1
|
Zhang ZJ, Hu WJ, Yu AQ, Wu LH, Yang DQ, Kuang HX, Wang M. Review of polysaccharides from Chrysanthemum morifolium Ramat.: Extraction, purification, structural characteristics, health benefits, structural-activity relationships and applications. Int J Biol Macromol 2024; 278:134919. [PMID: 39179070 DOI: 10.1016/j.ijbiomac.2024.134919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.
Collapse
Affiliation(s)
- Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
2
|
Cui T, Ying Z, Zhang J, Guo S, Chen W, Zhou G, Li W. Strategies for the quality control of Chrysanthemi Flos: Rapid quantification and end-to-end fingerprint conversion based on FT-NIR spectroscopy. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:754-770. [PMID: 38282123 DOI: 10.1002/pca.3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Chrysanthemi Flos (CF) is widely used as a natural medicine or tea. Due to its diverse cultivation regions, CF exhibits varying quality. Therefore, the quality and swiftness in evaluation holds paramount significance for CF. OBJECTIVE The aim of the study was to construct a comprehensive evaluation strategy for assessing CF quality using HPLC, near-infrared (NIR) spectroscopy, and chemometrics, which included the rapid quantification analyses of chemical components and the Fourier transform (FT)-NIR to HPLC conversion of fingerprints. MATERIALS AND METHODS A total of 145 CF samples were utilised for data collection via NIR spectroscopy and HPLC. The partial least squares regression (PLSR) models were optimised using various spectral preprocessing and variable selection methods to predict the chemical composition content in CF. Both direct standardisation (DS) and PLSR algorithms were employed to establish the fingerprint conversion model from the FT-NIR spectrum to HPLC, and the model's performance was assessed through similarity and cluster analysis. RESULTS The optimised PLSR quantitative models can effectively predict the content of eight chemical components in CF. Both DS and PLSR algorithms achieve the calibration conversion of CF fingerprints from FT-NIR to HPLC, and the predicted and measured HPLC fingerprints are highly similar. Notably, the best model relies on CF powder FT-NIR spectra and DS algorithm [root mean square error of prediction (RMSEP) = 2.7590, R2 = 0.8558]. A high average similarity (0.9184) prevails between predicted and measured fingerprints of test set samples, and the results of the clustering analysis exhibit a high level of consistency. CONCLUSION This comprehensive strategy provides a novel and dependable approach for the rapid quality evaluation of CF.
Collapse
Affiliation(s)
- Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zehua Ying
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianyu Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shubo Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Chen
- Shanghai Zhen Ren Tang Pharmaceutical Co., Ltd, Shanghai, China
| | - Guifang Zhou
- Shanghai Zhen Ren Tang Pharmaceutical Co., Ltd, Shanghai, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Tian X, Wang H, Chen L, Yuan H, Peng C, Wang W. Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue. Foods 2024; 13:1080. [PMID: 38611384 PMCID: PMC11011348 DOI: 10.3390/foods13071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Chrysanthemum tea, a typical health tea with the same origin as medicine and food, is famous for its unique health benefits and flavor. The taste and sensory quality of chrysanthemum (Juhua) tea are mainly determined by secondary metabolites. Therefore, the present research adopted untargeted metabolomics combined with an electronic tongue system to analyze the correlation between the metabolite profiles and taste characteristics of different varieties of chrysanthemum tea. The results of sensory evaluation showed that there were significant differences in the sensory qualities of five different varieties of chrysanthemum tea, especially bitterness and astringency. The results of principal component analysis (PCA) indicated that there were significant metabolic differences among the five chrysanthemum teas. A total of 1775 metabolites were identified by using untargeted metabolomics based on UPLC-Q-TOF/MS analysis. According to the variable importance in projection (VIP) values of the orthogonal projections to latent structures discriminant analysis (OPLS-DA), 143 VIP metabolites were found to be responsible for metabolic changes between Huangju and Jinsi Huangju tea; among them, 13 metabolites were identified as the key metabolites of the differences in sensory quality between them. Kaempferol, luteolin, genistein, and some quinic acid derivatives were correlated with the "astringency" attributes. In contrast, l-(-)-3 phenyllactic acid and L-malic acid were found to be responsible for the "bitterness" and "umami" attributes in chrysanthemum tea. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the flavonoid and flavonol biosynthesis pathways had important effects on the sensory quality of chrysanthemum tea. These findings provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive sensory qualities of chrysanthemum tea.
Collapse
Affiliation(s)
- Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Engineering Technology Research Center of Hunan Province Xiangnan Area Authentic Chinese Medicinal Materials, Yongzhou 425600, China
| | - Haodong Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
| | - Liang Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
- Engineering Technology Research Center of Hunan Province Xiangnan Area Authentic Chinese Medicinal Materials, Yongzhou 425600, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
- Confucius Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
| |
Collapse
|
4
|
Uranishi R, Aedla R, Alsaadi DHM, Wang D, Kusakari K, Osaki H, Sugimura K, Watanabe T. Evaluation of Environmental Factor Effects on the Polyphenol and Flavonoid Content in the Leaves of Chrysanthemum indicum L. and Its Habitat Suitability Prediction Mapping. Molecules 2024; 29:927. [PMID: 38474439 DOI: 10.3390/molecules29050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
The leaves of Chrysanthemum indicum L. are known to have various bioactive compounds; however, industrial use is extremely limited. To overcome this situation by producing high-quality leaves with high bioactive content, this study examined the environmental factors affecting the phytochemical content and antioxidant activity using C. indicum leaves collected from 22 sites in Kochi Prefecture, Japan. Total phenolic and flavonoid content in the dry leaves ranged between 15.0 and 64.1 (mg gallic acid g-1) and 2.3 and 11.4 (mg quercetin g-1), while the antioxidant activity (EC50) of the 50% ethanol extracts ranged between 28.0 and 123.2 (µg mL-1) in 1,1-Diphenyl-2-picrylhydrazyl radical scavenging assay. Among the identified compounds, chlorogenic acid and 1,5-dicaffeoylquinic acid were the main constituents in C. indicum leaves. The antioxidant activity demonstrated a positive correlation with 1,5-dicaffeoylquinic acid (R2 = 0.62) and 3,5-dicaffeoylquinic acid (R2 = 0.77). The content of chlorogenic acid and dicaffeoylquinic acid isomers varied significantly according to the effects of exchangeable magnesium, cation exchange capacity, annual temperature, and precipitation, based on analysis of variance. The habitat suitability map using the geographical information system and the MaxEnt model predicted very high and high regions, comprising 3.2% and 10.1% of the total area, respectively. These findings could be used in future cultivation to produce high-quality leaves of C. indicum.
Collapse
Affiliation(s)
- Rei Uranishi
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Raju Aedla
- BVRIT HYDERABAD College of Engineering for Women, Nizampet Rd, Hyderabad 500090, Telangana, India
- Global Center for Natural Resources Sciences, Kumamoto University, No. 5-1, Oe Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Doaa H M Alsaadi
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Dongxing Wang
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ken Kusakari
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirotaka Osaki
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Koji Sugimura
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Global Center for Natural Resources Sciences, Kumamoto University, No. 5-1, Oe Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takashi Watanabe
- Department of Medicinal Plant, Graduate School of Pharmaceutical Sciences, Kumamoto University, No. 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Global Center for Natural Resources Sciences, Kumamoto University, No. 5-1, Oe Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
5
|
Canales-Alvarez O, Canales-Martinez MM, Dominguez-Verano P, Balderas-Cordero D, Madrigal-Bujaidar E, Álvarez-González I, Rodriguez-Monroy MA. Effect of Mexican Propolis on Wound Healing in a Murine Model of Diabetes Mellitus. Int J Mol Sci 2024; 25:2201. [PMID: 38396882 PMCID: PMC10889666 DOI: 10.3390/ijms25042201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) affects the wound healing process, resulting in impaired healing or aberrant scarring. DM increases reactive oxygen species (ROS) production, fibroblast senescence and angiogenesis abnormalities, causing exacerbated inflammation accompanied by low levels of TGF-β and an increase in Matrix metalloproteinases (MMPs). Propolis has been proposed as a healing alternative for diabetic patients because it has antimicrobial, anti-inflammatory, antioxidant and proliferative effects and important properties in the healing process. An ethanolic extract of Chihuahua propolis (ChEEP) was obtained and fractionated, and the fractions were subjected to High-Performance Liquid Chromatography with diode-array (HPLC-DAD), High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses and 46 compounds were detected. Deep wounds were made in a murine DM model induced by streptozotocin, and the speed of closure and the wound tensile strength were evaluated by the tensiometric method, which showed that ChEEP had similar activity to Recoveron, improving the speed of healing and increasing the wound tensile strength needed to open the wound again. A histological analysis of the wounds was performed using H&E staining, and when Matrix metalloproteinase 9 (MMP9) and α-actin were quantified by immunohistochemistry, ChEEP was shown to be associated with improved histological healing, as indicated by the reduced MMP9 and α-actin expression. In conclusion, topical ChEEP application enhances wound healing in diabetic mice.
Collapse
Affiliation(s)
- Octavio Canales-Alvarez
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico;
| | - Pilar Dominguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| |
Collapse
|
6
|
Xie Z, Li D. Tea cigarette: newly emerging smoking product in China. Tob Control 2023:tc-2023-058341. [PMID: 38135487 PMCID: PMC11192852 DOI: 10.1136/tc-2023-058341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Granados-Balbuena SY, Díaz-Pacheco A, García-Meza MG, Tapia-López L, Cruz-Narváez Y, Ocaranza-Sánchez E. Phytochemical profile of petals from black Dahlia pinnata by flow injection analysis-electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:1009-1021. [PMID: 37518673 DOI: 10.1002/pca.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Dahlia pinnata Cav. is a flower native to Mexico that has many applications; in particular, its petals have been used for ornamental, food, and medicinal purposes, for example to treat skin rashes and skin cracks. It has been reported that the medicinal properties of plants are generally related to the phytochemical constituents they possess. However, there are few studies on black D. pinnata. OBJECTIVES The present study was aimed at qualitatively and quantitatively determining the phytochemical profile of petals from black D. pinnata. METHODOLOGY Phytochemicals from Dahlia petals were extracted by consecutive maceration (hexane, dichloromethane, and methanol); then, the extracts were analyzed through colorimetric assays and UV-Vis spectroscopy for qualitative identification and quantification of phytochemical compounds, respectively. The methanolic extract was analyzed by flow injection analysis-electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (FIA-ESI-FTICR-MS) in negative and positive mode. RESULTS Quantitative phytochemical profiling of the methanolic extract by UV-Vis spectroscopy indicated high contents of phenolic compounds (34.35 ± 3.59 mg EQ/g plant) and sugars (23.91 ± 1.99 mg EQ/g plant), while the qualitative profiling by FIA-ESI-FTICR-MS allowed the tentative identification of several flavonoids and phenolic acids. Kaempferol-3-rutinoside, pelargonidin-3-(6″-malonylglucoside)-5-glucoside, rutin, kaempferol-3-(2″,3″-diacetyl-4″-p-coumaroylrhamnoside), and myricetin-3-(2‴-galloylrhamnoside) were the main compounds detected. CONCLUSION The results expand our knowledge of the phytochemical constituents of petals from black D. pinnata.
Collapse
Affiliation(s)
- Sulem Yali Granados-Balbuena
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala, Mexico
| | - Adrian Díaz-Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala, Mexico
| | - María Guadalupe García-Meza
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Lilia Tapia-López
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Erik Ocaranza-Sánchez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
| |
Collapse
|
8
|
Sharma N, Radha, Kumar M, Kumari N, Puri S, Rais N, Natta S, Dhumal S, Navamaniraj N, Chandran D, Mohankumar P, Muthukumar M, Senapathy M, Deshmukh V, Damale RD, Anitha T, Balamurugan V, Sathish G, Lorenzo JM. Phytochemicals, therapeutic benefits and applications of chrysanthemum flower: A review. Heliyon 2023; 9:e20232. [PMID: 37860517 PMCID: PMC10582400 DOI: 10.1016/j.heliyon.2023.e20232] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Chrysanthemum is a flowering plant belonging to a genus of the dicotyledonous herbaceous annual flowering plant of the Asteraceae (Compositae) family. It is a perpetual flowering plant, mostly cultivated for medicinal purposes; generally, used in popular drinks due to its aroma and flavor. It is primarily cultivated in China, Japan, Europe, and United States. These flowers were extensively used in various healthcare systems and for treating various diseases. Chrysanthemum flowers are rich in phenolic compounds and exhibit strong properties including antioxidant, antimicrobial, anti-inflammatory, anticancer, anti-allergic, anti-obesity, immune regulation, hepatoprotective, and nephroprotective activities. The main aim of the present review was to investigate the nutritional profile, phytochemistry, and biological activities of flowers of different Chrysanthemum species. Also, a critical discussion of the diverse metabolites or bioactive constituents of the Chrysanthemum flowers is highlighted in the present review. Moreover, the flower extracts of Chrysanthemum have been assessed to possess a rich phytochemical profile, including compounds such as cyanidin-3-O-(6″-O-malonyl) glucoside, delphinidin 3-O-(6" -O-malonyl) glucoside-3', rutin, quercetin, isorhamnetin, rutinoside, and others. These profiles exhibit potential health benefits, leading to their utilization in the production of supplementary food products and pharmaceutical drugs within the industry. However, more comprehensive research studies/investigations are still needed to further discover the potential benefits for human and animal utilization.
Collapse
Affiliation(s)
- Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, 305004, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong, 737106, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Nelson Navamaniraj
- Seed Centre, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerela, India
| | - Pran Mohankumar
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Muthamilselvan Muthukumar
- Department of Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu 603201, Tamil Nadu, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Rahul D. Damale
- ICAR—National Research Centre on Pomegranate, Solapur 413255, Maharashtra, India
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - V. Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Madurai, India
| | - G. Sathish
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
| |
Collapse
|
9
|
Setiawati T, Arofah AN, Nurzaman M, Annisa A, Mutaqin AZ, Hasan R. Effect of sucrose as an elicitor in increasing quercetin-3-O-rhamnoside (quercitrin) content of chrysanthemum ( Chrysanthemum morifolium Ramat) callus culture based on harvest time differences. BIOTECHNOLOGIA 2023; 104:289-300. [PMID: 37850113 PMCID: PMC10578125 DOI: 10.5114/bta.2023.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 10/19/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) contains secondary metabolites, such as flavonoid compounds, especially luteolin-7-glucoside and quercetin-3-O-rhamnoside (quercitrin), in its tissues. Utilizing sucrose as an elicitor through callus culture presents an alternative method to enhance the production of secondary metabolites. This research aimed to determine the best sucrose concentration and harvest time for maximizing quercitrin content in chrysanthemum callus culture. The research employed a completely randomized design with four treatment groups: 0, 30, 45, and 60 g/l of sucrose added to MS medium containing 4 ppm 2,4-dichlorophenoxyacetic acid (2,4-D). Callus samples were harvested on the 15th and 30th days of culture. The observed parameters included callus morphology (color and texture), fresh weight, dry weight, the diameter of the callus, and quercitrin content analyzed using high-performance liquid chromatography. The results showed that all callus cultures exhibited intermediate textures and varied colors, predominantly shades of brown. The treatment involving 45 g/l of sucrose with a 30th-day harvest yielded the highest fresh weight, dry weight, and quercitrin content, namely 2.108 g, 0.051 g, and 0.437 mg/g DW, respectively. Notably, the quercitrin content exhibited a 63.67% increase compared to the control.
Collapse
Affiliation(s)
- Tia Setiawati
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa N. Arofah
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Asep Z. Mutaqin
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Rusdi Hasan
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| |
Collapse
|
10
|
Peng A, Lin L, Zhao M. Chemical basis and self-assembly mechanism of submicroparticles forming in chrysanthemum tea infusion. Food Chem 2023; 427:136745. [PMID: 37392633 DOI: 10.1016/j.foodchem.2023.136745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Submicroparticles are important components generally existed in chrysanthemum tea infusion, but their functionality, chemical composition, structure and self-assembly mechanism are unclear due to lack of suitable preparation method and research strategy. This study showed that submicroparticles promoted the intestinal absorption of phenolics in chrysanthemum tea infusion by comparison of chrysanthemum tea infusion, submicroparticles-free chrysanthemum tea infusion and submicroparticles. Submicroparticles efficiently prepared by ultrafiltration mainly consisting of polysaccharide and phenolics accounted for 22% of total soluble solids in chrysanthemum tea infusion. The polysaccharide, which was determined as esterified pectin with a spherical conformation, provided spherical skeleton to form submicroparticles. A total of 23 individual phenolic compounds were identified in submicroparticles with the total phenolic content of 7.63 μg/mL. The phenolics not only attached to the external region of spherical pectin by hydrogen bonds, but also got into hydrophobic cavities of spherical pectin and attached to the internal region by hydrophobic interactions.
Collapse
Affiliation(s)
- An Peng
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
11
|
Zhou X, Wang M, Li H, Ye S, Tang W. Widely targeted metabolomics reveals the antioxidant and anticancer activities of different colors of Dianthus caryophyllus. Front Nutr 2023; 10:1166375. [PMID: 37275648 PMCID: PMC10235515 DOI: 10.3389/fnut.2023.1166375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Carnation is edible flower that has potent antioxidant properties and is used in traditional Chinese medicinal system and food industry. The phytochemicals responsible for these various proprieties, however, are not fully understood. Thus, in order to recognize metabolite diversity and variability in carnation flowers of different colors and to discover key metabolites that contribute to the differences in antioxidant and anticancer activities, widely targeted LC-MS/MS-based metabolomics analysis was conducted on purple, green, yellow, and white carnation flowers. We identified and chemically categorized 932 metabolites. Metabolic compounds varied significantly with flower color. Several flavonoids, organic acids, phenolic acids, and nucleotides and their derivatives were found to be specific differential metabolites in purple flowers. A total of 128 key differential metabolites were screened. The purple flowers were found to have the highest antioxidant and anticancer activities compared to the other colored flowers. Correlation analysis revealed that the 6-hydroxykaempferol-3,6-O-diglucoside, 6-hydroxykaempferol-7-O-glucoside, quercetin-3-O-sophoroside, and 2'-deoxyguanosine were found to be the major constituents of the antioxidant and anticancer activities. 2'-Deoxyguanosine has effective antiproliferative activity against A549 and U2OS cells for the first report. At the same time, the combination of 2'-deoxyguanosine with 6-hydroxykaempferol-3, 6-O-diglucoside, or quercetin-3-O-sophoroside have also been found to increase the antitumor activity of 2'-deoxyguanosine. These discoveries enrich information on the phytochemical composition of carnation of different colors and provide resources for the overall use and improvement of carnation flowers quality.
Collapse
Affiliation(s)
- Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Miaomaio Wang
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Hong Li
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China
| | - Shilong Ye
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Li J, Ge H, Xu Y, Xie J, Karim N, Yan F, Mo J, Chen W. Chlorogenic acid alleviates oxidative damage in hepatocytes by regulating miR-199a-5p/GRP78 axis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Zhou H, Zhang X, Li B, Yue R. Fast and efficient identification of hyaluronidase specific inhibitors from Chrysanthemum morifolium Ramat. using UF-LC-MS technique and their anti-inflammation effect in macrophages. Heliyon 2023; 9:e13709. [PMID: 36852058 PMCID: PMC9957760 DOI: 10.1016/j.heliyon.2023.e13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of the study was to establish a rapid analytical strategy to screen potential anti-inflammatory compounds from Flos Chrysanthemum flower. The enzyme assay was conducted to prescreen botanical extracts, in which Chrysanthemum morifolium aqueous extract (CME) displayed hyaluronidase (HAase) inhibitory activity in a dose-dependent manner with the values of 8.31, 24.25, and 66.51% at concentrations of 1.00, 2.00, and 4 0.00 mg/mL, respectively. Eight potential compounds targeting HAase (compounds 9, 10, 11, 13, 15, 17, 20 and 21) from CME were screened using ultrafiltration affinity liquid chromatography coupled with mass spectrometry (UF-LC-MS) technology. The well-known inhibitor, dipotassium glycyrrhizinate (DG), was used as a positive control and competitive ligand to eliminate false positives. Then, four of these potential components (compounds 9, 10, 17, and 21), namely eriodictyol-7-O-glucoside, luteoloside, apigenin-7-O-glucoside and diosmetin-7-O-glucoside, were distinguished as potent HAase specific inhibitor candidates with high BD and CBD values. The enzyme inhibitory activities of candidate compounds were verified using enzyme inhibition assay. At a concentration of 1000 μM, compounds 9, 10, 17, and 21 showed 40.15, 44.85, 18.04, and 24.15% inhibition of HAase, respectively. Furthermore, all the four compounds significantly decreased the production of nitric oxide (NO) and IL-6, and significantly suppressed the mRNA expression of inducible NO synthase (iNOS) and IL-1β in both murine and human macrophages.
Collapse
Affiliation(s)
- Huiji Zhou
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, 201203, Shanghai, China
| | - Xue Zhang
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, 201203, Shanghai, China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, 201203, Shanghai, China.,Amway (China) Botanical R&D Center, Wuxi, 214145, China
| | - Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, Fujian, China
| |
Collapse
|
14
|
Chen L, Sun J, Pan Z, Lu Y, Wang Z, Yang L, Sun G. Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules 2023; 28:579. [PMID: 36677639 PMCID: PMC9866508 DOI: 10.3390/molecules28020579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Chrysanthemum extract possesses antioxidant potential and carbohydrate and fat digestive enzyme inhibitory in vitro. However, no evidence supporting chrysanthemum in modulation of postprandial lipemia and antioxidant status in humans presently exists. This study was to analyze the composition of Imperial Chrysanthemum (IC) extract and determine the effect on changes in postprandial glycemic and lipemic response and antioxidant status in adults after consumption of a high-fat (HF) meal. UHPLC-MS method was used to analyze the components of two kinds of IC extracts (IC-P/IC-E) and in vitro antioxidant activities were evaluated using 1,1-diphenyl-2-picrylhydraxyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and Hydroxyl radical (HR) radical scavenging assays. Following a randomized design, 37 healthy adults (age, 25.2 ± 2.6 years, and BMI, 20.9 ± 1.5 kg/m2) were assigned to two groups that consumed the HF meal, or HF meal supplemented by IC extract. Blood samples were collected at fasting state and then at 0.5, 1, 2, 4, 6 and 8 h after the meal consumption. There were 12 compounds with relative content of more than 1% of the extracts, of which amino acid and derivatives, flavonoids, carboxylic acids and derivatives were the main components. Compared with IC-E, the contents of flavonoids in IC-P increased significantly (p < 0.05), and the cynaroside content exceeded 30%. In addition, IC-P showed strong free radical scavenging activity against DPPH, ABTS and HR radicals. Furthermore, according to repeated−measures ANOVA, significant differences were observed in the maximal changes for postprandial glucose, TG, T-AOC and MDA among the two groups. Postprandial glucose has significant difference between the two groups at 1 h after meal and the level in IC group was significantly lower than that in control group. No significant differences were observed in the incremental area under the curve (iAUC) among the two groups. IC significantly improved the serum antioxidant status, as characterized by increased postprandial serum T-AOC, SOD, GSH and decreased MDA. This finding suggests that IC can be used as a natural ingredient for reducing postprandial lipemia and improving the antioxidant status after consuming a HF meal.
Collapse
Affiliation(s)
- Lin Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| | - Jihan Sun
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Zhengyu Pan
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Yifei Lu
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Zhaodan Wang
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| | - Ligang Yang
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| |
Collapse
|
15
|
Zang S, Shu L, Huang K, Guan Z, Han R, Valluru R, Wang X, Bao J, Zheng Y, Chen Y. Image dataset of tea chrysanthemums in complex outdoor scenes. FRONTIERS IN PLANT SCIENCE 2023; 14:1134911. [PMID: 37123821 PMCID: PMC10140492 DOI: 10.3389/fpls.2023.1134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Siyang Zang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
| | - Lei Shu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
- School of Engineering, College of Science, University of Lincoln, Lincoln, United Kingdom
- *Correspondence: Lei Shu,
| | - Kai Huang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
- National Engineering and Technology Center for Information Agriculture (NETCIA), Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ru Han
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
| | - Ravi Valluru
- Lincoln Institute for Agri-food Technology, University of Lincoln, Lincoln, United Kingdom
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaxu Bao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
| | - Ye Zheng
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
| | - Yifan Chen
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS. Molecules 2021; 26:molecules26237113. [PMID: 34885694 PMCID: PMC8658894 DOI: 10.3390/molecules26237113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.
Collapse
|
17
|
Zeng T, Li J, Fu Q, Wang C. The complete chloroplast of Chrysanthemum × morifolium ‘Fubaiju’. Mitochondrial DNA B Resour 2021; 6:3062-3063. [PMID: 34595337 PMCID: PMC8477944 DOI: 10.1080/23802359.2021.1960213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chrysanthemum × morifolium ‘Fubaiju,’ which is native to Macheng, Hubei, China, has a long cultivation history almost dating back to the early 10th century Song dynasty, and is used as Chrysanthemum tea drink and Chinese traditional medicine. In this study, the complete chloroplast genome sequence of ‘Fubaiju’ was 151,109 bp, included a large single copy LSC (82,931 bp), a small single copy SSC (18,350 bp), and a pair of inverted repeat regions (24,941 bp). It contained 132 genes with 87 CDS, 8r RNA, and 37 tRNA. The phylogenetic analysis showed that the C. × morifolium ‘Fubaiju’ was clustered together with C. × morifolium ‘Baekma’.
Collapse
Affiliation(s)
- Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiang Fu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Chiang YH, Wu YT, Lin LC, Tsai TH. Comparative biotransformation of luteolin and apigenin from the flower extract and the stem-and-leaf extract of Dendranthema morifolium Ramat. Tzvel. in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4934-4945. [PMID: 33543470 DOI: 10.1002/jsfa.11137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/26/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The flower of Dendranthema morifolium Ramat Tzvel has been widely used as a nutritional health supplement worldwide. However, most of the studies have focused on the flower and the rest of the plant was neglected. Our hypothesis is that similar flavonoids may be present at different parts of D. morifolium, and the flavonoids may undergo a similar biotransformation pathway within the body. To investigate this hypothesis, an in vivo pharmacokinetic experimental model was developed to explore the comparative biotransformation of luteolin and apigenin after administration of D. morifolium extracts (10 g kg-1 , p.o.) in freely moving rats. Because luteolin and apigenin mainly underwent phase II metabolism, the metabolic enzymes of β-glucuronidase/sulfatase or β-glucuronidase were used to hydrolyze the plasma sample, depending on the biotransformation pathway involved. RESULTS The results revealed that luteolin and apigenin mainly went through glucuronide and sulfate conjugations, respectively, in both the extract of flowers and the stem-and-leaf group. In addition, the area under the concentration curve (AUClast ) of luteolin glucuronides and sulfates in the group administered the stem-and-leaf extract was approximately 4.6 times higher than that of the flower extract group. The dominant products of biotransformation for apigenin were sulfates. CONCLUSION These findings support our hypothesis that not only the flower parts of D. morifolium, but also the stem-and-leaf parts contain rich flavones, including glycosides and aglycone, and they undergo similar biotransformation pathways. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-He Chiang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chemical Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
19
|
Colloidal gold-based lateral flow immunoassay with inline cleanup for rapid on-site screening of carbendazim in functional foods. Anal Bioanal Chem 2021; 413:3725-3735. [PMID: 33851226 DOI: 10.1007/s00216-021-03321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, for the first time, we propose a sensitive colloidal gold-based lateral flow immunoassay (LFIA) that can be used to detect carbendazim residues in functional foods. The adoption of inline cleanup LFIA strips effectively improved background interference to reduce misjudgment of results. First, the hapten 2-(methylamino)-1H-benzo[d]imidazole-5-carboxylic acid was used to establish the carbendazim immunoassay method. Subsequently, colloidal gold-mAb preparation and LFIA detection conditions were systematically optimized. For root and fruit samples (ginseng, ginger, jujube, and Chinese wolfberry), the designed strips had a cutoff value of 8 ng/mL. For flower and seed samples (chrysanthemum, coix seed, and malt), the cutoff value was 12 ng/mL. Even in a complex matrix, the established LFIA method demonstrates satisfactory sensitivity and anti-interference ability. This method was successfully applied in detection of carbendazim residues in complex functional foods, and the assay results are consistent with those obtained via liquid chromatography-tandem mass spectrometry. In short, the proposed method is fast and sensitive and has strong anti-interference ability. Furthermore, it provides a new technical method highly relevant to the on-site rapid detection of carbendazim residues in complex sample matrix.
Collapse
|
20
|
Kumar V, Hatan E, Bar E, Davidovich-Rikanati R, Doron-Faigenboim A, Spitzer-Rimon B, Elad Y, Alkan N, Lewinsohn E, Oren-Shamir M. Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:226-240. [PMID: 32645754 DOI: 10.1111/tpj.14919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 05/28/2023]
Abstract
Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Erel Hatan
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Einat Bar
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Ben Spitzer-Rimon
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| |
Collapse
|
21
|
Jo YD, Ryu J, Kim YS, Kang KY, Hong MJ, Choi HI, Lim GH, Kim JB, Kim SH. Dramatic Increase in Content of Diverse Flavonoids Accompanied with Down-Regulation of F-Box Genes in a Chrysanthemum ( Chrysanthemum × morifolium (Ramat.) Hemsl.) Mutant Cultivar Producing Dark-Purple Ray Florets. Genes (Basel) 2020; 11:E865. [PMID: 32751443 PMCID: PMC7464468 DOI: 10.3390/genes11080865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins (a subclass of flavonoids) and flavonoids are crucial determinants of flower color and substances of pharmacological efficacy, respectively, in chrysanthemum. However, metabolic and transcriptomic profiling regarding flavonoid accumulation has not been performed simultaneously, thus the understanding of mechanisms gained has been limited. We performed HPLC-DAD-ESI-MS (high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry) and transcriptome analyses using "ARTI-Dark Chocolate" (AD), which is a chrysanthemum mutant cultivar producing dark-purple ray florets, and the parental cultivar "Noble Wine" for metabolic characterization and elucidation of the genetic mechanism determining flavonoid content. Among 26 phenolic compounds identified, three cyanidins and eight other flavonoids were detected only in AD. The total amounts of diverse flavonoids were 8.0 to 10.3 times higher in AD. Transcriptome analysis showed that genes in the flavonoid biosynthetic pathway were not up-regulated in AD at the early flower stage, implying that the transcriptional regulation of the pathway did not cause flavonoid accumulation. However, genes encoding post-translational regulation-related proteins, especially F-box genes in the mutated gene, were enriched among down-regulated genes in AD. From the combination of metabolic and transcriptomic data, we suggest that the suppression of post-translational regulation is a possible mechanism for flavonoid accumulation in AD. These results will contribute to research on the regulation and manipulation of flavonoid biosynthesis in chrysanthemum.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Jaihyunk Ryu
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Ye-Sol Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon 57922, Korea;
| | - Min Jeong Hong
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Hong-Il Choi
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Gah-Hyun Lim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Sang Hoon Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| |
Collapse
|
22
|
Tyagi S, Jung JA, Kim JS, Won SY. A comparative analysis of the complete chloroplast genomes of three Chrysanthemum boreale strains. PeerJ 2020; 8:e9448. [PMID: 32685287 PMCID: PMC7337036 DOI: 10.7717/peerj.9448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chrysanthemum boreale Makino (Anthemideae, Asteraceae) is a plant of economic, ornamental and medicinal importance. We characterized and compared the chloroplast genomes of three C. boreale strains. These were collected from different geographic regions of Korea and varied in floral morphology. METHODS The chloroplast genomes were obtained by next-generation sequencing techniques, assembled de novo, annotated, and compared with one another. Phylogenetic analysis placed them within the Anthemideae tribe. RESULTS The sizes of the complete chloroplast genomes of the C. boreale strains were 151,012 bp (strain 121002), 151,098 bp (strain IT232531) and 151,010 bp (strain IT301358). Each genome contained 80 unique protein-coding genes, 4 rRNA genes and 29 tRNA genes. Comparative analyses revealed a high degree of conservation in the overall sequence, gene content, gene order and GC content among the strains. We identified 298 single nucleotide polymorphisms (SNPs) and 106 insertions/deletions (indels) in the chloroplast genomes. These variations were more abundant in non-coding regions than in coding regions. Long dispersed repeats and simple sequence repeats were present in both coding and noncoding regions, with greater frequency in the latter. Regardless of their location, these repeats can be used for molecular marker development. Phylogenetic analysis revealed the evolutionary relationship of the species in the Anthemideae tribe. The three complete chloroplast genomes will be valuable genetic resources for studying the population genetics and evolutionary relationships of Asteraceae species.
Collapse
Affiliation(s)
- Swati Tyagi
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
23
|
Huali T, Honglei P, Feng W, Shaokang W, Ligang Y, Jianghong L, Guiju S. Effects of combined administration of calcium, iron, zinc, chrysanthemum flavonoids, and DMSA on the treatment of lead intoxication in mice. J Biochem Mol Toxicol 2020; 34:e22425. [PMID: 31729815 DOI: 10.1002/jbt.22425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 11/06/2022]
Abstract
The effect of combined administration of calcium (Ca), iron (Fe), zinc (Zn), chrysanthemum flavonoids, and meso-2,3-dimercaptosuccinic acid (DMSA) on the treatment of lead (Pb) intoxication in mice was studied. One hundred ninety female mice (SPF level, aged 18-22 days) were randomly divided into two groups as experimental animals. Mice in group I (10 mice) served as normal control animals, and were administered deionized water containing 12.5 μL/L acetate acid for 6 weeks, whereas mice in group II (180 mice) were exposed to 0.1% (wt/vol) of lead acetate in deionized water for 6 weeks and served as experimental animals. After 6 weeks of successful modeling, 180 mice from group II (lead-exposed) were divided into 18 groups of 10 mice each, 16 of which were treated by the combined administration of Ca, Fe, Zn, chrysanthemum flavonoids, and DMSA by L16 (215 ) orthogonal design. The remaining two groups were given treatment with low and high doses of DMSA, respectively. After three weeks of intervention (ig), the optimal treatment group was identified according to its blood lead level, as well as some antioxidant indices in the blood, liver, and hippocampus. The results indicated that the combined administration of Fe, Zn, chrysanthemum flavonoids, and DMSA with low dosage had the most significant effect on increasing the activities of blood delta-aminolevulinic acid dehydratase and superoxide dismutase (SOD), hepatic SOD and hippocampus nitric oxide synthase while decreasing the blood lead level, the content of hepatic malondialdehyde and hippocampus nitric oxide; this was considered the optimal treatment group. There was no difference in the level of blood hemoglobin between the optimal treatment group and the model control group (the first group of the orthogonal experiment). The activities of blood glutathione (GSH), hepatic GSH and glutathione peroxidase of the optimal treatment group were the same as other groups', and the recovery of the related indexes in the optimal effect group closely resembled the high dosage DMSA group. It can be concluded that the coadministration of Fe, Zn, and chrysanthemum flavonoids along with a low-dose DMSA effectively reduces Pb poisoning and lead-induced oxidative damage in lead-exposed mice; the result may provide a theoretical reference for the treatment of Pb poisoning.
Collapse
Affiliation(s)
- Tang Huali
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Peng Honglei
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Jiangsu General Administration of Market Supervision and Administration, Nanjing, China
| | - Wang Feng
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Wang Shaokang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Yang Ligang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Liu Jianghong
- School of Nursing and School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sun Guiju
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Recent Trends in the Application of Chromatographic Techniques in the Analysis of Luteolin and Its Derivatives. Biomolecules 2019; 9:biom9110731. [PMID: 31726801 PMCID: PMC6921003 DOI: 10.3390/biom9110731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Luteolin is a flavonoid often found in various medicinal plants that exhibits multiple biological effects such as antioxidant, anti-inflammatory and immunomodulatory activity. Commercially available medicinal plants and their preparations containing luteolin are often used in the treatment of hypertension, inflammatory diseases, and even cancer. However, to establish the quality of such preparations, appropriate analytical methods should be used. Therefore, the present paper provides the first comprehensive review of the current analytical methods that were developed and validated for the quantitative determination of luteolin and its C- and O-derivatives including orientin, isoorientin, luteolin 7-O-glucoside and others. It provides a systematic overview of chromatographic analytical techniques including thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), liquid chromatography (LC), high performance liquid chromatography (HPLC), gas chromatography (GC) and counter-current chromatography (CCC), as well as the conditions used in the determination of luteolin and its derivatives in plant material.
Collapse
|
25
|
Jalili C, Akhshi N, Raissi F, Shiravi A, Alvani A, Vaezi G, Nedaei SE, Ghanbari A. Acacetin Alleviates Hepatitis Following Renal Ischemia–Reperfusion in Male Balb/C Mice by Antioxidants Regulation and Inflammatory Markers Suppression. J INVEST SURG 2019; 34:495-503. [DOI: 10.1080/08941939.2019.1656309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Akhshi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshid Raissi
- Department of Pathology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhosein Shiravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Alvand Alvani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ghanbari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium. Molecules 2019; 24:molecules24163003. [PMID: 31430944 PMCID: PMC6720760 DOI: 10.3390/molecules24163003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/24/2022] Open
Abstract
The flowers of chrysanthemum species are used as a herbal tea and in traditional medicine. In addition, members of the genus have been selected to develop horticultural cultivars of diverse floral colors and capitulum forms. In this research, we investigated the phytochemical composition of eight gamma-irradiation mutant cultivars of Chrysanthemum morifolium and their original cultivars. The mutant chrysanthemum cultivars were generated by treatment with various doses of 60Co gamma irradiation of stem cuttings of three commercial chrysanthemum cultivars as follows: ‘ARTI-Dark Chocolate’ (50Gy), ‘ARTI-Purple Lady’ (30 Gy), and ‘ARTI-Yellow Star’ (50 Gy) derived from ‘Noble Wine’; ‘ARTI-Red Star’ (50 Gy) and ‘ARTI-Rising Sun’ (30 Gy) from ‘Pinky’; ‘ARTI-Purple’ (40 Gy) and ‘ARTI-Queen’ (30 Gy) from ‘Argus’; and ‘ARTI-Rollypop’ (70 Gy) from ‘Plaisir d’amour’. Quantitative analysis of flavonoids, phenolic acids, anthocyanins, and carotenoids in the flowers of the 12 chrysanthemum cultivars was performed using high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry (HPLC-DAD-ESIMS). Essential oils from the flowers of these cultivars were analyzed by gas chromatography–mass spectrometry (GC-MS). The mutant cultivars, ‘ARTI-Dark Chocolate’, ‘ARTI-Purple Lady’, ‘ARTI-Purple’, and ‘ARTI-Queen’ showed higher total amounts of flavonoid and phenolic acid compared with those of the respective original cultivars. The mutant cultivars, ‘ARTI-Dark Chocolate’, ‘ARTI-Purple Lady’ and ‘ARTI-Purple’, which produce purple to pink petals, contained more than two-times higher amounts of anthocyanins compared with those of their original cultivars. Of the mutant cultivars, ‘ARTI-Yellow Star’ in which petal color was changed to yellow, showed the greatest accumulation of carotenoids. Ninety-nine volatile compounds were detected, of which hydrocarbons and terpenoids were abundant in all cultivars analyzed. This is the first report that demonstrated the phytochemical analysis of novel chrysanthemum cultivars derived from C. morifolium hydrid using HPLC-DAD-ESIMS and GC-MS. These findings suggest that the selected mutant chrysanthemum cultivars show potential as a functional source of phytochemicals associated with the abundance of health-beneficial components, as well as good source for horticulture and pigment industries.
Collapse
|
27
|
Yuan Q, Fu Y, Xiang PY, Zhao L, Wang SP, Zhang Q, Liu YT, Qin W, Li DQ, Wu DT. Structural characterization, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas. RSC Adv 2019; 9:35443-35451. [PMID: 35528079 PMCID: PMC9074740 DOI: 10.1039/c9ra05820f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/28/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, structural characteristics, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas were investigated and compared.
Collapse
Affiliation(s)
- Qin Yuan
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Yuan Fu
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Pan-Yin Xiang
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Li Zhao
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Qing Zhang
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Yun-Tao Liu
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Wen Qin
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - De-Qiang Li
- Department of Pharmacy
- The Second Hospital of Hebei Medical University
- Shijiazhuang
- China
| | - Ding-Tao Wu
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| |
Collapse
|