1
|
Zhang Y, Liu L, Wei C, Wang X, Li R, Xu X, Zhang Y, Geng G, Dang K, Ming Z, Tao X, Xu H, Yan X, Zhang J, Hu J, Li Y. Vitamin K2 supplementation improves impaired glycemic homeostasis and insulin sensitivity for type 2 diabetes through gut microbiome and fecal metabolites. BMC Med 2023; 21:174. [PMID: 37147641 PMCID: PMC10163743 DOI: 10.1186/s12916-023-02880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is insufficient evidence for the ability of vitamin K2 to improve type 2 diabetes mellitus symptoms by regulating gut microbial composition. Herein, we aimed to demonstrate the key role of the gut microbiota in the improvement of impaired glycemic homeostasis and insulin sensitivity by vitamin K2 intervention. METHODS We first performed a 6-month RCT on 60 T2DM participants with or without MK-7 (a natural form of vitamin K2) intervention. In addition, we conducted a transplantation of the MK-7-regulated microbiota in diet-induced obesity mice for 4 weeks. 16S rRNA sequencing, fecal metabolomics, and transcriptomics in both study phases were used to clarify the potential mechanism. RESULTS After MK-7 intervention, we observed notable 13.4%, 28.3%, and 7.4% reductions in fasting serum glucose (P = 0.048), insulin (P = 0.005), and HbA1c levels (P = 0.019) in type 2 diabetes participants and significant glucose tolerance improvement in diet-induced obesity mice (P = 0.005). Moreover, increased concentrations of secondary bile acids (lithocholic and taurodeoxycholic acid) and short-chain fatty acids (acetic acid, butyric acid, and valeric acid) were found in human and mouse feces accompanied by an increased abundance of the genera that are responsible for the biosynthesis of these metabolites. Finally, we found that 4 weeks of fecal microbiota transplantation significantly improved glucose tolerance in diet-induced obesity mice by activating colon bile acid receptors, improving host immune-inflammatory responses, and increasing circulating GLP-1 concentrations. CONCLUSIONS Our gut-derived findings provide evidence for a regulatory role of vitamin K2 on glycemic homeostasis, which may further facilitate the clinical implementation of vitamin K2 intervention for diabetes management. TRIAL REGISTRATION The study was registered at https://www.chictr.org.cn (ChiCTR1800019663).
Collapse
Affiliation(s)
- Yuntao Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Lin Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunbo Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ran Li
- Department of Nutrition, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingfeng Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Guannan Geng
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhu Ming
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinmiao Tao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Acosta M, Quiroz E, Tovar-Ramírez D, Roberto VP, Dias J, Gavaia PJ, Fernández I. Fish Microbiome Modulation and Convenient Storage of Aquafeeds When Supplemented with Vitamin K1. Animals (Basel) 2022; 12:ani12233248. [PMID: 36496769 PMCID: PMC9735498 DOI: 10.3390/ani12233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin necessary for fish metabolism and health. VK stability as dietary component during aquafeed storage and its potential effect on intestinal microbiome in fish have not yet been completely elucidated. The convenient storage conditions of aquafeeds when supplemented with phylloquinone (VK1), as well as its potential effects on the gut microbiota of Senegalese sole (Solea senegalensis) juveniles, have been explored. Experimental feeds were formulated to contain 0, 250 and 1250 mg kg-1 of VK1 and were stored at different temperatures (4, -20 or -80 °C). VK stability was superior at -20 °C for short-term (7 days) storage, while storing at -80 °C was best suited for long-term storage (up to 3 months). A comparison of bacterial communities from Senegalese sole fed diets containing 0 or 1250 mg kg-1 of VK1 showed that VK1 supplementation decreased the abundance of the Vibrio, Pseudoalteromonas, and Rhodobacterace families. All these microorganisms were previously associated with poor health status in aquatic organisms. These results contribute not only to a greater understanding of the physiological effects of vitamin K, particularly through fish intestinal microbiome, but also establish practical guidelines in the industry for proper aquafeed storage when supplemented with VK1.
Collapse
Affiliation(s)
- Marcos Acosta
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Eduardo Quiroz
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, La Paz 23096, BCS, Mexico
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Vânia Palma Roberto
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Associação Oceano Verde–GreenCoLab, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
- Correspondence: or
| |
Collapse
|
3
|
The impact of key fermentation parameters on the production of the all-trans isomer of menaquinone-7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Cirilli I, Orlando P, Silvestri S, Marcheggiani F, Dludla PV, Kaesler N, Tiano L. Carboxylative efficacy of trans and cis MK7 and comparison with other vitamin K isomers. Biofactors 2022; 48:1129-1136. [PMID: 35583412 PMCID: PMC9790681 DOI: 10.1002/biof.1844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Carboxylative enzymes are involved in many pathways and their regulation plays a crucial role in many of these pathways. In particular, γ-glutamylcarboxylase (GGCX) converts glutamate residues (Glu) into γ-carboxyglutamate (Gla) of the vitamin K-dependent proteins (VKDPs) activating them. VKDPs include at least 17 proteins involved in processes such as blood coagulation, blood vessels calcification, and bone mineralization. VKDPs are activated by the reduced form of vitamin K, naturally occurring as vitamin K1 (phylloquinone) and K2 (menaquinones, MKs). Among these, MK7 is the most efficient in terms of bioavailability and biological effect. Similarly to other trans isomers, it is produced by natural fermentation or chemically in both trans and cis. However, the efficacy of the biological effect of the different isomers and the impact on humans are unknown. Our study assessed carboxylative efficacy of trans and cis MK7 and compared it with other vitamin K isomers, evaluating both the expression of residues of carboxylated Gla-protein by western blot analysis and using a cell-free system to determine the GGCX activity by HPLC. Trans MK7H2 showed a higher ability to carboxylate the 70 KDa GLA-protein, previously inhibited in vitro by warfarin treatment. However, cis MK7 also induced a carboxylation activity albeit of a small extent. The data were confirmed chromatographically, in which a slight carboxylative activity of cis MK7H2 was demonstrated, comparable with both K1H2 and oxidized trans MK7 but less than trans MK7H2 . For the first time, a difference of biological activity between cis and trans configuration of menaquinone-7 has been reported.
Collapse
Affiliation(s)
- Ilenia Cirilli
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Patrick Orlando
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Sonia Silvestri
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Fabio Marcheggiani
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation PlatformSouth African Medical Research CouncilTygerbergSouth Africa
| | - Nadine Kaesler
- Division of Nephrology and Clinical ImmunologyUniversity Hospital of the RWTH AachenAachenGermany
| | - Luca Tiano
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
5
|
Lal N, Seifan M, Berenjian A. Optimisation of the fermentation media to enhance the production of the bioactive isomer of vitamin menaquinone-7. Bioprocess Biosyst Eng 2022; 45:1371-1390. [PMID: 35864383 PMCID: PMC9302956 DOI: 10.1007/s00449-022-02752-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand.
- Department of Agricultural and Biological Engineering, Pennsylvania State University, 221 Agricultural Engineering Building, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Fusaro M, Tripepi G, Plebani M, Politi C, Aghi A, Taddei F, Schileo E, Zaninotto M, La Manna G, Cianciolo G, Gallieni M, Cosmai L, Messa P, Ravera M, Nickolas TL, Ferrari S, Ketteler M, Iervasi G, Mereu MC, Vettor R, Giannini S, Gasperoni L, Sella S, Brandi ML, Cianferotti L, De Caterina R. The Vessels-Bone Axis: Iliac Artery Calcifications, Vertebral Fractures and Vitamin K from VIKI Study. Nutrients 2021; 13:nu13103567. [PMID: 34684568 PMCID: PMC8539275 DOI: 10.3390/nu13103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/07/2023] Open
Abstract
Vascular calcification and fragility fractures are associated with high morbidity and mortality, especially in end-stage renal disease. We evaluated the relationship of iliac arteries calcifications (IACs) and abdominal aortic calcifications (AACs) with the risk for vertebral fractures (VFs) in hemodialysis patients. The VIKI study was a multicenter cross-sectional study involving 387 hemodialysis patients. The biochemical data included bone health markers, such as vitamin K levels, vitamin K-dependent proteins, vitamin 25(OH)D, alkaline phosphatase, parathormone, calcium, and phosphate. VF, IACs and AACs was determined through standardized spine radiograms. VF was defined as >20% reduction of vertebral body height, and VC were quantified by measuring the length of calcium deposits along the arteries. The prevalence of IACs and AACs were 56.1% and 80.6%, respectively. After adjusting for confounding variables, the presence of IACs was associated with 73% higher odds of VF (p = 0.028), whereas we found no association (p = 0.294) for AACs. IACs were associated with VF irrespective of calcification severity. Patients with IACs had lower levels of vitamin K2 and menaquinone 7 (0.99 vs. 1.15 ng/mL; p = 0.003), and this deficiency became greater with adjustment for triglycerides (0.57 vs. 0.87 ng/mL; p < 0.001). IACs, regardless of their extent, are a clinically relevant risk factor for VFs. The association is enhanced by adjusting for vitamin K, a main player in bone and vascular health. To our knowledge these results are the first in the literature. Prospective studies are needed to confirm these findings both in chronic kidney disease and in the general population.
Collapse
Affiliation(s)
- Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy; (G.I.); (R.V.)
- Correspondence:
| | - Giovanni Tripepi
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, 89124 Reggio Calabria, Italy; (G.T.); (C.P.)
| | - Mario Plebani
- Laboratory Medicine Unit, Department of Medicine, University of Padua, 35129 Padua, Italy; (M.P.); (M.Z.)
| | - Cristina Politi
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, 89124 Reggio Calabria, Italy; (G.T.); (C.P.)
| | - Andrea Aghi
- Clinica Medica 1, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.A.); (S.G.); (S.S.)
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.T.); (E.S.)
| | - Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.T.); (E.S.)
| | - Martina Zaninotto
- Laboratory Medicine Unit, Department of Medicine, University of Padua, 35129 Padua, Italy; (M.P.); (M.Z.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (G.L.M.); (G.C.); (L.G.)
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (G.L.M.); (G.C.); (L.G.)
| | - Maurizio Gallieni
- Department of Biomedical and Clinical Sciences ‘Luigi Sacco’, Università di Milano, 20157 Milano, Italy;
| | - Laura Cosmai
- Nephrology Unit, ASST Fate Bene Fratelli Sacco, 20157 Milano, Italy;
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20157 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20157 Milan, Italy
| | | | - Thomas L. Nickolas
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Serge Ferrari
- Service des Maladies Osseuses, Département de Médecine, HUG, 1205 Genève, Switzerland;
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany;
| | - Giorgio Iervasi
- Department of Medicine, University of Padova, 35128 Padova, Italy; (G.I.); (R.V.)
| | | | - Roberto Vettor
- Department of Medicine, University of Padova, 35128 Padova, Italy; (G.I.); (R.V.)
| | - Sandro Giannini
- Clinica Medica 1, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.A.); (S.G.); (S.S.)
| | - Lorenzo Gasperoni
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (G.L.M.); (G.C.); (L.G.)
| | - Stefania Sella
- Clinica Medica 1, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.A.); (S.G.); (S.S.)
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.L.B.); (L.C.)
| | - Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.L.B.); (L.C.)
| | - Raffaele De Caterina
- Cardiology, Cardiovascular Division, Pisa University Hospital, University of Pisa, Via Paradisa 2, 56126 Pisa, Italy;
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, 65013 Pescara, Italy
| |
Collapse
|
7
|
Walther B, Guggisberg D, Schmidt RS, Portmann R, Risse MC, Badertscher R, Chollet M. Quantitative analysis of menaquinones (vitamin K2) in various types of cheese from Switzerland. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl Microbiol Biotechnol 2019; 104:935-951. [DOI: 10.1007/s00253-019-10157-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023]
|
9
|
Ma Y, Tang PTP, McClure DD, Valtchev P, Ashton JF, Dehghani F, Kavanagh JM. Development of a menaquinone-7 enriched functional food. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|