility for cembranoid production via the MVA pathway and provided an alternative bio-approach for cembranoid biosynthesis in microbes.
Collapse
Affiliation(s)
- Yu Zhang
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Shiquan Bian
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaofeng Liu
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ning Fang
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chunkai Wang
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanhua Liu
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yongmei Du
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Michael P Timko
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - Zhongfeng Zhang
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Hongbo Zhang
- TRI of CAAS-UVA Joint Laboratory of Synthetic Biology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
10
|
Wang X, Huang LJ, Liang MJ, Li YK, Zeng WL, Xiang HY, Li J, Liu X, Mi QL, Guo YD, Yang GY, Deng L, Gao Q. Two New Furan-2-Carboxylic Derivatives from the Leaves of Nicotiana tabacum and Their Anti-Tobacco Mosaic Virus Activities. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Zhu LJ, Luo D, Lv N, Li YK, Mi QL, Wang J, Kong WS, Gao Q, Li GP, Yang GY, Hu QF, Guan Y, Ye YQ. Two New Coumarins from the Roots and Stems of Nicotiana tabacum and their Bioactivity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03157-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Becerra-Martínez E, Pacheco-Hernández Y, Lozoya-Gloria E, Betancourt-Jiménez MG, Hidalgo-Martínez D, Zepeda-Vallejo LG, Villa-Ruano N. 1 H-NMR metabolomics profiling of recombinant tobacco plants holding a promoter of a sesquiterpene cyclase. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:480-487. [PMID: 31908083 DOI: 10.1002/pca.2911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Nicotiana tabacum is a plant model intensively used in the bio-engineering pharmaceutical industry as a platform to produce drugs and therapeutic agents. Currently, no information regarding the non-targeted metabolome of transgenic tobacco containing recombinant regulatory sequences is available. OBJECTIVE To compare the proton nuclear magnetic resonance (1 H-NMR) metabolomics profiling of a recombinant Nicotiana tabacum strain containing a promoter of a sesquiterpene cyclase from Capsicum annuum driving GUS expression, versus wild-type samples. Methodology The non-targeted 1 H-NMR metabolome was obtained and processed by principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). The differential metabolites were quantified by quantitative NMR. RESULTS PCA and OPLS-DA revealed 37 metabolites including 16 discriminant compounds for transgenic samples. Ethanol (0.4 mg g-1 ), the main differential compound, was exclusively detected in transgenic tobacco; however, high levels of formate (0.28 mg g-1 ) and acetate (0.3 mg g-1 ) were simultaneously observed in the same group of samples. Cembratriene-4,6-diol, an antitumour and neuroprotective compound, and capsidiol, a known phytoalexin, increased by about 30% in transgenic samples. In addition, the endogenous levels of the antioxidant caffeoylquinic acid isomers increased by 50% in comparison to those of wild-type tobaccos. CONCLUSION Our results support the occurrence of metabolic differences between wild type and transgenic tobacco containing a promoter of a Capsicum sesquiterpene cyclase gene. Interestingly, the recombinant transgenic strain studied accumulated high amounts of added value compounds with biological activity.
Collapse
Affiliation(s)
- Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Edmundo Lozoya-Gloria
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | | | | | - Luis G Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Nemesio Villa-Ruano
- CONACyT - Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
13
|
Hu QF, Chen ZY, Li YK, Lv N, Luo D, Kong WS, Mi QL, Gao Q, Zeng WL, Li J, Ling J, Liu CB, Yang GY, Li XM. Three New Furan-2-Carboxylic Acid Derivatives from the Stem Bark of Nicotiana tabacum and Their Bioactivity. HETEROCYCLES 2020. [DOI: 10.3987/com-19-14198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|