1
|
Aftab R, Akbar F, Afroz A, Asif A, Khan MR, Rehman N, Zeeshan N. Mentha piperita silver nanoparticle-loaded hydrocolloid film for enhanced diabetic wound healing in rats. J Wound Care 2024; 33:xlviii-lx. [PMID: 38457268 DOI: 10.12968/jowc.2024.33.sup3a.xlviii] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Reema Aftab
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Fatima Akbar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Awais Asif
- Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| |
Collapse
|
2
|
Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2157425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Onyenibe Sarah Nwozo
- Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
| | | | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
- School of Natural and Applied Sciences, Kampala International University, P.O. Box 20000 Kansanga, Kampala, Uganda
| |
Collapse
|
3
|
Yousefian S, Esmaeili F, Lohrasebi T. A Comprehensive Review of the Key Characteristics of the Genus Mentha, Natural Compounds and Biotechnological Approaches for the Production of Secondary Metabolites. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3605. [PMID: 38269203 PMCID: PMC10804064 DOI: 10.30498/ijb.2023.380485.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/16/2023] [Indexed: 01/26/2024]
Abstract
Context The genus Mentha is one of the most aromatic and well-known members of the Lamiaceae family. A wide range of bioactive compounds has been reported in mints. Regarding the high economic importance of Mentha plants due to the presence of valuable metabolites, the demand for their products is growing exponentially. Therefore, to supply such demand, new strategies should be adopted to improve the yield and medicinal quality of the products. Evidence Acquisition The current review is written based on scientific literature obtained from online databases, including Google Scholar, PubMed, Scopus, and Web of Science regarding the characteristic features of some species of the genus Mentha, their distribution and cultivation, main uses and benefits, phytochemical composition, biotechnological approaches for the production of secondary metabolites, and strategies for enhanced production of mints secondary metabolites. Results In this article, we offer an overview of the key characteristics, natural compounds, biological properties, and medicinal uses of the genus Mentha. Current research describes biotechnological techniques such as in vitro culture methods for the production of high-value secondary metabolites. This review also highlights the strategies such as elicitation, genetic, and metabolic engineering to improve the secondary compounds production level in mint plants. Overall, it can be concluded that identifying the biosynthetic pathways, leading to the accumulation of pharmaceutically important bioactive compounds, has paved the way for developing highly productive mint plants with improved phytochemical profiles.
Collapse
Affiliation(s)
| | | | - Tahmineh Lohrasebi
- Department of Plant Bioproducts, National Institude of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
4
|
Gupta S, Kumar A, Gupta A, Jnanesha A, Talha M, Srivastava A, Lal R. Industrial mint crop revolution, new opportunities, and novel cultivation ambitions: A review. ECOLOGICAL GENETICS AND GENOMICS 2023; 27:100174. [DOI: 10.1016/j.egg.2023.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Cornara L, Sgrò F, Raimondo FM, Ingegneri M, Mastracci L, D’Angelo V, Germanò MP, Trombetta D, Smeriglio A. Pedoclimatic Conditions Influence the Morphological, Phytochemical and Biological Features of Mentha pulegium L. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010024. [PMID: 36616155 PMCID: PMC9824027 DOI: 10.3390/plants12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
In this study, Mentha pulegium leaves and flowers harvested in three different Sicilian areas were investigated from a micromorphological, phytochemical and biological point of view. Light and scanning electron microscopy showed the presence of spherocrystalline masses of diosmin both in the leaf epidermal cells and in thin flower petals. Two different chemotypes were identified (I, kaempferide/rosmarinic acid; II, jaceidin isomer A). Phytochemical screening identified plant from collection site II as the richest in total phenolics (16.74 g GAE/100 g DE) and that from collection site I as the richest in flavonoids (46.56 g RE/100 g DE). Seventy-seven metabolites were identified both in flower and leaf extracts. Plant from site II showed the best antioxidant (0.90-83.72 µg/mL) and anti-inflammatory (27.44-196.31 µg/mL) activity expressed as half-maximal inhibitory concentration (IC50) evaluated by DPPH, TEAC, FRAP, ORAC, BSA denaturation and protease inhibition assays. These data were also corroborated by in vitro cell-based assays on lymphocytes and erythrocytes. Moreover, plant of site II showed the best antiangiogenic properties (IC50 33.43-33.60 µg/mL) in vivo on a chick chorioallantoic membrane. In conclusion, pedoclimatic conditions influence the chemotype and the biological activity of M. pulegium, with chemotype I showing the most promising biological properties.
Collapse
Affiliation(s)
- Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, C.so Europa 26, 16132 Genova, Italy
| | - Federica Sgrò
- Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Francesco Maria Raimondo
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical and Diagnostic Sciences (DISC), University of Genova, 16132 Genova, Italy
- Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16125 Genova, Italy
| | - Valeria D’Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Brahmi F, Lounis N, Mebarakou S, Guendouze N, Yalaoui-Guellal D, Madani K, Boulekbache-Makhlouf L, Duez P. Impact of Growth Sites on the Phenolic Contents and Antioxidant Activities of Three Algerian Mentha Species ( M. pulegium L., M. rotundifolia (L.) Huds., and M. spicata L.). Front Pharmacol 2022; 13:886337. [PMID: 35784700 PMCID: PMC9247617 DOI: 10.3389/fphar.2022.886337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Research studies about the effect of environmental agents on the accumulation of phenolic compounds in medicinal plants are required to establish a set of optimal growth conditions. Hence, in this work, we considered the impact of habitat types, soil composition, climatic factors, and altitude on the content of phenolics in Mentha species [M. pulegium L. (MP), M. rotundifolia (L.) Huds. (MR), and M. spicata L. (MS)] grown in different regions of Algeria. The phenolic contents and antioxidant activities were analyzed using spectrophotometric and HPTLC methods. The harvesting localities differ by their altitudes and climates, but their soils are quite similar, characterized by slight alkalinity, moderate humidity, no-salinity, and high levels in organic matter. Both the contents in total phenolics (TPC), total flavonoids (TFC), and rosmarinic acid (RAC), and the antioxidant activities of Mentha samples collected from these Algerian localities are affected by the geographical regions of origin. The samples of MS and MP from the Khemis-Miliana region showed the highest concentration in TPC (MS, 7853 ± 265 mg GAE/100 g DW; MP, 5250 ± 191 mg GAE/100 g DW), while in Chemini, the MR samples were the richest in these compounds (MR, 3568 ± 195 mg GAE/100 g DW). Otherwise, the MP (from Tichy), MR (from Tajboudjth), and MS (from Khemis-Miliana) specimens exhibited the highest levels of TFC and RAC. The antioxidant levels in a total activity test (reduction of phosphomolybdate) appear correlated with the total phenolic contents, but this was not the case for most of the important ROS-scavenging and iron-chelating capacities for which the quality of polyphenols is probably more important than their amounts. A principal component analysis (PCA) score plot indicates that all of the Mentha samples can be divided into four groups. These discriminated groups appear comparatively similar in phenolic contents and antioxidant activities. As for the harvest localities, the Mentha samples were divided into four groups in which the phenolic contents and antioxidant activities were comparatively equivalent.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural Sciences and Life, University of Bejaia, Bejaia, Algeria
| | - Nassima Lounis
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural Sciences and Life, University of Bejaia, Bejaia, Algeria
| | - Siham Mebarakou
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural Sciences and Life, University of Bejaia, Bejaia, Algeria
| | - Naima Guendouze
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural Sciences and Life, University of Bejaia, Bejaia, Algeria
| | - Drifa Yalaoui-Guellal
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural, Life and Earth Sciences, Akli Mohand Oulhadj University of Bouira, Bouira, Algeria
| | - Khodir Madani
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural Sciences and Life, University of Bejaia, Bejaia, Algeria
- Agri-Food Technologies Research Center, Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory of Biomathematics Biophysics Biochemistry and Scientometry, Faculty of Natural Sciences and Life, University of Bejaia, Bejaia, Algeria
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
7
|
Henao-Rojas JC, Osorio E, Isaza S, Madronero-Solarte IA, Sierra K, Zapata-Vahos IC, Betancur-Pérez JF, Arboleda-Valencia JW, Gallego AM. Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113559. [PMID: 35684496 PMCID: PMC9182276 DOI: 10.3390/molecules27113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint from three origins: Colombia (Col), Mexico (Mex), and Egypt (Eg). We performed a biological activity analysis, such as FRAP, DPPH, and ABTS, inhibition potential of S. pyogenes, K. pneumoniae, E. coli, P. aeuroginosa, S. aureus, S aureus Methicillin-Resistant, and E. faecalis. Furthermore, we performed chemical assays, such as total polyphenol and rosmarinic acid, and untargeted metabolomics via HPLC-MS/MS. Finally, we developed a causality analysis to integrate biological activities with chemical analyses. We found significant differences between the samples for the total polyphenol and rosmarinic acid contents, FRAP, and inhibition analyses for Methicillin-Resistant S. aureus and E. faecalis. Also, clear metabolic differentiation was observed among the three commercial materials evaluated. These results allow us to propose data-driven uses for the three spearmint materials available in current markets.
Collapse
Affiliation(s)
- Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
- Correspondence: (J.C.H.-R.); (A.M.G.)
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Cl. 70 No. 52-21, Medellin 0500100, Colombia; (E.O.); (K.S.)
| | - Stephanie Isaza
- Hierbas y Plantas Tropicales SAS-HIPLANTRO, Cra. 56a No. 72a 101, Itagüí 055410, Colombia;
| | - Inés Amelia Madronero-Solarte
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
| | - Karina Sierra
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Cl. 70 No. 52-21, Medellin 0500100, Colombia; (E.O.); (K.S.)
| | - Isabel Cristina Zapata-Vahos
- Facultad de Ciencias de la Salud, Atención Primaria en Salud, Universidad Católica de Oriente, Rionegro 054040, Colombia;
| | - Jhon Fredy Betancur-Pérez
- Centro de Investigaciones en Medio Ambiente y Desarrollo—CIMAD, Facultad de Ciencias Contables, Económicas y Administrativas, Universidad de Manizales, Cra. 9 No 19-03, Manizales 170001, Colombia; (J.F.B.-P.); (J.W.A.-V.)
| | - Jorge W. Arboleda-Valencia
- Centro de Investigaciones en Medio Ambiente y Desarrollo—CIMAD, Facultad de Ciencias Contables, Económicas y Administrativas, Universidad de Manizales, Cra. 9 No 19-03, Manizales 170001, Colombia; (J.F.B.-P.); (J.W.A.-V.)
- Grupo de Investigación FITOBIOL, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 No 53-108, Medellin 050010, Colombia
| | - Adriana M. Gallego
- Biomasnest, Medellin 050010, Colombia
- Correspondence: (J.C.H.-R.); (A.M.G.)
| |
Collapse
|
8
|
Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022; 48:611-633. [PMID: 35229925 DOI: 10.1002/biof.1831] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Free radicals are a group of damaging molecules produced during the normal metabolism of cells in the human body. Exposure to ultraviolet radiation, cigarette smoking, and other environmental pollutants enhances free radicals in the human body. The destructive effects of free radicals may also cause harm to membranes, enzymes, and DNA, leading to several human diseases such as cancer, atherosclerosis, malaria, coronavirus disease (COVID-19), rheumatoid arthritis, and neurodegenerative illnesses. This process occurs when there is an imbalance between free radicals and antioxidant defenses. Since antioxidants scavenge free radicals and repair damaged cells, increasing the consumption of fruits and vegetables containing high antioxidant values is recommended to slow down oxidative stress in the body. Additionally, natural products demonstrated a wide range of biological impacts such as anti-inflammatory, anti-aging, anti-atherosclerosis, and anti-cancer properties. Hence, in this review article, our goal is to explore the role of natural therapeutic antioxidant effects to reduce oxidative stress in the diseases.
Collapse
Affiliation(s)
- Behnaz Akbari
- School of Medicine, Department of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Namdar Baghaei-Yazdi
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Manochehr Bahmaie
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | |
Collapse
|
9
|
Lebanov L, Paull B. Comparison of chemometric assisted targeted and untargeted approaches for the prediction of radical scavenging activity of ylang-ylang essential oils. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123093. [DOI: 10.1016/j.jchromb.2021.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
|
10
|
Roca M, Pérez-Gálvez A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants (Basel) 2021; 10:1622. [PMID: 34679756 PMCID: PMC8533378 DOI: 10.3390/antiox10101622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms.
Collapse
Affiliation(s)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
11
|
Hejna M, Kovanda L, Rossi L, Liu Y. Mint Oils: In Vitro Ability to Perform Anti-Inflammatory, Antioxidant, and Antimicrobial Activities and to Enhance Intestinal Barrier Integrity. Antioxidants (Basel) 2021; 10:antiox10071004. [PMID: 34201645 PMCID: PMC8300686 DOI: 10.3390/antiox10071004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The objectives of the study were to test the biological activities of peppermint and spearmint oils via (i) measuring in vitro anti-inflammatory effects with porcine alveolar macrophages (PAMs), (ii) determining the barrier integrity of IPEC-J2 by analyzing transepithelial electrical resistance (TEER), (iii) testing their antioxidant activities, and (iv) investigating the antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) F18+. Briefly, (i) macrophages were seeded at 106 cells/mL and treated (24 h) with mint oils and lipopolysaccharide (LPS). The treatments were 2 (0 or 1 μg/mL of LPS) × 5 (0, 25, 50, 100, 200 µg/mL of mint oils). The supernatants were collected for TNF-α and IL-1β measurement by ELISA; (ii) IPEC-J2 cells were seeded at 5 × 105 cells/mL and treated with mint oils (0, 25, 50, 100, and 200 μg/mL). TEER (Ωcm2) was measured at 0, 24, 48, and 72 h; (iii) the antioxidant activity was assessed (0, 1, 50, 100, 200, 500, and 600 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays; (iv) overnight-grown ETEC F18+ were quantified (CFU/mL) after supplementing with peppermint and spearmint oils (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL). All data were analyzed using the MIXED procedure. Both mint oils significantly inhibited (p < 0.05) IL-1β and TNF-α secretion from LPS-stimulated PAMs. Mint oil treatments did not affect TEER in IPEC-J2. Spearmint and peppermint oils exhibited (p < 0.05) strong antioxidant activities in DPPH and reducing power assays. Both mint oils also dose-dependently inhibited (p < 0.05) the growth of ETEC F18+ in vitro. The results of the study indicated that both mint oils are great candidate feed additives due to their in vitro anti-inflammatory, antioxidant, and antimicrobial effects. Further research is needed to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| |
Collapse
|
12
|
Fernandes Serra Moura H, de Souza Dias F, Beatriz Souza E Souza L, Magalhães BEAD, de Aragão Tannus C, Correia de Carvalho W, Cardoso Brandão G, Dos Santos WNL, Graças Andrade Korn M, Cristina Muniz Batista Dos Santos D, Vieira Lopes M, de Andrade Santana D, de Freitas Santos Júnior A. Evaluation of multielement/proximate composition and bioactive phenolics contents of unconventional edible plants from Brazil using multivariate analysis techniques. Food Chem 2021; 363:129995. [PMID: 34144423 DOI: 10.1016/j.foodchem.2021.129995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Unconventional edible plants (UEP) are potential supplementary sources of minerals and bioactive compounds. However, there is still a gap in the literature on UEP composition. In this study, the multielement/proximate composition of ten UEP from Brazil was evaluated by ICP OES. Furthermore, phenolic bioactives were quantified by HPLC-UV-DAD. The UEP showed high moisture content (84.85-95.27%) and elements (in mg Kg-1): Al (122-657), Ca (145-14,229), Cu (8.3-18.81), Fe (177-586), K (12.46-34.50%), Mg (157-1,552), Mn (16.85-84.96), Na (1,107-23,775), P (2,535-6,127), Si (189-1,695), Sr (25.56-104.63) and Zn (0.3-72.31). Nine phenolic bioactive compounds (1-2,147) and three flavonoids (1-2,042 mg Kg-1) were determined. PCA and HCA grouped samples (Java ginseng, Coriander, Spearmint and Indian borage) rich in minerals. Spearmint showed high levels of transcinamic acid, kaempferol and quercetin. This study contributes to the scientific development and use of UEP.
Collapse
Affiliation(s)
- Hesrom Fernandes Serra Moura
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil
| | - Fernanda de Souza Dias
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências da Vida, 41150-000, Salvador, Bahia, Brazil
| | - Laura Beatriz Souza E Souza
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências da Vida, 41150-000, Salvador, Bahia, Brazil
| | - Bárbara Elizabeth Alves de Magalhães
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Caroline de Aragão Tannus
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências da Vida, 41150-000, Salvador, Bahia, Brazil
| | | | - Geovani Cardoso Brandão
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil
| | - Walter Nei Lopes Dos Santos
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Maria Graças Andrade Korn
- Universidade Federal da Bahia, Instituto de Química, Campus Universitário de Ondina, 40170-115, Salvador, Bahia, Brazil
| | | | - Mariângela Vieira Lopes
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil; Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências da Vida, 41150-000, Salvador, Bahia, Brazil
| | - Débora de Andrade Santana
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil
| | - Aníbal de Freitas Santos Júnior
- Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências Exatas e da Terra, 41150-000, Salvador, Bahia, Brazil; Universidade do Estado da Bahia, Campus I - Cabula, Departamento de Ciências da Vida, 41150-000, Salvador, Bahia, Brazil.
| |
Collapse
|
13
|
Tafrihi M, Imran M, Tufail T, Gondal TA, Caruso G, Sharma S, Sharma R, Atanassova M, Atanassov L, Valere Tsouh Fokou P, Pezzani R. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021; 26:1118. [PMID: 33672486 PMCID: PMC7923432 DOI: 10.3390/molecules26041118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Medicinal plants and their derived compounds have drawn the attention of researchers due to their considerable impact on human health. Among medicinal plants, mint (Mentha species) exhibits multiple health beneficial properties, such as prevention from cancer development and anti-obesity, antimicrobial, anti-inflammatory, anti-diabetic, and cardioprotective effects, as a result of its antioxidant potential, combined with low toxicity and high efficacy. Mentha species are widely used in savory dishes, food, beverages, and confectionary products. Phytochemicals derived from mint also showed anticancer activity against different types of human cancers such as cervix, lung, breast and many others. Mint essential oils show a great cytotoxicity potential, by modulating MAPK and PI3k/Akt pathways; they also induce apoptosis, suppress invasion and migration potential of cancer cells lines along with cell cycle arrest, upregulation of Bax and p53 genes, modulation of TNF, IL-6, IFN-γ, IL-8, and induction of senescence phenotype. Essential oils from mint have also been found to exert antibacterial activities against Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa, and many others. The current review highlights the antimicrobial role of mint-derived compounds and essential oils with a special emphasis on anticancer activities, clinical data and adverse effects displayed by such versatile plants.
Collapse
Affiliation(s)
- Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741695447, Iran;
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54600, Pakistan; (M.I.); (T.T.)
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54600, Pakistan; (M.I.); (T.T.)
| | | | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy
| | - Somesh Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.S.); (R.S.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.S.); (R.S.)
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria
| | - Lyubomir Atanassov
- Saint Petersburg University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia;
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda BP 39, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé, NgoaEkelle, Annex Fac. Sci., Yaounde 812, Cameroon
| | - Raffaele Pezzani
- Phytotherapy LAB (PhT-LAB), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy
| |
Collapse
|
14
|
Bakr RO, Tawfike A, El-Gizawy HA, Tawfik N, Abdelmohsen UR, Abdelwahab MF, Alshareef WA, Fayez SM, El-Mancy SMS, El-Fishawy AM, Abdelkawy MA, Fayed MAA. The metabolomic analysis of five Mentha species: cytotoxicity, anti- Helicobacter assessment, and the development of polymeric micelles for enhancing the anti- Helicobacter activity. RSC Adv 2021; 11:7318-7330. [PMID: 35423273 PMCID: PMC8694964 DOI: 10.1039/d0ra09334c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Mentha species are medicinally used worldwide and remain attractive for research due to the diversity of their phytoconstituents and large therapeutic indices for various ailments. This study used the metabolomics examination of five Mentha species (M. suaveolens, M. sylvestris, M. piperita, M. longifolia, and M. viridis) to justify their cytotoxicity and their anti-Helicobacter effects. The activities of species were correlated with their phytochemical profiles by orthogonal partial least square discriminant analysis (OPLS-DA). Tentatively characterized phytoconstituents using liquid chromatography high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) included 49 compounds: 14 flavonoids, 10 caffeic acid esters, 7 phenolic acids, and other constituents. M. piperita showed the highest cytotoxicity to HepG2 (human hepatoma), MCF-7 (human breast adenocarcinoma), and CACO2 (human colon adenocarcinoma) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. OPLS-DA and dereplication studies predicted that the cytotoxic activity was related to benzyl glucopyranoside-sulfate, a lignin glycoside. Furthermore, M. viridis was effective in suppressing the growth of Helicobacter pylori at a concentration of 50 mg mL-1. OPLS-DA predicted that this activity was related to a dihydroxytrimethoxyflavone. M. viridis extract was formulated with Pluronic® F127 to develop polymeric micelles as a nanocarrier that enhanced the anti-Helicobacter activity of the extract and provided minimum inhibitory concentrations and minimum bactericidal concentrations of 6.5 and 50 mg mL-1, respectively. This activity was also correlated to tentatively identified constituents, including rosmarinic acid, catechins, carvone, and piperitone oxide.
Collapse
Affiliation(s)
- Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza Egypt
| | - Ahmed Tawfike
- Molecular Discovery Group, Computational and Analytical Science Department Rothamsted Research AL5 2JQ Harpenden UK
| | - Heba A El-Gizawy
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Nashwa Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University Cairo 11795 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +2-86-2347759
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +2-86-2347759
| | - Walaa A Alshareef
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Sahar M Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Shereen M S El-Mancy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Ahlam M El-Fishawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Mostafa A Abdelkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City Sadat 32897 Egypt
| |
Collapse
|
15
|
Lebanov L, Ghiasvand A, Paull B. Data handling and data analysis in metabolomic studies of essential oils using GC-MS. J Chromatogr A 2021; 1640:461896. [PMID: 33548825 DOI: 10.1016/j.chroma.2021.461896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Gas chromatography electron impact ionization mass spectrometry (GC-EI-MS) has been, and remains, the most widely applied analytical technique for metabolomic studies of essential oils. GC-EI-MS analysis of complex samples, such as essential oils, creates a large volume of data. Creating predictive models for such samples and observing patterns within complex data sets presents a significant challenge and requires application of robust data handling and data analysis methods. Accordingly, a wide variety of software and algorithms has been investigated and developed for this purpose over the years. This review provides an overview and summary of that research effort, and attempts to classify and compare different data handling and data analysis procedures that have been reported to-date in the metabolomic study of essential oils using GC-EI-MS.
Collapse
Affiliation(s)
- Leo Lebanov
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; ARC Industrial Transformation Research Hub for Processing Advanced Lignocellulosics (PALS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia; ARC Industrial Transformation Research Hub for Processing Advanced Lignocellulosics (PALS), School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
16
|
Choe E. Roles and action mechanisms of herbs added to the emulsion on its lipid oxidation. Food Sci Biotechnol 2020; 29:1165-1179. [PMID: 32802555 PMCID: PMC7406613 DOI: 10.1007/s10068-020-00800-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Quality of food emulsions is mainly determined by their physicochemical stability such as lipid oxidation, and herbs as antioxidative food materials are added to improve their quality and shelf-life. Despite the extensive researches, the chemistry and implications of herb addition in the lipid oxidation of emulsions are still confusing. This review intended to provide the information on the roles and action mechanisms of herbs in the lipid oxidation of food emulsions, with focuses on polyphenols. Polyphenols act as antioxidants mainly via reactive oxygen species scavenging and metal chelating; however, their oxidation products and reducing capacity to more reactive metal ions increase the lipid oxidation. Factors such as structure, concentration, and distribution determine their anti- or prooxidant role. Interactions, synergism and antagonism, among polyphenol compounds and the effects of tocopherols derived from oil on the antioxidant activity of herbs were also described with the involving action mechanisms.
Collapse
Affiliation(s)
- Eunok Choe
- Department of Food and Nutrition, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212 Republic of Korea
| |
Collapse
|
17
|
Hyeon H, Xu JL, Kim JK, Choi Y. Comparative metabolic profiling of cultivated and wild black soybeans reveals distinct metabolic alterations associated with their domestication. Food Res Int 2020; 134:109290. [PMID: 32517920 DOI: 10.1016/j.foodres.2020.109290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
Generally, cultivated black soybean (CBS) has been used as a major source of various nutrients for humans and animals. To assess the metabolic alterations induced by domestication in soybean, we performed a comprehensive metabolite profiling of 56 soybean varieties, including 28 CBS and 28 wild black soybean (WBS) varieties. A total of 48 metabolites were characterized, including 45 primary and 3 secondary metabolites, from CBS and WBS. The results of principal component analysis and hierarchical cluster analysis (HCA) revealed significant metabolic differences between CBS and WBS that were closely related to metabolic pathways. The results indicate that flavonoids correlated positively with phenylalanine, a precursor for phenylpropanoid biosynthesis; the contents of flavonoids and phenylpropanoids were higher in WBS. Pathway analysis revealed that CBS contained large amounts of TCA cycle intermediates, amino acids, and fatty acids as a result of increased energy metabolism, amino acid metabolism, and seed filling. The projection to latent structure method, using the partial least squares method, was applied to predict the flavonoid content in soybean seed, which indicated that sucrose, threonic acid, citric acid, and fatty acids are important in predicting the antioxidant content of samples. This work will provide important information for designing new soybean cultivars with enhanced nutritional and agricultural traits.
Collapse
Affiliation(s)
- Hyejin Hyeon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jiu Liang Xu
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; School of Agriculture Green Development, China Agricultural University, 100193 Beijing, China
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Department of Biological Chemistry, University of Science and Technology, Youseng-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
18
|
Jimenez-Garcia SN, Vazquez-Cruz MA, Ramirez-Gomez XS, Beltran-Campos V, Contreras-Medina LM, Garcia-Trejo JF, Feregrino-Pérez AA. Changes in the Content of Phenolic Compounds and Biological Activity in Traditional Mexican Herbal Infusions with Different Drying Methods. Molecules 2020; 25:E1601. [PMID: 32244463 PMCID: PMC7180736 DOI: 10.3390/molecules25071601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
Mexican spices are used in the supplementation of the human diet and as medicinal herbs for the particularly high amounts of compounds capable of deactivating free radicals. In addition, these spices can have beneficial effects on chronic, no-transmissible diseases such as type II diabetes and hypertension arterial. The objective of this study is to determine the content of phenolic compounds on the antioxidant activity and inhibitory enzymes of α-amylase, α-glucosidase and angiotensin-converting enzyme in melissa, peppermint, thyme and mint, which are subjected to microwave drying, conventional and freeze-drying to be used as alternative treatments. Spices were evaluated to determine total phenols, flavonoids, tannins, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), (2,2'-azino-bis- (3-ethyl benzothiazolin-6-ammonium sulphonate) (ABTS) and Ferric Reducing/Antioxidant Power (FRAP), enzymatic activity. The investigation showed that conventional drying caused a decrease in antioxidant properties and inhibitory activity, in some species, while remained preserved in microwave drying and freeze-drying. The activity of polyphenol oxides and peroxidase decreases with high temperatures and these increase with the use of cold temperatures. This study aims to determine the extent of optimal drying required to preserve phenolic compounds, and the positive effect on antioxidant activity and enzymatic activity in in vitro models, which will produce benefits for the infusion processing industry and the pharmaceutical industry.
Collapse
Affiliation(s)
- Sandra N. Jimenez-Garcia
- División de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato, C.P. 38140, Mexico; (S.N.J.-G.); (X.S.R.-G.); (V.B.-C.)
| | - Moisés A. Vazquez-Cruz
- Departamento de Investigación y Desarrollo, KOPPERT MEXICO, Circuito el Marques Nte. 82, Parque industrial El Marqués, Santiago de Querétaro, C.P. 76246, Mexico;
| | - Xóchitl S. Ramirez-Gomez
- División de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato, C.P. 38140, Mexico; (S.N.J.-G.); (X.S.R.-G.); (V.B.-C.)
| | - Vicente Beltran-Campos
- División de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato, C.P. 38140, Mexico; (S.N.J.-G.); (X.S.R.-G.); (V.B.-C.)
| | - Luis M. Contreras-Medina
- División de Estudios de Posgrado, C.A. Bioingeniería, Básica y Aplicada Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico; (L.M.C.-M.); (J.F.G.-T.)
| | - Juan F. Garcia-Trejo
- División de Estudios de Posgrado, C.A. Bioingeniería, Básica y Aplicada Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico; (L.M.C.-M.); (J.F.G.-T.)
| | - Ana A. Feregrino-Pérez
- División de Estudios de Posgrado, C.A. Bioingeniería, Básica y Aplicada Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico; (L.M.C.-M.); (J.F.G.-T.)
| |
Collapse
|
19
|
Kharbach M, Marmouzi I, El Jemli M, Bouklouze A, Vander Heyden Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting - A review. J Pharm Biomed Anal 2020; 177:112849. [DOI: 10.1016/j.jpba.2019.112849] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
|
20
|
Baek SA, Im KH, Park SU, Oh SD, Choi J, Kim JK. Dynamics of Short-Term Metabolic Profiling in Radish Sprouts ( Raphanus sativus L.) in Response to Nitrogen Deficiency. PLANTS 2019; 8:plants8100361. [PMID: 31547524 PMCID: PMC6843509 DOI: 10.3390/plants8100361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Nitrogen (N) is a macronutrient important for the survival of plants. To investigate the effects of N deficiency, a time-course metabolic profiling of radish sprouts was performed. A total of 81 metabolites—including organic acids, inorganic acid, amino acids, sugars, sugar alcohols, amines, amide, sugar phosphates, policosanols, tocopherols, phytosterols, carotenoids, chlorophylls, and glucosinolates—were characterized. Principal component analysis and heat map showed distinction between samples grown under different N conditions, as well as with time. Using PathVisio, metabolic shift in biosynthetic pathways was visualized using the metabolite data obtained for 7 days. The amino acids associated with glucosinolates accumulated as an immediate response against –N condition. The synthesis of pigments and glucosinolates was decreased, but monosaccharides and γ-tocopherol were increased as antioxidants in radish sprouts grown in –N condition. These results indicate that in radish sprouts, response to N deficiency occurred quickly and dynamically. Thus, this metabolic phenotype reveals that radish responds quickly to N deficiency by increasing the content of soluble sugars and γ-tocopherol, which acts as a defense mechanism after the germination of radish seeds.
Collapse
Affiliation(s)
- Seung-A Baek
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Kyung-Hoan Im
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sung-Dug Oh
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Jaehyuk Choi
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|