1
|
Ye J, Wang Y, Wang Y, Hong L, Kang J, Jia Y, Li M, Chen Y, Wu Z, Wang H. Improvement of soil acidification and ammonium nitrogen content in tea plantations by long-term use of organic fertilizer. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:994-1008. [PMID: 37345615 DOI: 10.1111/plb.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/07/2023] [Indexed: 06/23/2023]
Abstract
Soil acidification is common in some Chinese tea plantations, which seriously affected growth of tea trees. Hence, it is essential to explore soil remediation in acidified tea plantations for sustainable development of the tea industry. We sought to determine how different fertilizers affect acidified soil and their N transformation in tea plantations. Different fertilizers were used on acidified tea plantation soils for 4 years (2017-2021), and changes in soil pH, indices related to soil N transformation and tea yield were analysed to construct interaction networks of these indices and find which had the largest influence on fertilization. Long-term use of sheep manure reduced soil acidification, increased soil pH, enhanced the number and intensity of N-fixing and ammonifying bacteria, urease, protease, asparaginase and N-acetamide glucose ribosidase activity and nifH gene expression. This treatment reduced the number and intensity of soil nitrifying and denitrifying bacteria, nitrate reductase and nitrite reductase activity, while the expression of amoA-AOA, nirK, nirS, narG and nosZ in turn increased ammonium N content of the soil, reduced nitrate N content, and enhanced tea yield. Topsis index weight analysis showed that ammonium N content in the soil had the largest impact among fertilization effects. Long-term use of sheep manure was beneficial in restoring the balance of the micro-ecosystem in acidified soil. This study provides an important practical basis for soil remediation and fertilizer management in acidified tea plantation soils.
Collapse
Affiliation(s)
- J Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Y Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Longyan University, Longyan, China
| | - Y Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - L Hong
- College of Life Science, Longyan University, Longyan, China
| | - J Kang
- College of Life Science, Longyan University, Longyan, China
| | - Y Jia
- College of Life Science, Longyan University, Longyan, China
| | - M Li
- College of Life Science, Longyan University, Longyan, China
| | - Y Chen
- College of Life Science, Longyan University, Longyan, China
| | - Z Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - H Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
2
|
Zhang W, Ni K, Long L, Ruan J. Nitrogen transport and assimilation in tea plant ( Camellia sinensis): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1249202. [PMID: 37810380 PMCID: PMC10556680 DOI: 10.3389/fpls.2023.1249202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Nitrogen is one of the most important nutrients for tea plants, as it contributes significantly to tea yield and serves as the component of amino acids, which in turn affects the quality of tea produced. To achieve higher yields, excessive amounts of N fertilizers mainly in the form of urea have been applied in tea plantations where N fertilizer is prone to convert to nitrate and be lost by leaching in the acid soils. This usually results in elevated costs and environmental pollution. A comprehensive understanding of N metabolism in tea plants and the underlying mechanisms is necessary to identify the key regulators, characterize the functional phenotypes, and finally improve nitrogen use efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N source, thus a large amount of nitrate remains activated in soils. The improvement of nitrate utilization by tea plants is going to be an alternative aspect for NUE with great potentiality. In the process of N assimilation, nitrate is reduced to ammonium and subsequently derived to the GS-GOGAT pathway, involving the participation of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In this review, we summarize what is known about the regulation and functioning of the enzymes and transporters implicated in N acquisition and metabolism in tea plants and the current methods for assessing NUE in this species. The challenges and prospects to expand our knowledge on N metabolism and related molecular mechanisms in tea plants which could be a model for woody perennial plant used for vegetative harvest are also discussed to provide the theoretical basis for future research to assess NUE traits more precisely among the vast germplasm resources, thus achieving NUE improvement.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Ni
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| | - Lizhi Long
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| |
Collapse
|
3
|
Phuah YQ, Chang SK, Ng WJ, Lam MQ, Ee KY. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int 2023; 170:113007. [PMID: 37316075 DOI: 10.1016/j.foodres.2023.113007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
This review discussed the origin, manufacturing process, chemical composition, factors affecting quality and health benefits of matcha (Camellia sinensis), and the application of chemometrics and multi-omics in the science of matcha. The discussion primarily distinguishes between matcha and regular green tea with processing and compositional factors, and demonstrates beneficial health effects of consuming matcha. Preferred Reporting Items for Systematic Reviews and Meta-Analyses was adopted to search for relevant information in this review. Boolean operators were incorporated to explore related sources in various databases. Notably, climate, cultivar, maturity of tea leaves, grinding process and brewing temperature impact on the overall quality of matcha. Besides, sufficient shading prior to harvesting significantly increases the contents of theanine and chlorophyll in the tea leaves. Furthermore, the ground whole tea leaf powder delivers matcha with the greatest benefits to the consumers. The health promoting benefits of matcha are mainly contributed by its micro-nutrients and the antioxidative phytochemicals, specifically epigallocatechin-gallate, theanine and caffeine. Collectively, the chemical composition of matcha affected its quality and health benefits significantly. To this end, more studies are required to elucidate the biological mechanisms of these compounds for human health. Chemometrics and multi-omics technologies are useful to fill up the research gaps identified in this review.
Collapse
Affiliation(s)
- Yi Qian Phuah
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wen Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ming Quan Lam
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
4
|
Jia X, Wang Y, Zhang Q, Lin S, Zhang Y, Du M, Chen M, Ye J, Wu Z, Wang H. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1179960. [PMID: 37426968 PMCID: PMC10327554 DOI: 10.3389/fpls.2023.1179960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Soil acidification in Chinese tea plantations is widespread, and it has significantly affected the growth of tea trees; it was important to explore soil remediation of acidified tea plantations in depth for the sustainable development of tea industry. In this study, the effects of sheep manure fertilizer with different application depths on soil acidification, tea yield and quality, and soil nitrogen transformation in tea plantations were analyzed for five consecutive years from 2018 to 2022. The results showed that long-term use of sheep manure fertilizer significantly reduced soil acidification (P< 0.05) in tea plantations, improved soil pH and soil ammonium nitrogen content, enhanced root activity and root nitrogen uptake capacity of tea trees, and thus improved tea yield and quality. The effect of different application depths of sheep manure fertilizer on tea yield and quality was mainly reflected in the transformation ability of soil ammonium nitrogen and nitrate nitrogen, which showed that high transformation ability of soil ammonium nitrogen and high ammonium nitrogen content were beneficial to high tea yield and vice versa, and the best effect was achieved when sheep manure was applied at a depth of 50 cm and 70 cm. The topsis analysis confirmed that sheep manure fertilization had a greater effect on root activity, ammonium nitrogen, ammonia intensity, and nifH gene. This study provided an important practical basis for the restoration of acidified tea plantation soil through sheep manure fertilizer management.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
5
|
Hu S, Hu Y, Mei H, Li J, Xuan W, Jeyaraj A, Zhao Z, Zhao Y, Han R, Chen X, Li X. Genome-wide analysis of long non-coding RNAs (lncRNAs) in tea plants ( Camellia sinensis) lateral roots in response to nitrogen application. FRONTIERS IN PLANT SCIENCE 2023; 14:1080427. [PMID: 36909382 PMCID: PMC9998519 DOI: 10.3389/fpls.2023.1080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop, nitrogen supply can not only increase the number of new shoots and leaves but also improve the tenderness of the former. However, a conundrum remains in science, which is the molecular mechanism of nitrogen use efficiency, especially long non-coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified through high-throughput sequencing analysis of lateral roots under nitrogen stress and control conditions, of which 9,451 were differentially expressed lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-responsive lncRNAs, co-expression clustering was employed between lncRNAs and coding genes. KEGG enrichment analysis revealed nitrogen-responsive lncRNAs may involve in many biological processes such as plant hormone signal transduction, nitrogen metabolism and protein processing in endoplasmic reticulum. The expression abundance of 12 DE-lncRNAs were further verified by RT-PCR, and their expression trends were consistent with the results of RNA-seq. This study expands the research on lncRNAs in tea plants, provides a novel perspective for the potential regulation of lncRNAs on nitrogen stress, and valuable resources for further improving the nitrogen use efficiency of tea plants.
Collapse
Affiliation(s)
- Shunkai Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yimeng Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Xuan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anburaj Jeyaraj
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rui Han
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xuan Chen
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinghui Li
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Li Y, Fan K, Shen J, Wang Y, Jeyaraj A, Hu S, Chen X, Ding Z, Li X. Glycine-Induced Phosphorylation Plays a Pivotal Role in Energy Metabolism in Roots and Amino Acid Metabolism in Leaves of Tea Plant. Foods 2023; 12:foods12020334. [PMID: 36673426 PMCID: PMC9858451 DOI: 10.3390/foods12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Phosphorylation is the most extensive post-translational modification of proteins and thus regulates plant growth. However, the regulatory mechanism of phosphorylation modification on the growth of tea plants caused by organic nitrogen is still unclear. In order to explore the phosphorylation modification mechanism of tea plants in response to organic nitrogen, we used glycine as the only nitrogen source and determined and analyzed the phosphorylated proteins in tea plants by phosphoproteomic analysis. The results showed that the phosphorylation modification induced by glycine-supply played important roles in the regulation of energy metabolism in tea roots and amino acid metabolism in tea leaves. In roots, glycine-supply induced dephosphorylation of proteins, such as fructose-bisphosphate aldolase cytoplasmic isozyme, glyceraldehyde-3-phosphate dehydrogenase, and phosphoenolpyruvate carboxylase, resulted in increased intensity of glycolysis and decreased intensity of tricarboxylic acid cycle. In leaves, the glycine-supply changed the phosphorylation levels of glycine dehydrogenase, aminomethyltransferase, glutamine synthetase, and ferredoxin-dependent glutamate synthase, which accelerated the decomposition of glycine and enhanced the ability of ammonia assimilation. In addition, glycine-supply could improve the tea quality by increasing the intensity of amino acids, such as theanine and alanine. This research clarified the important regulatory mechanism of amino acid nitrogen on tea plant growth and development through protein phosphorylation.
Collapse
Affiliation(s)
- Yuchen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaotang Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| |
Collapse
|
7
|
Ye J, Wang Y, Kang J, Chen Y, Hong L, Li M, Jia Y, Wang Y, Jia X, Wu Z, Wang H. Effects of Long-Term Use of Organic Fertilizer with Different Dosages on Soil Improvement, Nitrogen Transformation, Tea Yield and Quality in Acidified Tea Plantations. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010122. [PMID: 36616251 PMCID: PMC9824488 DOI: 10.3390/plants12010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
In this study, sheep manure fertilizers with different dosages were used for five consecutive years to treat acidified tea plantation soils, and the effects of sheep manure fertilizer on soil pH value, nitrogen transformation, and tea yield and quality were analyzed. The results showed that soil pH value showed an increasing trend after a continuous use of sheep manure fertilizer from 2018 to 2022. After the use of low dosage of sheep manure fertilizer (6 t/hm2-15 t/hm2), tea yield, the content of tea quality indicators (tea polyphenols, theanine, amino acid, and caffeine) and soil ammonium nitrogen content, ammoniating bacteria number, ammoniating intensity, urease activity and protease activity showed increasing trends and were significantly and positively correlated to soil pH value, while the related indexes showed increasing and then decreasing trends after the use of high dosage of sheep manure fertilizer (18 t/hm2). Secondly, the nitrate nitrogen content, nitrifying bacteria number, nitrifying intensity, nitrate reductase activity, and nitrite reductase activity showed decreasing trends after the use of low dosage of sheep manure fertilizer and showed significant negative correlations with soil pH value, while the related indexes showed decreasing trends after the use of high dosage of sheep manure and then increased. The results of principal component and interaction analysis showed that the effects of sheep manure fertilizers with different dosages on tea yield and quality were mainly based on the transformation ability of ammonium nitrogen and nitrate nitrogen in the soil, and the strong transformation ability of ammonium nitrogen and the high ammonium nitrogen content in the soil were conducive to the improvement of tea yield and quality, and vice versa. The results of topsis comprehensive evaluation and analysis showed that the most influential effect on the fertilization effect was the ammonium nitrogen content in the soil and long-term treatment with 15 t/hm2 of sheep manure fertilizer had the highest proximity to the best fertilization effect. This study provided an important practical basis for the remediation and fertilizer management in acidified tea plantation soils.
Collapse
Affiliation(s)
- Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqian Kang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan 364012, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yun Jia
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuchao Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibin Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
8
|
Genome-Wide Identification of AMT2-Type Ammonium Transporters Reveal That CsAMT2.2 and CsAMT2.3 Potentially Regulate NH 4+ Absorption among Three Different Cultivars of Camellia sinensis. Int J Mol Sci 2022; 23:ijms232415661. [PMID: 36555302 PMCID: PMC9779401 DOI: 10.3390/ijms232415661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ammonium (NH4+), as a major inorganic source of nitrogen (N) for tea plant growth, is transported and distributed across membranes by the proteins of ammonium transporters (AMTs). However, the AMT2-type AMTs from tea plants remain poorly understood. In this study, five CsAMT2 subfamily genes were identified in tea plant genomes, and their full-length coding sequences (CDS) were isolated from roots. Then, a NH4+ uptake kinetic comparison of Fudingdabaicha (FD), Huangdan (HD), and Maoxie (MX) showed that FD was a high N efficiency (HNE) cultivar that had a wide range of adaptability to NH4+, HD was a high N efficiency under high N conditions (HNEH) cultivar, in which it was easy to obtain higher yield in a high N environment, and MX was a high N efficiency under low N conditions (HNEL) cultivar, which had a higher affinity for NH4+ than the other two. Tissue-specific expression analysis suggested that CsAMT2.2 and CsAMT2.3 were highly expressed in the roots, indicating that these two members may be unique in the CsAMT2 subfamily. This is further supported by our findings from the temporal expression profiles in the roots among these three different N adaptation cultivars. Expression levels of CsAMT2.2 and CsAMT2.3 in FD and HD were upregulated by a short time (2 h) under high NH4+ treatment, while under low NH4+ treatment, CsAMT2.2 and CsAMT2.3 were highly expressed at 0 h and 2 h in the HNEL-type cultivar-MX. Furthermore, the functional analysis illustrated that CsAMT2.2 and CsAMT2.3 could make a functional complementation of NH4+-defective mutant yeast cells at low NH4+ levels, and the transport efficiency of CsAMT2.3 was higher than that of CsAMT2.2. Thus, we concluded that CsAMT2.2 and CsAMT2.3 might play roles in controlling the NH4+ uptake from the soil to the roots. These results will further the understanding of the NH4+ signal networks of AMT2-type proteins in tea plants.
Collapse
|
9
|
Xu W, Li J, Zhang L, Zhang X, Zhao H, Guo F, Wang Y, Wang P, Chen Y, Ni D, Wang M. Metabolome and RNA-seq Analysis of Responses to Nitrogen Deprivation and Resupply in Tea Plant ( Camellia sinensis) Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:932720. [PMID: 36092416 PMCID: PMC9459018 DOI: 10.3389/fpls.2022.932720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an important contributor in regulating plant growth and development as well as secondary metabolites synthesis, so as to promote the formation of tea quality and flavor. Theanine, polyphenols, and caffeine are important secondary metabolites in tea plant. In this study, the responses of Camellia sinensis roots to N deprivation and resupply were investigated by metabolome and RNA-seq analysis. N deficiency induced content increase for most amino acids (AAs) and reduction for the remaining AAs, polyphenols, and caffeine. After N recovery, the decreased AAs and polyphenols showed a varying degree of recovery in content, but caffeine did not. Meanwhile, theanine increased in content, but its related synthetic genes were down-regulated, probably due to coordination of the whole N starvation regulatory network. Flavonoids-related pathways were relatively active following N stress according to KEGG enrichment analysis. Gene co-expression analysis revealed TCS2, AMT1;1, TAT2, TS, and GOGAT as key genes, and TFs like MYB, bHLH, and NAC were also actively involved in N stress responses in C. sinensis roots. These findings facilitate the understanding of the molecular mechanism of N regulation in tea roots and provide genetic reference for improving N use efficiency in tea plant.
Collapse
Affiliation(s)
- Wenluan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Luyu Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Xu YX, Yang L, Lei YS, Ju RN, Miao SG, Jin SH. Integrated transcriptome and amino acid profile analyses reveal novel insights into differential accumulation of theanine in green and yellow tea cultivars. TREE PHYSIOLOGY 2022; 42:1501-1516. [PMID: 35146518 DOI: 10.1093/treephys/tpac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Tea cultivars with yellow- or white-leaf variations have a high economic value due to their high amino acid (especially theanine) concentration. However, the dynamic changes of amino acid components (especially theanine) and related gene expression during new shoot development in these cultivars are still unclear. In this study, 264 tea samples from four representative varieties picked during the harvest period in spring were analyzed for their amino acid profiles. The dynamic change rules of ethylamine and 19 amino acids were summarized in normal green and yellow cultivars during new shoot development. Interestingly, the theanine concentration in the yellow cultivar was significantly higher than that in the green cultivar, and increased gradually as the leaves matured until they reached a maximum in the one bud and three leaves stage. The amino acid concentration in the leaves of the yellow cultivar increased significantly with leaf position, which was generally in contrast to the normal green cultivar. Transcriptome and correlation analyses revealed that CsGS1, CsPDX2, CsGGP5, CsHEMA3 and CsCLH4 might be the key genes potentially responsible for the differential accumulation of theanine in green and yellow tea cultivars. These results provide further information for the utilization and improvement of tea plants.
Collapse
Affiliation(s)
- Yan-Xia Xu
- Jiyang College, Zhejiang A&F University, 66 Puyang Road, Zhuji, Zhejiang 311800, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A &F University, 666 Wusu Street, Lin'an, Zhejiang 311300, China
| | - Long Yang
- Jiyang College, Zhejiang A&F University, 66 Puyang Road, Zhuji, Zhejiang 311800, China
| | - Yun-Sheng Lei
- Jiyang College, Zhejiang A&F University, 66 Puyang Road, Zhuji, Zhejiang 311800, China
| | - Rui-Na Ju
- Jiyang College, Zhejiang A&F University, 66 Puyang Road, Zhuji, Zhejiang 311800, China
| | - Shu-Gang Miao
- Jiyang College, Zhejiang A&F University, 66 Puyang Road, Zhuji, Zhejiang 311800, China
| | - Song-Heng Jin
- Jiyang College, Zhejiang A&F University, 66 Puyang Road, Zhuji, Zhejiang 311800, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Zhejiang 311300, China
| |
Collapse
|
11
|
Pokharel SS, Zhong Y, Changning L, Shen F, Likun L, Parajulee MN, Fang W, Chen F. Influence of reduced N-fertilizer application on foliar chemicals and functional qualities of tea plants under Toxoptera aurantii infestation. BMC PLANT BIOLOGY 2022; 22:166. [PMID: 35366797 PMCID: PMC8976352 DOI: 10.1186/s12870-022-03533-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The tea aphid, Toxoptera aurantii (Boyer de Fonscolombe) is a polyphagous pest predominant in tea orchards and has become the most pernicious pest deteriorating tea quality. Nitrogen (N) is essential to plant growth improvement, and it can significantly impact plant defensive ability against aphid infestation. This study was designed to quantify the influence of reduced N-fertilizer application on foliar chemicals and functional quality parameters of tea plants against the infestation of T. aurantii. In this study, the tea seedlings (cv. Longjing43) were applied with normal level (NL) of N-fertilizer (240 kg N ha-1) along with reduced N-fertilizer levels (70%NL and 50%NL), and with and without T. aurantii infestation. RESULTS The results showed that N-fertilizer application significantly affected plant biomass and photosynthetic indexes, foliar soluble nutrients and polyphenols, tea catechins, caffeine, essential amino acids, volatile organic compounds of tea seedlings, and the population dynamics of T. aurantii. Compared with the normal N-fertilizer level, the reduced N-fertilizer application (70%NL and 50%NL) significantly decreased all the foliar functional quality components of tea seedlings without aphid infestation, while these components were increased in tea seedlings with aphid infestation. Moreover, the transcript expression levels of foliar functional genes (including CsTCS, CsTs1, and CsGT1) were significantly higher in the NL, and significantly lower in the 50%NL for tea seedlings without aphid infestation, while the transcript expression levels were significantly higher in 50%NL in aphid inoculated tea seedlings. CONCLUSION The results demonstrated that the reduced N-fertilizer application could enhance foliar chemicals and functional quality parameters of tea plants especially with T. aurantii infestation, which can relieve soil nitrogen pressure and reduce pesticide use for control of tea aphid infestation in tea plantations.
Collapse
Affiliation(s)
| | - Yanni Zhong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lv Changning
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangyuan Shen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Likun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Megha N Parajulee
- Texas A&M AgriLife Research and Extension Center, Lubbock, TX79403, USA
| | - Wanping Fang
- Department of Tea Science, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Ruan L, Wei K, Li J, He M, Wu L, Aktar S, Wang L, Cheng H. Responses of tea plants (Camellia sinensis) with different low-nitrogen tolerances during recovery from nitrogen deficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1405-1414. [PMID: 34374435 DOI: 10.1002/jsfa.11473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tea plants have high nitrogen (N) consumptions, whereas molecular and physiological responses of tea plants to N recovery are still unclear. RESULTS By using non-invasive micro-test technology (NMT), 15 N tracer technique, ultra-performance liquid chromatography (UPLC), and transcriptome sequencing technology, we investigated the N recovery-induced changes in N absorptions, N tissue distributions, contents of free amino acids (FAAs), and global transcription of the low-N tolerant and intolerant tea genotypes [i.e. Wuniuzao (W) and Longjing43 (L)]. The results showed that the phenotype of Wuniuzao was better than that of Longjing43 under low-N condition. The N absorption and utilization of Wuniuzao were superior to Longjing43 under N recovery. The γ-aminobutyric acid (GABA) ratio (N recovery/N deficiency) in the root of Wuniuzao was significantly higher than that of Longjing43, while the glutamic acid ratio in the root of Wuniuzao was significantly lower than that of Longjing43. This findings suggested that Wuniuzao tended to enhance the GABA synthesis, while Longjing43 tended to inhibit the GABA synthesis under N recovery. The key genes in response to N recovery in Wuniuzao included N transport (AMT and NRT), N transformation (NR, NirA, and GAD), and amino acid transport (GAT) genes. In addition, some ribosome and flavonoid biosynthesis genes might help to maintain proteome homeostasis. CONCLUSION The N absorption and transport, and the conversion abilities of key amino acids (Glu and GABA) might improve the adaptability of tea plants to N recovery, which provided a basis for the breeding of N efficient tea varieties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Ruan
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Kang Wei
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianwu Li
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Mengdi He
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Liyun Wu
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Shirin Aktar
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Liyuan Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
13
|
Lin ZH, Chen CS, Zhong QS, Ruan QC, Chen ZH, You XM, Shan RY, Li XL. The GC-TOF/MS-based Metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:506. [PMID: 34727870 PMCID: PMC8561955 DOI: 10.1186/s12870-021-03285-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. RESULTS In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. CONCLUSIONS The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.
Collapse
Affiliation(s)
- Zheng-He Lin
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China.
| | - Chang-Song Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Qiu-Sheng Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Qi-Chun Ruan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Zhi-Hui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Xiao-Mei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Rui-Yang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Xin-Lei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| |
Collapse
|
14
|
Chen Y, Wang F, Wu Z, Jiang F, Yu W, Yang J, Chen J, Jian G, You Z, Zeng L. Effects of Long-Term Nitrogen Fertilization on the Formation of Metabolites Related to Tea Quality in Subtropical China. Metabolites 2021; 11:metabo11030146. [PMID: 33801425 PMCID: PMC8000315 DOI: 10.3390/metabo11030146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
As a main agronomic intervention in tea cultivation, nitrogen (N) application is useful to improve tea yield and quality. However, the effects of N application on the formation of tea quality-related metabolites have not been fully studied, especially in long-term field trials. In this study, a 10-year field experiment was conducted to investigate the effect of long-term N application treatments on tea quality-related metabolites, their precursors, and related gene expression. Long-term N application up-regulated the expression of key genes for chlorophyll synthesis and promoted its synthesis, thus increasing tea yield. It also significantly increased the contents of total free amino acids, especially l-theanine, in fresh tea leaves, while decreasing the catechin content, which is conducive to enhancing tea liquor freshness. However, long-term N application significantly reduced the contents of benzyl alcohol and 2-phenylethanol in fresh tea leaves, and also reduced (E)-nerolidol and indole in withered leaves, which were not conducive to the formation of floral and fruity aroma compounds. In general, an appropriate amount of N fertilizer (225 kg/hm2) balanced tea yield and quality. These results not only provide essential information on how N application affects tea quality, but also provide detailed experimental data for field fertilization.
Collapse
Affiliation(s)
- Yuzhen Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Feng Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Zhidan Wu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Fuying Jiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350013, China;
| | - Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Guotai Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
| | - Zhiming You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (Y.C.); (F.W.); (Z.W.); (F.J.)
- National Agricultural Experimental Station for Soil Quality, No. 1 Hutouyang Road, Shekou Town, Fu’an 355015, China
- Correspondence: (Z.Y.); (L.Z.)
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; (J.Y.); (J.C.); (G.J.)
- Correspondence: (Z.Y.); (L.Z.)
| |
Collapse
|
15
|
Zhou J, Lu Y, Shi WG, Deng SR, Luo ZB. Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens. TREE PHYSIOLOGY 2020; 40:1392-1404. [PMID: 32542375 DOI: 10.1093/treephys/tpaa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Different root zones have distinct capacities for nitrate (NO3-) uptake in Populus species, but the underlying physiological and microRNA (miRNA) regulatory mechanisms remain largely unknown. To address this question, two root zones of Populus × canescens (Ait.) Smith. with contrasting capacities for NO3- uptake were investigated. The region of 0-40 mm (root zone I) to the root apex displayed net influxes, whereas the region of 40-80 mm (root zone II) exhibited net effluxes. Concentrations of NO3- and ammonium (NH4+) as well as nitrate reductase activity were lower in zone II than in zone I. Forty one upregulated and twenty three downregulated miRNAs, and 576 targets of these miRNAs were identified in zone II in comparison with zone I. Particularly, growth-regulating factor 4 (GRF4), a target of upregulated ptc-miR396g-5p and ptc-miR396f_L + 1R-1, was downregulated in zone II in comparison with zone I, probably contributing to lower NO3- uptake rates and assimilation in zone II. Furthermore, several miRNAs and their targets, members of C2H2 zinc finger family and APETALA2/ethylene-responsive element binding protein family, were found in root zones, which probably play important roles in regulating NO3- uptake. These results indicate that differentially expressed miRNA-target pairs play key roles in regulation of distinct NO3- uptake rates and assimilation in different root zones of poplars.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen-Guang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shu-Rong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
16
|
Li F, Li H, Dong C, Yang T, Zhang S, Bao S, Wan X, Zhang Z. Theanine transporters are involved in nitrogen deficiency response in tea plant ( Camellia sinensis L.). PLANT SIGNALING & BEHAVIOR 2020; 15:1728109. [PMID: 32067561 PMCID: PMC7194376 DOI: 10.1080/15592324.2020.1728109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nitrogen in soil directly influences the production and quality of tea. However, high nitrogen application in tea plantation leads to soil acidification and environmental pollution. Studies in model plants showed that plasma membrane localized amino acid transporter can regulate the distribution of amino acids to enhance nitrogen use efficiency. Our recent study identified six CsAAPs as transporters for theanine, a unique and most abundant non-proteinaceous amino acid in tea plant. In this work, we found these theanine transporters can also transport Glutamine, Glutamate, aspartate, alanine and γ-aminobutyric acid. Tissue-specific expression analyses showed that CsAAP1, CsAAP5 and CsAAP6 mainly expressed in leaves, CsAAP8 in root, CsAAP4 and CsAAP2 in stem. Furthermore, the expression of these CsAAPs was induced by nitrogen deficiency in a tissue-specific manner. Subcellular localization analyses showed that CsAAP1, CsAAP2 and CsAAP6 location were in the plasma membrane and endoplasmic reticulum. Taken together, these results suggested theanine transporters are involved in nitrogen deficiency response probably by mediating amino acid transport from roots to new shoots and from source to sink tissues in tea plants.
Collapse
Affiliation(s)
- Fang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Huiping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Shilai Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- Xiaochun Wan State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- CONTACT Zhaoliang Zhang
| |
Collapse
|