1
|
Lau C, Lu X, Chen X, Hoy KS, Davydiuk T, Graydon JA, Reichert M, LeBlanc A, Donadt C, Jhangri G, Le XC. Arsenic speciation in more than 1600 freshwater fish samples from fifty-three waterbodies in Alberta, Canada. J Environ Sci (China) 2025; 153:289-301. [PMID: 39855800 DOI: 10.1016/j.jes.2024.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
We report here arsenic speciation in 1643 freshwater fish samples, representing 14 common fish species from 53 waterbodies in Alberta, Canada. Arsenic species were extracted from fish muscle tissue. Arsenic species in the extracts were separated using anion-exchange high-performance liquid chromatography (HPLC) and quantified using inductively coupled plasma mass spectrometry (ICPMS). The total arsenic concentrations in fish ranged from 2.8 to 1200 µg/kg (in wet weight of sample) (mean 71 ± 101 µg/kg), which are all below the 2000 µg/kg (wet weight) maximum allowable total arsenic in fish, recommended by the Ontario Ministry of the Environment. In 99.7%, or 1638 of all 1643 freshwater fish samples analyzed, arsenobetaine (AsB) was detectable, with concentrations higher than the method detection limit of 0.25 µg/kg (wet weight). Dimethylarsinic acid (DMA) was detectable (concentration >0.25 µg/kg) in 92.1%, or 1514 of the 1643 freshwater fish samples. Inorganic arsenate (iAsV) was detectable (>0.25 µg/kg) in 1119 fish (i.e., 68.1% of 1643 samples). Monomethylarsonic acid (MMA) was detectable (>0.25 µg/kg) in 418 fish (25.4% of 1643 samples). The concentrations of arsenic species in the 1643 fish samples varied by as much as three orders of magnitude, ranging from below the method detection limit of 0.25 µg/kg to the maximum concentrations of 380 µg/kg for AsB, 150 µg/kg for DMA, 70 µg/kg for iAsV, and 51 µg/kg for MMA. AsB made up 46.1% ± 26.2% of total arsenic species. Arsenic speciation patterns varied between lake whitefish, northern pike, and walleye, the three most common types of fish analyzed. The relative proportion of DMA in northern pike was larger than in lake whitefish and walleye, and conversely, the relative proportion of iAsV was lower in northern pike. Seven unknown arsenic species were detected, and their chromatographic retention time did not match with those of available arsenic standards. At least one unknown arsenic species was detected in 33.4%, or 549 of 1643 freshwater fish samples. The concentrations of unknown arsenic species were as high as 61 µg/kg. Future research is necessary to identify unknown arsenic species and to determine contributing factors to the observed arsenic species patterns and concentrations.
Collapse
Affiliation(s)
- Chester Lau
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaojian Chen
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Karen S Hoy
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | | | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Adrienne LeBlanc
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Caitlyn Donadt
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Gian Jhangri
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
2
|
Lau C, Lu X, Hoy KS, Davydiuk T, Graydon JA, Reichert M, Le XC. Arsenic speciation in freshwater fish using high performance liquid chromatography and inductively coupled plasma mass spectrometry. J Environ Sci (China) 2025; 153:302-315. [PMID: 39855802 DOI: 10.1016/j.jes.2024.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption. While marine fish have attracted much research interest due to their higher arsenic content, research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels. We describe here a sensitive method and its application to the quantification of arsenic species in freshwater fish. Arsenic species from fish tissues were extracted using a methanol/water mixture (1:1 vol. ratio) and ultrasound sonication. Anion-exchange high-performance liquid chromatography (HPLC) enabled separation of arsenobetaine (AsB), inorganic arsenite (iAsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (iAsV), and three new arsenic species. Inductively coupled plasma mass spectrometry (ICPMS) provided highly sensitive and specific detection of arsenic. A limit of detection of 0.25 µg/kg (wet weight fish tissue) was achieved for the five target arsenic species: AsB, iAsIII, DMA, MMA, and iAsV. A series of experiments were conducted to ensure the accuracy and validity of the analytical method. The method was successfully applied to the determination of arsenic species in lake whitefish, northern pike, and walleye, with AsB, DMA, and iAsV being frequently detected. Three new arsenic species were detected, but their chromatographic retention times did not match with those of any available arsenic standards. Future research is necessary to elucidate the identity of these new arsenic species detected in freshwater fish.
Collapse
Affiliation(s)
- Chester Lau
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada
| | - Karen S Hoy
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | | | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
3
|
Sadee BA, Zebari SMS, Galali Y, Saleem MF. A review on arsenic contamination in drinking water: sources, health impacts, and remediation approaches. RSC Adv 2025; 15:2684-2703. [PMID: 39871983 PMCID: PMC11770421 DOI: 10.1039/d4ra08867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue. Numerous studies on As speciation have been conducted, extending beyond the general knowledge on As to the toxicity and health issues caused by exposure to various As species in water. This article reviews various As species, their sources and health effects, and treatment methods for the removal of As from contaminated water. Additionally, various established and emerging technologies for the removal of As contaminants from the environment, including adsorption (using rocks, soils, minerals, industrial by-products, biosorbents, biochars, and microalgal and fungal biomass), ion exchange, phytoremediation, chemical precipitation, electrocoagulation, and membrane technologies, are discussed. Treating As-contaminated drinking water is considered the most effective approach to minimize the associated health risks. Finally, the advantages and disadvantages of various remediation and removal methods are outlined, along with their key advantages. Among these techniques, the simplicity, low cost, and ease of operation make adsorption techniques desirable, particularly with the use of novel functional materials like graphite oxides, metal-organic frameworks, carbon nanotubes, and other emerging functional materials, which are promising future alternatives for As removal.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
- Department of Animal Resource, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Mahmood Fadhil Saleem
- Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
| |
Collapse
|
4
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Hogstrand C, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Vejdovszky K, Viviani B, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Schwerdtle T. Risk assessment of complex organoarsenic species in food. EFSA J 2024; 22:e9112. [PMID: 39655151 PMCID: PMC11626214 DOI: 10.2903/j.efsa.2024.9112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on complex organoarsenic species in food. They are typically found in marine foods and comprise mainly arsenobetaine (AsB), arsenosugars and arsenolipids. For AsB, no reference point (RP) could be derived because of insufficient toxicity data. AsB did not show adverse effects in the two available repeat dose toxicity tests in rodents. It has not shown genotoxicity in in vitro assays. There is no indication of an association with adverse outcomes in human studies. The highest 95th percentile exposure for AsB was observed in 'Toddlers' with an estimate of 12.5 μg As/kg bw per day (AsB expressed as elemental arsenic). There is sufficient evidence to conclude that AsB at current dietary exposure levels does not raise a health concern. For glycerol arsenosugar (AsSugOH) a RP of 0.85 mg As/kg bw per day was derived based on the BMDL10 values for cognitive and motor function in mice. A margin of exposure (MOE) of ≥ 1000 would not raise a health concern. The highest 95th percentile estimate of exposure for AsSugOH (for adult consumers of red seaweed Nori/Laver) was 0.71 μg As/kg bw per day (AsSugOH expressed as elemental arsenic), which results in an MOE > 1000, not raising a health concern. Based on qualitative consideration of all identified uncertainties, it is regarded likely that the dietary exposures to AsB and AsSugOH do not raise a health concern. No conclusions could be drawn regarding other arsenosugars. No risk characterisation could be conducted for arsenolipids, due to the lack of data.
Collapse
|
5
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
6
|
Md Taib MH, Lim LH. Simultaneous microwave digestion for total arsenic and inorganic arsenic in local shrimp and prawn commodities of Brunei Darussalam for regulatory and safety monitoring. Heliyon 2024; 10:e32224. [PMID: 38882356 PMCID: PMC11180320 DOI: 10.1016/j.heliyon.2024.e32224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
The data gap in food safety regulations have created misinformation leading to the rejection of commodities for trade. The evidence presented is the local regulation of arsenic in sea produce which is based on total arsenic, tAs, instead of toxic inorganic arsenic, iAs. Furthermore, tAs data in animal origin seafood has been widely proven to be dominated by the non-toxic Arsenobetaine, AsB. Therefore, if arsenic regulatory limit was set based only on tAs without reference to iAs data, seafood products might be wrongfully rejected for trade because of non-compliance to tAs limit. We provided analysis of tAs and iAs of 14 local prawn and shrimp commodities from three shrimp/prawn sector namely aquaculture (n = 3), capture (n = 5) and processed (n = 6) using effective extraction, as well as, a fit-for-purpose analytical method for iAs. A HVG-AAS method was developed and validated for iAs with LoQ of 1.6 ppb, analytical range of 0-6 ppb, repeatability RSDr of 0.5-3.1 %, coefficient of determination R2 of 0.9975, and percentage recovery of 90.9 %, while an existing method using ICP-MS was used to verify the tAs. Based on the AOAC Official Method 999.10 2005 with minor adjustments, seafood samples were digested with concentrated nitric acid and hydrogen peroxide under pressure in a closed vessel heated by a microwave digester. An additional step for iAs determination was necessary to ensure compatibility in HVG-AAS analysis. Further subdivision of the aquaculture and capture samples was done by dividing them into 3 fractions, namely head, flesh and peel. Comparison of tAs in all the three fractions indicated that for aquaculture sector, the highest tAs were found in the flesh (2nd highest in % weight) whereas for the capture sector, the highest amount of tAs correlated with the highest % weight of the fraction. On regulatory aspects, speciation analysis on the iAs indicated samples with quantifiable iAs value were in-compliance despite tAs were initially found to be higher than the national limits. Risk assessment of iAs indicated there were no risk for human daily intake based on the BDML0.5 value of 3.0 μg/kg b.w per day for an average 70 kg man. All findings concluded the need for doing arsenic speciation analysis of iAs along with tAs for routine monitoring of prawn/shrimp samples and to revise the local limits from tAs to iAs particularly for seafood commodities.
Collapse
Affiliation(s)
- M H Md Taib
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Tungku Link Road, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Department of Scientific Services, Ministry of Health, Commonwealth Drive, Menteri Besar Road, Bandar Seri Begawan, BB3910, Brunei Darussalam
| | - L H Lim
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Tungku Link Road, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
7
|
Silva MS, Tibon J, Sartipiyarahmadi S, Remø SC, Sele V, Søfteland L, Sveier H, Wiech M, Philip AJP, Berntssen M. Arsenic speciation and arsenic feed-to-fish transfer in Atlantic salmon fed marine low trophic feeds based blue mussel and kelp. J Trace Elem Med Biol 2023; 80:127319. [PMID: 37866214 DOI: 10.1016/j.jtemb.2023.127319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Aquaculture aims to reduce the environmental and climate footprints of feed production. Consequently, low trophic marine (LTM) resources such as blue mussels and kelp are potential candidates to be used as ingredients in salmon feed. It is relevant to study potential undesirables associated with their use, as well as assessing food safety by investigating their transfer from feed-to-fish. The marine biota is well known to contain relatively high levels of arsenic (As), which may be present in different organic forms depending on marine biota type and trophic position. Thus, it is important to not only obtain data on the concentrations of As, but also on the As species present in the raw materials, feed and farmed salmon when being fed novel LTM feed resources. METHODS Atlantic salmon were fed experimental diets for 70 days. A total of nine diets were prepared: four diets containing up to 4 % fermented kelp, three diets containing up to 11 % blue mussel silage, and one diet containing 12 % blue mussel meal, in addition to a standard reference diet containing 25 % fish meal. Concentrations of As and As species in feeds, faeces, liver and fillet of Atlantic salmon were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography coupled to ICP-MS (HPLC-ICP-MS), respectively. RESULTS The use of kelp or blue mussel-based feed ingredients increased the concentration of total As, but maximum level as defined in Directive 2002/32 EC and amendments was not exceeded. The concentrations found in the experimental feeds ranged from 3.4 mg kg-1 to 4.6 mg kg-1 ww. Arsenic speciation in the feed varied based on the ingredient, with arsenobetaine dominating in all feed samples (36-60 % of the total As), while arsenosugars (5.2-8.9 % of the total As) were abundant in kelp-included feed. The intestinal uptake of total As ranged from 67 % to 83 %, but retention in fillet only ranged from 2 % to 22 % and in liver from 0.3 % to 0.6 %, depending on the marine source used. Fish fed feeds containing blue mussel showed higher intestinal uptake of total As when compared with fish fed feeds containing fermented kelp. Fish fed fermented kelp-based feeds had higher retained concentrations of total As when comparing with fish fed feeds containing blue mussel. Despite relatively high intestinal uptake of total As, inorganic and organic As, the retained concentrations of As did not reflect the same trend. CONCLUSION Although the use of LTM feed ingredients increased the level of total As in this feeds, salmon reared on these diets did not show increased total As levels. The well-known toxic inorganic As forms were not detected in salmon muscle reared on LTM diets, and the non-toxic organic AsB was the dominant As species that was retained in salmon muscle, while the organic AsSug forms were not. This study shows that speciation analysis of the LTM resources provides valuable information of the feed-to-fish transfer of As, needed to assess the food safety of farmed Atlantic salmon reared on novel low trophic feeds.
Collapse
Affiliation(s)
- Marta S Silva
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Jojo Tibon
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs, Lyngby, Denmark
| | - Sahar Sartipiyarahmadi
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway; Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - Sofie C Remø
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Liv Søfteland
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, P.O. Box 7600, 5020 Bergen, Norway
| | - Martin Wiech
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | | | - Marc Berntssen
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway.
| |
Collapse
|
8
|
Hoy KS, Davydiuk T, Chen X, Lau C, Schofield JRM, Lu X, Graydon JA, Mitchell R, Reichert M, Le XC. Arsenic speciation in freshwater fish: challenges and research needs. FOOD QUALITY AND SAFETY 2023; 7:fyad032. [PMID: 37744965 PMCID: PMC10515374 DOI: 10.1093/fqsafe/fyad032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/12/2023] [Indexed: 09/26/2023]
Abstract
Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.
Collapse
Affiliation(s)
- Karen S Hoy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaojian Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ruth Mitchell
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Liu H, Tang J, Chen T, Zhu P, Sun D, Wang W. Assessment of heavy metals contamination and human health risk assessment of the commonly consumed medicinal herbs in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7345-7357. [PMID: 36040690 DOI: 10.1007/s11356-022-22647-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study investigates heavy metal contamination of commonly consumed medicinal herbs and human health risks to the Chinese population arising from the consumption of herbs that contain potentially harmful elements. Food safety standards for Chinese residents are becoming stricter, and much work in this field needs to be performed. This study examines Co, Ba, Fe, Cr, Mn, Ni, Zn, As, Cd, Pb, Cu, Be, Sb, and Bi concentrations in four regularly consumed Chinese herb species: Radix Paeoniae Alba (RPA), Radix Angelicae Dahuricae (RAD), Rhizoma Atractylodis Macrocephalae (RAM), and Radix Puerariae (RP). A pollution status examination and evaluation of heavy metals in RPA, RAD, RAM, and RP were performed. The human health risk assessment associated with the intake of potentially harmful elements in herbs was calculated in terms of the estimated daily intake (EDI), the target hazard quotient (THQ), the estimated hazard index (HI), and the lifetime cancer risk (CR). The mean single-factor pollution index (PI) showed that in the RPA, RAD, RAM, and RP samples, approximately 10.0%, 10.0%, 30.0%, and 10.0%, respectively, were polluted by Cd. The present study indicated that the pattern of consumption of the studied herbs in China does not seem to suggest an excessive health hazard associated with any of the toxic elements studied.
Collapse
Affiliation(s)
- Haiping Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tongjun Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Pingping Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Li J, Liu W, Lian Y, Shi R, Wang Q, Zeb A. Single and combined toxicity of polystyrene nanoplastics and arsenic on submerged plant Myriophyllum verticillatum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:513-523. [PMID: 36516538 DOI: 10.1016/j.plaphy.2022.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The contamination of nanoplastics (NPs) and heavy metals (HM) in water bodies has caused widespread concern, while their effects on submerged plants are poorly reported. Polystyrene nanoplastics (PSNPs) and arsenic (As) were used to assess their toxicity on Myriophyllum verticillatum L. via the orthogonal experiments. PSNPs significantly reduced the accumulation of As (17.24%-66.67%) in plant. Single As and high As-PSNPs treatments significantly inhibited plant growth, with a maximum reduction of 70.09% in the growth rate. The mineral nutrient content was significantly affected by PSNPs and As treatments. The antioxidant system was significantly inhibited, which was more pronounced in the roots. Similar findings were observed for soluble protein and soluble sugar. Some organic acids and amino acids showed down-regulation at high concentrations of As, leading to a decrease in the content of the mineral element and down-regulation of antioxidant enzyme synthesis. Furthermore, PSNPs could alleviate As toxicity under 0.1 mg/L As treatment but exacerbate As toxicity at 1 mg/L As dose. This study has important implications for the study of submerged plants exposed to co-contamination of microplastics and heavy metals, as well as the possible ecological risk assessment in freshwater.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
11
|
Hoyne TFM, Vieira LV, Heringer OA, Brandão GP, da Souza JR, Carneiro MTWD. Arsenic speciation in canned tuna fish samples (Thunnus) using ionic chromatography inductively coupled plasma mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Patti MA, Kelsey KT, MacFarlane AJ, Papandonatos GD, Arbuckle TE, Ashley-Martin J, Fisher M, Fraser WD, Lanphear BP, Muckle G, Braun JM. Maternal Folate Status and the Relation between Gestational Arsenic Exposure and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11332. [PMID: 36141604 PMCID: PMC9517145 DOI: 10.3390/ijerph191811332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Gestational arsenic exposure adversely impacts child health. Folate-mediated 1-carbon metabolism facilitates urinary excretion of arsenic and may prevent arsenic-related adverse health outcomes. We investigated the potential for maternal folate status to modify associations between gestational arsenic exposure and child health. We used data from 364 mother-child pairs in the MIREC study, a prospective pan-Canadian cohort. During pregnancy, we measured first trimester urinary arsenic concentrations, plasma folate biomarkers, and folic acid supplementation intake. At age 3 years, we evaluated twelve neurodevelopmental and anthropometric features. Using latent profile analysis and multinomial regression, we developed phenotypic profiles of child health, estimated covariate-adjusted associations between arsenic and these phenotypic profiles, and evaluated whether folate status modified these associations. We identified three phenotypic profiles of neurodevelopment and three of anthropometry, ranging from less to more optimal child health. Gestational arsenic was associated with decreased odds of optimal neurodevelopment. Maternal folate status did not modify associations of arsenic with neurodevelopmental phenotypic profiles, but gestational arsenic was associated with increased odds of excess adiposity among those who exceed recommendations for folic acid (>1000 μg/day). However, arsenic exposure was low and folate status was high. Gestational arsenic exposure may adversely impact child neurodevelopment and anthropometry, and maternal folate status may not modify these associations; however, future work should examine these associations in more arsenic-exposed or lower folate-status populations.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Amanda J. MacFarlane
- Nutrition Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - George D. Papandonatos
- Department of Biostatistics, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - William D. Fraser
- Department D’obstétrique et Gynécologie, Université de Sherbrooke, 2500 Bd de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Bruce P. Lanphear
- Department of Health Sciences, Simon Fraser University, 515 W Haastings St., Vancouver, BC V5A 1S6, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Ville de Québec, 2325 Rue de L’Université, Québec, QC G1V 0B4, Canada
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| |
Collapse
|
13
|
Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem 2022; 379:132167. [DOI: 10.1016/j.foodchem.2022.132167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022]
|
14
|
Nawrocka A, Durkalec M, Michalski M, Posyniak A. Simple and reliable determination of total arsenic and its species in seafood by ICP-MS and HPLC-ICP-MS. Food Chem 2022; 379:132045. [DOI: 10.1016/j.foodchem.2022.132045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
|
15
|
Multielemental speciation analysis of Cd2+, Pb2+ and (CH3)3Pb+ in herb roots by HPLC/ICP-DRC-MS. Validation and application to real samples analysis. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Simultaneous Determination of As, Bi, Sb, Se, Te, Hg, Pb and Sn by Small-Sized Electrothermal Vaporization Capacitively Coupled Plasma Microtorch Optical Emission Spectrometry Using Direct Liquid Microsampling. Molecules 2021; 26:molecules26092642. [PMID: 33946509 PMCID: PMC8124486 DOI: 10.3390/molecules26092642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
The simultaneous determination of chemical vapor-generating elements involving derivatization is difficult even by inductively coupled plasma optical emission spectrometry or mass spectrometry. This study proposes a new direct liquid microsampling method for the simultaneous determination of As, Bi, Se, Te, Hg, Pb, and Sn, using a fully miniaturized set-up based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. The method is cost-effective, free from non-spectral interference, and easy to run by avoiding derivatization. The method involves the vaporization of analytes from the 10 µL sample and recording of episodic spectra generated in low-power (15 W) and low-Ar consumption (150 mL min−1) plasma microtorch interfaced with low-resolution microspectrometers. Selective vaporization at 1300 °C ensured the avoidance of non-spectral effects and allowed the use of external calibration. Several spectral lines for each element even in the range 180–210 nm could be selected. Generally, this spectral range is examined with large-scale instrumentation. Even in the absence of derivatization, the obtained detection limits were low (0.02–0.75 mg kg−1) and allowed analysis of environmental samples, such as cave and river sediments. The recovery was in the range of 86–116%, and the accuracy was better than 10%. The method is of general interest and could be implemented on any miniaturized or classical laboratory spectrometric instrumentation.
Collapse
|
17
|
Lorenc W, Kruszka D, Kachlicki P, Kozłowska J, Barałkiewicz D. Arsenic species and their transformation pathways in marine plants. Usefulness of advanced hyphenated techniques HPLC/ICP-MS and UPLC/ESI-MS/MS in arsenic species analysis. Talanta 2020; 220:121384. [PMID: 32928408 DOI: 10.1016/j.talanta.2020.121384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
The growing popularity of algae as a foodstuff around the world raises concern for the safety of this food type with respect to arsenic content in algae. The need for determination of total arsenic content and arsenic speciation in algae food has become an important issue. In this paper we have developed a complete analytical procedure for arsenic determination in algae products comprised of 1) total arsenic (tAs) determination in native algae samples after digestion, 2) extraction of As species with the use of two extraction methods with three extracting agents, 3) extracted total arsenic (extracted tAs) determination in algae extracts, 4) bespoke As speciation, 4) mass balance estimation based on extracted tAs and bespoke As speciation results, 5) unknown arsenic (uAs) species identification. Two advanced hyphenated techniques, HPLC/ICP-MS and UPLC/ESI-MS/MS, were employed along with the HPLC/ICP-MS method validation. Total As content in edible algae samples was found to range from (19.28 ± 0.45) mg kg-1 up to (72.6 ± 2.7) mg kg-1. Bespoke arsenic speciation of edible algae samples has revealed the presence of some known inorganic and simple organic As compounds such as As(III) from <LOD to (8.97 ± 0.59) mg kg-1, As(V) from <LOD to (5.95 ± 0.29) mg kg-1 and DMA from <LOD to (0.766 ± 0.040) mg kg-1. Mass balance calculation carried out on the basis of tAs and bespoke As speciation results has shown that the amount of unknown As species in edible algae samples varied from 28% to 100% of extracted tAs. Identification of uAs species in edible algae samples has shown the presence of a high variety of As-sugars (12 compounds) and confirmed the presence of simple inorganic and organic As species such as As(V) and DMA along with 8 more simple organic As compounds. The results obtained in this study have confirmed that the high amounts of tAs do not correspond to the toxicity of algae based food due to the lack of the inorganic As in the tested samples.
Collapse
Affiliation(s)
- Wiktor Lorenc
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| | - Dariusz Kruszka
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska, 60-479, Poznań, Poland
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska, 60-479, Poznań, Poland
| | - Justyna Kozłowska
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| | - Danuta Barałkiewicz
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland.
| |
Collapse
|
18
|
Renal accumulation of prooxidant mineral elements and CKD in domestic cats. Sci Rep 2020; 10:3160. [PMID: 32081923 PMCID: PMC7035273 DOI: 10.1038/s41598-020-59876-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/17/2020] [Indexed: 01/16/2023] Open
Abstract
Felids have a high incidence of chronic kidney disease (CKD), for which the most common renal lesion is chronic interstitial nephritis (CIN). CIN can be induced by tissue oxidative stress, which is determined by the cellular balance of pro- and anti-oxidant metabolites. Fish-flavoured foods are more often fed to cats than dogs, and such foods tend to have higher arsenic content. Arsenic is a pro-oxidant metallic element. We propose that renal accumulation of pro-oxidant elements such as arsenic and depletion of anti-oxidant elements such as zinc, underpin the high incidence of CIN in domestic cats. Total arsenic and other redox-reactive metal elements were measured in kidneys (after acid-digestion) and urine (both by inductively-coupled plasma-mass spectrometry) of domestic cats (kidneys, n = 56; urine, n = 21), domestic dogs (kidneys, n = 54; urine, n = 28) and non-domesticated Scottish Wildcats (kidneys, n = 17). Renal lesions were graded by severity of CIN. In our randomly sampled population, CIN was more prevalent in domestic cat versus domestic dog (51%, n = 32 of 62 cats; 15%, 11 of 70 dogs were positive for CIN, respectively). CIN was absent from all Scottish wildcats. Tissue and urinary (corrected for creatinine) arsenic content was higher in domestic cats, relative to domestic dogs and wildcats. Urine arsenic was higher in domestic cats and dogs with CIN. Arsenobetaine, an organic and relatively harmless species of arsenic, was the primary form of arsenic found in pet foods. In summary, the kidneys of domestic cats appear to have greater levels of pro-oxidant trace elements, as compared to dogs and wildcats. Since there was no difference in renal arsenic levels in cats with or without CIN, renal arsenic accumulation does not appear a primary driver of excess CIN in cats. Given clear differences in renal handling of pro vs. anti-oxidant minerals between cats and dogs, further in vivo balance studies are warranted. These may then inform species-specific guidelines for trace element incorporation into commercial diets.
Collapse
|
19
|
Komorowicz I, Hanć A, Lorenc W, Barałkiewicz D, Falandysz J, Wang Y. Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector. CHEMOSPHERE 2019; 233:223-233. [PMID: 31176123 DOI: 10.1016/j.chemosphere.2019.05.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 05/22/2023]
Abstract
This study concerns total arsenic (TAs) and arsenic species determination in three species of mushrooms collected in Yunnan, China. The purpose of this study was to check concentration level of arsenic in Boletus edulis, Tricholoma matsutake and Suillellus luridus, estimate arsenic bioaccessibility and find out which arsenic species occur in mushrooms to assess if they may pose a threat to human health. An analytical methodology based on ion chromatography (IC) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) with dynamic reaction cell (DRC) and size exclusion chromatography (SEC) with UV-Vis detection and ICP-DRC-MS detection. Ultrasound assisted extraction (UAE), microwave assisted extraction (MAE) and enzymatic assisted extraction (EAE) were applied. Quantification of As species in extracts was performed by IC/ICP-DRC-MS in the first dimension. Slightly better extraction efficiencies were obtained for MAE (from 75% to 90%) then for UAE. EAE was used for estimation of bioaccessibility by application of a modified BARGE bioaccessibility method (UBM) for in vitro studies. Bioaccessibility values were in the ranges of 73%-102%, 74%-115% and 18%-87% for step 1 (S1), for step 2 (S2) and for step 3 (S3) of EAE, respectively. Extracts obtained after EAE were subjected to SEC-UV-Vis/ICP-DRC-MS analysis as the second dimension. The main signal was obtained in the area of a molecular mass of ∼5 kDa for all mushroom extracts. Monitoring of an 50SO+ ion confirmed that this signal comes from As-protein. In sample of Boletus edulis additional signal occurred which is classified as unknown As-compound. Both signals require identification with another analytical technique.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| | - Wiktor Lorenc
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| | - Jerzy Falandysz
- Environmental Chemistry and Ecotoxicology, Gdańsk University, 63 Wita Stwosza Str. 80-308 Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia(1); Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
20
|
Sobolev N, Aksenov A, Sorokina T, Chashchin V, Ellingsen DG, Nieboer E, Varakina Y, Veselkina E, Kotsur D, Thomassen Y. Essential and non-essential trace elements in fish consumed by indigenous peoples of the European Russian Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:966-973. [PMID: 31351305 DOI: 10.1016/j.envpol.2019.07.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/17/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In present study, the analyses of essential [copper (Cu), cobalt (Co), selenium (Se) and zinc (Zn)] and non-essential elements [mercury (Hg), lead (Pb), cadmium (Cd) and arsenic (As)] in 7 fish species consumed by the indigenous people of the European Russia Arctic were conducted. The Nenets Autonomous Region, which is located in the north-eastern part of European Russia, was chosen as a Region of interest. Within it, the Nenets indigenous group (n = 6000) constitutes approximately 10% of the total population. Nearly all of the Nenets live a traditional life with fish caught in the local waters as a subsistence resource. We found that northern pike contained twice the amount of Hg compared with roach, and 3-4 times more than other fish species commonly consumed in the Russian Arctic (namely, Arctic char, pink salmon, navaga, humpback whitefish and inconnu). Fish Hg concentrations were relatively low, but comparable to those reported in other investigations that illustrate a decreasing south-to-north trend in fish Hg concentrations. In the current study, northern pike is the only species for which Hg bioaccumulated significantly. In all fish species, both Cd and Pb were present in considerably lower concentrations than Hg. The total As concentrations observed are similar to those previously published, and it is assumed to be present primarily in non-toxic organic forms. All fish tissues were rich in the essential elements Se, Cu and Zn and, dependent on the amount fish consumed, may contribute significantly to the nutritional intake by indigenous Arctic peoples. We observed large significant differences in the molar Se/Hg ratios, which ranged from 2.3 for northern pike to 71.1 for pink salmon. Values of the latter <1 may increase the toxic potential of Hg, while those >1 appear to enhance the protection against Hg toxicity.
Collapse
Affiliation(s)
- Nikita Sobolev
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia.
| | - Andrey Aksenov
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia
| | - Tatiana Sorokina
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia
| | - Valery Chashchin
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia; Northwest Public Health Research Centre, 2-Sovetskaya, 191036 St. Petersburg, Russia
| | - Dag G Ellingsen
- National Institute of Occupational Health, P.O. Box 5330 Majorstua, N-0304 Oslo, Norway
| | - Evert Nieboer
- Department of Biochemistry and Biomedical Sciences, McMaster University, L9H 6C6 Hamilton, ON, Canada
| | - Yulia Varakina
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia
| | - Elena Veselkina
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia
| | - Dmitry Kotsur
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia
| | - Yngvar Thomassen
- Northern (Arctic) Federal University Named After M. V. Lomonosov, Arctic Biomonitoring Laboratory, 163002 Arkhangelsk, Russia; National Institute of Occupational Health, P.O. Box 5330 Majorstua, N-0304 Oslo, Norway; Norwegian University of Life Sciences, N-1432 Ås, Norway; Institute of Ecology, National Research University Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
21
|
Yu X, Liu C, Guo Y, Deng T. Speciation Analysis of Trace Arsenic, Mercury, Selenium and Antimony in Environmental and Biological Samples Based on Hyphenated Techniques. Molecules 2019; 24:E926. [PMID: 30866421 PMCID: PMC6429259 DOI: 10.3390/molecules24050926] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a well understanding of the toxicity and ecological effects of trace elements in the environment, it is necessary to determine not only the total amount, but also their existing species. Speciation analysis has become increasingly important in making risk assessments of toxic elements since the toxicity and bioavailability strongly depend on their chemical forms. Effective separation of different species in combination with highly sensitive detectors to quantify these particular species is indispensable to meet this requirement. In this paper, we present the recent progresses on the speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples with an emphasis on the separation and detection techniques, especially the recent applications of high performance liquid chromatography (HPLC) hyphenated to atomic spectrometry or mass spectrometry.
Collapse
Affiliation(s)
- Xiaoping Yu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Chenglong Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|