1
|
Pérez-Mejía N, Villarreal ML, Sánchez-Carranza JN, González-Maya L, González-Cortazar M, Ortíz-Caltempa A, Alvarez L. Phytochemical Profiles and Cytotoxic Activity of Bursera fagaroides (Kunth) Engl. Leaves and Its Callus Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1622. [PMID: 38931054 PMCID: PMC11207444 DOI: 10.3390/plants13121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Bursera fagaroides, popularly used in México, possesses bioactive lignans. These compounds are low in the bark, and its extraction endangers the life of the trees. The aim of the present investigation was to search for alternative sources of cytotoxic compounds in B. fagaroides prepared as leaves and in vitro callus cultures. The friable callus of B. fagaroides was established using a combination of plant growth regulators: 4 mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4-D), 1 mgL-1 Naphthaleneacetic Acid (NAA) and 1 mgL-1 Zeatin. The maximum cell growth was at day 28 with a specific growth rate of μ = 0.059 days-1 and duplication time td = 11.8 days. HPLC quantification of the dichloromethane callus biomass extract showed that Scopoletin, with a concentration of 10.7 µg g-1 dry weight, was the main compound inducible as a phytoalexin by the addition of high concentrations of 2,4-D, as well as by the absence of nutrients in the culture medium. In this same extract, the compounds γ-sitosterol and stigmasterol were also identified by GC-MS analysis. Open column chromatography was used to separate and identify yatein, acetyl podophyllotoxin and 7',8'-dehydropodophyllotoxin in the leaves of the wild plant. Cytotoxic activity on four cancer cell lines was tested, with PC-3 prostate carcinoma (IC50 of 12.6 ± 4.6 µgmL-1) being the most sensitive to the wild-type plant extract and HeLa cervical carcinoma (IC50 of 72 ± 5 µgmL-1) being the most sensitive to the callus culture extract.
Collapse
Affiliation(s)
- Nancy Pérez-Mejía
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (J.N.S.-C.); (L.G.-M.)
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (J.N.S.-C.); (L.G.-M.)
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, IMSS, Calle República Argentina No. 1, Col. Centro, Xochitepec C. P. 62790, Mexico;
| | - Anabel Ortíz-Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico
| |
Collapse
|
2
|
Yang Y, Xu X, He B, Chang J, Zheng Y, Li Y. The role of miRNA-26a-5p and target gene socs1a in flutolanil induced hepatotoxicity of zebrafish at environmental relevant levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122322. [PMID: 37544405 DOI: 10.1016/j.envpol.2023.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Flutolanil has been detected worldwide in aquatic environment and fish, which has become an undeniable stressor on ecosystem and human health. Flutolanil has been reported to be toxic to aquatic organisms. However, the pathophysiological and molecular mechanism behind the detrimental effects remains obscure. Here we reported hepatotoxicity induced by flutolanil in HepG2 cells and zebrafish, as revealed by toxicokinetic, HE staining, miRNAs-mRNAs sequencing, molecular dynamic simulations and dual luciferase reporter assays. Collectively, our results indicated that flutolanil could be absorbed by and accumulated in the liver of zebrafish, causing hepatic vacuolar degeneration, steatosis and nuclear condensation and abnormal liver function, where its exposure at environmental levels disrupted the expressions of miRNA-26a-5p and its target gene socs1a by mediating JAK-STAT signaling pathway, which was partially responsible for hepatotoxicity, correlated with oxidative stress, cell apoptosis, inflammation, cell cycle disorder and mitochondrial dysfunction. These findings suggest that miRNA-26a-5p/socs1a can serve as potential biomarkers of hepatotoxicity in zebrafish following exposure to flutolanil. This uncovered route will provide a new tool for the risk assessment of flutolanil and a guide to proper use of flutolanil and environmental remedy, and open up a new horizon for liver disease assessment.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiyan Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China; College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Keller M, Winker M, Zimmermann-Klemd AM, Sperisen N, Gupta MP, Solis PN, Hamburger M, Potterat O, Gründemann C. Aryltetralin lignans from Hyptis brachiata inhibiting T lymphocyte proliferation. Biomed Pharmacother 2023; 160:114328. [PMID: 36739759 DOI: 10.1016/j.biopha.2023.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Increased activation and proliferation of T lymphocytes plays an essential role in the development of chronic inflammation and autoimmune diseases. Currently used immunosuppressive drugs often do not provide long-lasting relief of symptoms and show a gradual loss of efficacy over time, and are accompanied by various side effects. Therefore, novel immunosuppressive lead substances are needed. For this purpose, an in-house library consisting of 600 extracts of plants from Panama was screened for inhibition of human T lymphocyte proliferation. As one of the hits, an ethyl acetate extract from the aerial parts of Hyptis brachiata (Lamiaceae) exhibited strong inhibitory effects. Subsequent investigation resulted in the isolation of seven aryltetralin lignans, five arylnaphthalene lignans, two flavonoids, three triterpenes, and cinnamyl cinnamate. Aryltetralin lignans inhibited T lymphocyte proliferation in a concentration-dependent manner without induction of apoptosis. No relevant inhibition was observed for the arylnaphthalene lignans, flavonoids, and triterpenes. Additional cell cycle arrest investigations revealed that isolated aryltetralin lignans potently inhibited cell division in G2/M phase similarly to podophyllotoxin. Multifluorescence panel analyses of the extract also showed weak suppressive effects on the production of IL-2 and TNF-α. Therefore, preparations made out of H. brachiata could be further explored as an interesting herbal alternative in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Morris Keller
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Moritz Winker
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Campus Rosental - Mattenstrasse 22, CH-4058 Basel, Switzerland
| | - Amy Marisa Zimmermann-Klemd
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Campus Rosental - Mattenstrasse 22, CH-4058 Basel, Switzerland
| | - Nino Sperisen
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Mahabir P Gupta
- Centro de Investigaciones Farmacognosticas de la Flora Panamena (CIFLORPAN), Facultad de Farmacia, Universidad de Panama, Panama City, Republic of Panama
| | - Pablo N Solis
- Centro de Investigaciones Farmacognosticas de la Flora Panamena (CIFLORPAN), Facultad de Farmacia, Universidad de Panama, Panama City, Republic of Panama
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Campus Rosental - Mattenstrasse 22, CH-4058 Basel, Switzerland.
| |
Collapse
|
4
|
Chemistry and Biological Activities of Naturally Occurring and Structurally Modified Podophyllotoxins. Molecules 2022; 28:molecules28010302. [PMID: 36615496 PMCID: PMC9822336 DOI: 10.3390/molecules28010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Plants containing podophyllotoxin and its analogues have been used as folk medicines for centuries. The characteristic chemical structures and strong biological activities of this class of compounds attracted attention worldwide. Currently, more than ninety natural podophyllotoxins were isolated, and structure modifications of these molecules were performed to afford a variety of derivatives, which offered optimized anti-tumor activity. This review summarized up to date reports on natural occurring podophyllotoxins and their sources, structural modification and biological activities. Special attention was paid to both structural modification and optimized antitumor activity. It was noteworthy that etoposide, a derivative of podophyllotoxin, could prevent cytokine storm caused by the recent SARS-CoV-2 viral infection.
Collapse
|
5
|
Yan XY, Leng JF, Chen TT, Zhao YJ, Kong LY, Yin Y. Design, synthesis, and biological evaluation of novel diphenylamine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site. Eur J Med Chem 2022; 237:114372. [DOI: 10.1016/j.ejmech.2022.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
|
6
|
Antúnez-Mojica M, Romero-Estrada A, Hurtado-Díaz I, Miranda-Molina A, Alvarez L. Lignans from Bursera fagaroides: Chemistry, Pharmacological Effects and Molecular Mechanism. A Current Review. Life (Basel) 2021; 11:life11070685. [PMID: 34357057 PMCID: PMC8305812 DOI: 10.3390/life11070685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 01/21/2023] Open
Abstract
Bursera fagaroides is a medicinal tree endemic to México, it belongs to the Burseraceae family and has proven antitumor activity. Modern research, performed principally with the bark extracts, have indicated that lignans are the main active constituents of B. fagaroides, with a high content of aryltetralin, aryldihydronaphtalene, dibenzylbutirolactone, and dibenzylbutane-type lignans as the constituents of the active extracts. In general, lignans from B. fagaroides exhibited potent anti-cancer activity, although antitumor, anti-bacterial, anti-protozoal, anti-inflammatory, and anti-viral properties have also been described. This review covers literature-reported lignans from B. fagaroides, chemical structures, nomenclature, chromatographic techniques of isolation, characterization strategies, and highlights the anti-cancer molecular mechanisms of lignans. Evaluation of the anticancer function of lignans has been extensively investigated since the cytotoxic in vitro results and in vivo assays in mice and zebrafish models to the tubulin molecular recognition by NMR. Also, we discuss the future direction for studying this important plant species and its lignan metabolites.
Collapse
Affiliation(s)
- Mayra Antúnez-Mojica
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico;
| | - Antonio Romero-Estrada
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico; (A.R.-E.); (I.H.-D.)
| | - Israel Hurtado-Díaz
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico; (A.R.-E.); (I.H.-D.)
| | - Alfonso Miranda-Molina
- LANEM-Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Laura Alvarez
- Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca 62209, Morelos, Mexico
- Correspondence:
| |
Collapse
|
7
|
Sánchez-Monroy MB, León-Rivera I, Llanos-Romero RE, García-Bores AM, Guevara-Fefer P. Cytotoxic activity and triterpenes content of nine Mexican species of Bursera. Nat Prod Res 2020; 35:4881-4885. [PMID: 32174184 DOI: 10.1080/14786419.2020.1739680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The genus Bursera (Burseraceae) is considered an interesting source of antitumour compounds. This study aimed to evaluate the cytotoxic activity of the dichloromethane-soluble extracts from the bark of nine Mexican Bursera species. The chemical components of the extracts were determined by NMR and mass spectroscopy, whereas its cytotoxicity was tested using the sulphorhodamine (SRB) method on seven cell lines. Triterpenes and fatty acids were the most abundant components found in the extracts. A quantification by HPTLC - densitometry, showed that the species B. copallifera had the highest content of amyrins (287 µg/mg extract) followed by B. submoniliformis (159.5 µg/mg) and B. bicolor (156.5 µg/mg). Regarding cytotoxicicity, the species B. bicolor caused the highest growth inhibition (>90%) in colon (HCT-15) and lung (SK-LU1) lines; while B. fagaroides, B. grandifolia, B. morelensis, B. bicolor and B. linanoe were active in the SK-LU1cell line.
Collapse
Affiliation(s)
- Ma Beatriz Sánchez-Monroy
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - R Enrique Llanos-Romero
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| | - Ana María García-Bores
- Laboratorio de Fitoquímica, UBIPRO, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo. de México, México
| | - Patricia Guevara-Fefer
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| |
Collapse
|
8
|
Affiliation(s)
- David Barker
- School of Chemical Sciences, University of Auckland, Private Bag, Auckland 92019, New Zealand.
| |
Collapse
|