1
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
2
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
3
|
Li Y, Li X, Zheng M, Bu F, Xiang C, Zhang F. Puerarin inhibits HDAC1-induced oxidative stress disorder by activating JNK pathway and alleviates acrolein-induced atherosclerosis. Clinics (Sao Paulo) 2024; 79:100413. [PMID: 39024795 PMCID: PMC11304693 DOI: 10.1016/j.clinsp.2024.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.
Collapse
Affiliation(s)
- YeTing Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China.
| | - XiaoNing Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Man Zheng
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - FanLi Bu
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - ChunYan Xiang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - FengLei Zhang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| |
Collapse
|
4
|
Zhang Y, Wang M, Li P, Lv G, Yao J, Zhao L. Hypoglycemic Effect of Polysaccharides from Physalis alkekengi L. in Type 2 Diabetes Mellitus Mice. BIOLOGY 2024; 13:496. [PMID: 39056690 PMCID: PMC11274298 DOI: 10.3390/biology13070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that adversely impacts patient health. In this study, a T2DM model was established in ICR mice through the administration of a high-sugar and high-fat diet combined with the intraperitoneal injection of streptozotocin to explore the hypoglycemic effect of polysaccharides from Physalis alkekengi L. After six weeks of treatment, the mice in the high-dosage group (800 mg/kg bw) displayed significant improvements in terms of fasting blood glucose concentration, glucose tolerance, serum insulin level, insulin resistance, and weight loss (p < 0.05). The polysaccharides also significantly regulated blood lipid levels by reducing the serum contents of total triglycerides, total cholesterol, and low-density lipoproteins and increasing the serum content of high-density lipoproteins (p < 0.05). Furthermore, they significantly enhanced the hepatic and pancreatic antioxidant capacities, as determined by measuring the catalase and superoxide dismutase activities and the total antioxidant capacity (p < 0.05). The results of immunohistochemistry showed that the P. alkekengi polysaccharides can increase the expression of GPR43 in mice colon epithelial cells, thereby promoting the secretion of glucagon-like peptide-1. In summary, P. alkekengi polysaccharides can help to regulate blood glucose levels in T2DM mice and alleviate the decline in the antioxidant capacities of the liver and pancreas, thus protecting these organs from damage.
Collapse
Affiliation(s)
- Yun Zhang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Minghao Wang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Peng Li
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Ge Lv
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Jing Yao
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Lin Zhao
- Quality & Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| |
Collapse
|
5
|
Zhang H, Che X, Jing H, Su Y, Yang W, Wang R, Zhang G, Meng J, Yuan W, Wang J, Gao W. A New Potent Inhibitor against α-Glucosidase Based on an In Vitro Enzymatic Synthesis Approach. Molecules 2024; 29:878. [PMID: 38398628 PMCID: PMC10893485 DOI: 10.3390/molecules29040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Inhibiting the activity of intestinal α-glucosidase is considered an effective approach for treating type II diabetes mellitus (T2DM). In this study, we employed an in vitro enzymatic synthesis approach to synthesize four derivatives of natural products (NPs) for the discovery of therapeutic drugs for T2DM. Network pharmacology analysis revealed that the betulinic acid derivative P3 exerted its effects in the treatment of T2DM through multiple targets. Neuroactive ligand-receptor interaction and the calcium signaling pathway were identified as key signaling pathways involved in the therapeutic action of compound P3 in T2DM. The results of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations indicate that compound P3 exhibits a more stable binding interaction and lower binding energy (-41.237 kcal/mol) with α-glucosidase compared to acarbose. In addition, compound P3 demonstrates excellent characteristics in various pharmacokinetic prediction models. Therefore, P3 holds promise as a lead compound for the development of drugs for T2DM and warrants further exploration. Finally, we performed site-directed mutagenesis to achieve targeted synthesis of betulinic acid derivative. This work demonstrates a practical strategy of discovering novel anti-hyperglycemic drugs from derivatives of NPs synthesized through in vitro enzymatic synthesis technology, providing potential insights into compound P3 as a lead compound for anti-hyperglycemic drug development.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xiance Che
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (X.C.); (H.J.)
| | - Hongyan Jing
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (X.C.); (H.J.)
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wei Yuan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Wang D, Yang L, Ding W, Chen Z, Yang X, Jiang Y, Liu Y. Licochalcone A alleviates abnormal glucolipid metabolism and restores energy homeostasis in diet-induced diabetic mice. Phytother Res 2024; 38:196-213. [PMID: 37850242 DOI: 10.1002/ptr.8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Licochalcone A (LCA) is a bioactive chalcone compound identified in licorice. This study aimed to investigate the effects of LCA on glucolipid metabolism and energy homeostasis, as well as the underlying mechanisms. Blood glucose levels, oral glucose tolerance, serum parameters, and histopathology were examined in high-fat-high-glucose diet (HFD)-induced diabetic mice, with metformin as a positive control. Additionally, changes in key markers related to glucolipid metabolism and mitochondrial function were analyzed to comprehensively assess LCA's effects on metabolism. The results showed that LCA alleviated metabolic abnormalities in HFD-induced diabetic mice, which were manifested by suppression of lipogenesis, promotion of lipolysis, reduction of hepatic steatosis, increase in hepatic glycogenesis, and decrease in gluconeogenesis. In addition, LCA restored energy homeostasis by promoting mitochondrial biogenesis, enhancing mitophagy, and reducing adenosine triphosphate production. Mechanistically, the metabolic benefits of LCA were associated with the downregulation of mammalian target of rapamycin complex 1 and activation of adenosine monophosphate-activated protein kinase, the two central regulators of metabolism. This study demonstrates that LCA can alleviate abnormal glucolipid metabolism and restore energy balance in diet-induced diabetic mice, highlighting its therapeutical potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Lu N, Wei J, Gong X, Tang X, Zhang X, Xiang W, Liu S, Luo C, Wang X. Preventive Effect of Arctium lappa Polysaccharides on Acute Lung Injury through Anti-Inflammatory and Antioxidant Activities. Nutrients 2023; 15:4946. [PMID: 38068804 PMCID: PMC10708090 DOI: 10.3390/nu15234946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to investigate the preventive effects of polysaccharides extracted from the roots of Arctium lappa (ALP) against acute lung injury (ALI) models induced by lipopolysaccharide (LPS). The polysaccharides were extracted and characterized, and their anti-inflammatory and antioxidant capacities were assessed. The findings demonstrated that ALP could mitigate the infiltration of inflammatory cells and reduce alveolar collapse in LPS-induced ALI in mice. The expression levels of the pro-inflammatory factor TNF-α decreased, while the anti-inflammatory factor IL-10 increased. Furthermore, the administration of ALP improved the activities of lung antioxidant enzymes, including SOD, GSH, and CAT, and lowered MDA levels. These results suggest that ALP exhibits a preventive effect on ALI and has potential as an alternative treatment for lung injury.
Collapse
Affiliation(s)
- Naiyan Lu
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Jiayi Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
| | - Xuelei Gong
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin 300350, China;
| | - Samuel Liu
- Shenzhen Buddy Technology Development Co., Ltd., Shenzhen 518000, China; (S.L.); (C.L.)
| | - Cherry Luo
- Shenzhen Buddy Technology Development Co., Ltd., Shenzhen 518000, China; (S.L.); (C.L.)
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
| |
Collapse
|
8
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
He LY, Li Y, Niu SQ, Bai J, Liu SJ, Guo JL. Polysaccharides from natural resource: ameliorate type 2 diabetes mellitus via regulation of oxidative stress network. Front Pharmacol 2023; 14:1184572. [PMID: 37497112 PMCID: PMC10367013 DOI: 10.3389/fphar.2023.1184572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia that can occur in children, adults, elderly people, and pregnant women. Oxidative stress is a significant adverse factor in the pathogenesis of DM, especially type 2 diabetes mellitus (T2DM), and metabolic syndrome. Natural polysaccharides are macromolecular compounds widely distributed in nature. Some polysaccharides derived from edible plants and microorganisms were reported as early as 10 years ago. However, the structural characterization of polysaccharides and their therapeutic mechanisms in diabetes are relatively shallow, limiting the application of polysaccharides. With further research, more natural polysaccharides have been reported to have antioxidant activity and therapeutic effects in diabetes, including plant polysaccharides, microbial polysaccharides, and polysaccharides from marine organisms and animals. Therefore, this paper summarizes the natural polysaccharides that have therapeutic potential for diabetes in the past 5 years, elucidating their pharmacological mechanisms and identified primary structures. It is expected to provide some reference for the application of polysaccharides, and provide a valuable resource for the development of new diabetic drugs.
Collapse
Affiliation(s)
- Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Qi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| |
Collapse
|
10
|
Ruan Q, Chen Y, Wen J, Qiu Y, Huang Y, Zhang Y, Farag MA, Zhao C. Regulatory mechanisms of the edible alga Ulva lactuca polysaccharide via modulation of gut microbiota in diabetic mice. Food Chem 2023; 409:135287. [PMID: 36603475 DOI: 10.1016/j.foodchem.2022.135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In this study, Ulva lactuca polysaccharide (ULP) antihyperglycemic effect was assessed by monitoring changes in the gut microbiota of aging diabetic mice. The results showed that ULP alleviated type 2 diabetes by improving insulin tolerance, increasing SOD and CAT activities, and thus lowering blood glucose level. Moreover, ULP regulated the expressions of INSR and AMPK concurrent with inhibition the expression of JNK, JAK, STAT3, p16 and p38 to improve glucose metabolism dysfunction. Interestingly, the abundance of Alloprevotella and Pediococcus change might the key factor for ULP antihyperglycemic effectiveness in aging-related diabetes. These results suggest that ULP can exert a mechanism of blood glucose regulation by improving intestinal diversity composition asides from direct insulin mimetic actions.
Collapse
Affiliation(s)
- Qiling Ruan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinghui Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
11
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
12
|
Zhou S, Li Y, Hong Y, Zhong Z, Zhao M. Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3/Caspase-1/GSDMD pyroptosis pathway and reducing blood-brain barrier damage. Eur J Pharmacol 2023; 945:175616. [PMID: 36863556 DOI: 10.1016/j.ejphar.2023.175616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Puerarin (Pue), an isoflavone compound extracted from Pueraria, has been shown to inhibit inflammation and reduce cerebral edema. The neuroprotective effect of puerarin has attracted much attention in recent years. Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that causes damage to the nervous system. This study aimed to investigate the effect of puerarin on SAE and elucidate the potential underlying mechanisms. A rat model of SAE was established by cecal ligation and puncture, and puerarin was injected intraperitoneally immediately after the operation. Puerarin was found to improve the survival rate and neurobehavioral score of SAE rats, alleviate symptoms, inhibit the level of brain injury markers NSE and S100β, and improve the pathological changes in rat brain tissue. Puerarin was also found to inhibit the level of factors related to the classical pathway of pyroptosis, such as NLRP3, Caspase-1, GSDMD, ASC, IL-1β, and IL-18. Puerarin also reduced the brain water content and penetration of Evan's Blue dye in SAE rats, and reduced the expression of MMP-9. In the in vitro experiments, we further confirmed the inhibitory effect of puerarin on neuronal pyroptosis by establishing a pyroptosis model in HT22 cells. Our findings suggest that puerarin may improve SAE by inhibiting the classical pathway of NLRP3/Caspase-1/GSDMD-mediated pyroptosis and reducing blood-brain barrier damage, thus playing a role in brain protection. Our study may provide a novel therapeutic strategy for SAE.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yuhua Li
- Department of Critical Care Medicine, Wuhan Children's Hospital, Wuhan, Hubei Province, 430014, China
| | - Yi Hong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhitao Zhong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Min Zhao
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
13
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Zhang C, Jia J, Zhang P, Zheng W, Guo X, Ai C, Song S. Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice. Foods 2022; 12:33. [PMID: 36613249 PMCID: PMC9818518 DOI: 10.3390/foods12010033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases have been a leading cause of death worldwide, and polysaccharide supplementation is an effective therapeutic strategy for chronic diseases without adverse effects. In this study, the beneficial effect of Laminaria japonica fucoidan (LJF) on type 2 diabetes mellitus (T2DM) was evaluated in streptozocin-treated mice. LJF ameliorated the symptoms of T2DM in a dose-dependent manner, involving reduction in weight loss, water intake, triglyceride, blood glucose, cholesterol and free fatty acids, and increases in high-density lipoprotein cholesterol, catalase, glucagon-like peptide-1, and superoxide dismutase. In addition, LJF regulated the balance between insulin resistance and insulin sensitivity, reduced islet necrosis and β-cell damage, and inhibited fat accumulation in T2DM mice. The protective effect of LJF on T2DM can be associated with modulation of the gut microbiota and metabolites, e.g., increases in Lactobacillus and Allobaculum. Untargeted and targeted metabolomics analysis showed that the microbiota metabolite profile was changed with LJF-induced microbiota alterations, mainly involving amino acids, glutathione, and glyoxylate and dicarboxylate metabolism pathways. This study indicates that LJF can be used as a prebiotic agent for the prevention and treatment of diabetes and microbiota-related diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jinhui Jia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Panpan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Lei HQ, Li DM, Woo MW, Zeng XA, Han Z, Wang RY. The antihyperglycemic effect of pulsed electric field-extracted polysaccharide of Kaempferia elegans officinale on streptozotocin induced diabetic mice. Front Nutr 2022; 9:1053811. [PMID: 36570142 PMCID: PMC9769402 DOI: 10.3389/fnut.2022.1053811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Kaempferia elegans polysaccharide (KEP) was extracted using a high-voltage pulsed electric field-assisted hot water method. Its physicochemical properties, in vitro activity and hypoglycemic effect was investigated. Experiments were undertaken with diabetic mice models and the potential mechanism of KEP to improve blood glucose levels was unveiled through measurements of relevant indicators in the serum and liver of the mice. Results showed that KEP is mainly composed of glucose, rhamnose, arabinose, and galactose. It has certain DPPH and ABTS free radical scavenging ability and good α-glucosidase inhibitory ability, indicating that KEP has the potential to improve blood glucose levels in diabetes patients. The experimental results of KEP treatment on mice showed that KEP could control the continuous increase of fasting blood glucose levels. The potential mechanisms behind this blood glucose level control composes of (1) increasing the glucokinase and C peptide levels and decreasing Glucose-6-phosphatase content for improving key enzyme activity in the glucose metabolism pathway. This promotes the consumption of blood glucose during glycolysis, thereby inhibiting the production of endogenous glucose in gluconeogenesis pathway; (2) reducing triglyceride, total cholesterol, low density lipoprotein cholesterol, and increasing high density lipoprotein cholesterol content, for regulating blood lipid indicators to normal levels; and (3) by improving the activities of catalase, glutathione peroxidase, and antioxidant enzymes superoxide dismutase for further improving the antioxidant defense system in the body to reduce blood glucose.
Collapse
Affiliation(s)
- Huan-Qing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong, China,Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang, China,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China,*Correspondence: Zhong Han,
| | - Ruo-Yong Wang
- Air Force Medical Center People’s Liberation Army, Beijing, China,Ruo-Yong Wang,
| |
Collapse
|
16
|
Jing X, Zhou J, Zhang N, Zhao L, Wang S, Zhang L, Zhou F. A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities. Foods 2022; 11:foods11233941. [PMID: 36496749 PMCID: PMC9739247 DOI: 10.3390/foods11233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the treatment of sugar and lipid metabolic disorders. However, the applications of puerarin are limited due to its poor solubility and short half-life. Various drug delivery systems have been investigated to improve the bioavailability of puerarin. This review summarizes the mechanisms involved in the beneficial action of puerarin: suppressing the release of glucose and FFA; regulating the transport of glucose and fatty acids; acting on the PI3K-Akt and AMPK signaling pathways to decrease the synthesis of glucose and fatty acids; acting on the PPAR signaling pathway to promote β-oxidation; and improving insulin secretion and sensitivity. In addition, the preparation technologies used to improve the bioavailability of puerarin are also summarized in this review, in the hope of helping to promote the application of puerarin.
Collapse
Affiliation(s)
- Xiaoxuan Jing
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shiran Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| |
Collapse
|
17
|
Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, Jiang J, Zhaxi P, Xue Z. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods 2022; 11:2774. [PMID: 36140902 PMCID: PMC9497508 DOI: 10.3390/foods11182774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity, diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atherosclerosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising strategy for the prevention and management of hyperlipidemia and its complications. At the same time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly increasing as a practical approach to preserve and improve the health-promoting effects of functional ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic regulation of different metabolic pathways or targets may be more effective than single pathways or targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic hypolipidemic effects of different combinations of phytochemicals such as combinations of the same category of phytochemicals and combinations of different categories of phytochemicals. In addition, based on the different metabolic pathways or targets involved in synergistic effects, the possible mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic research and provides a theoretical basis for the development of phytochemicals with synergistic effects on hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Dynamiker Biotechnology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ni Zhen
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Jingyu Jiang
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Puba Zhaxi
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Probiotics with anti-type 2 diabetes mellitus properties: targets of polysaccharides from traditional Chinese medicine. Chin J Nat Med 2022; 20:641-655. [PMID: 36162950 DOI: 10.1016/s1875-5364(22)60210-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 12/12/2022]
|
19
|
Batool M, Ranjha MMAN, Roobab U, Manzoor MF, Farooq U, Nadeem HR, Nadeem M, Kanwal R, AbdElgawad H, Al Jaouni SK, Selim S, Ibrahim SA. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin ( Cucurbita sp.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1394. [PMID: 35684166 PMCID: PMC9182978 DOI: 10.3390/plants11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/05/2023]
Abstract
Pumpkin is a well-known multifunctional ingredient in the diet, full of nutrients, and has opened new vistas for scientists during the past years. The fruit of pumpkin including the flesh, seed, and peel are a rich source of primary and secondary metabolites, including proteins, carbohydrates, monounsaturated fatty acids, polyunsaturated fatty acids, carotenoids, tocopherols, tryptophan, delta-7-sterols, and many other phytochemicals. This climber is traditionally used in many countries, such as Austria, Hungary, Mexico, Slovenia, China, Spain, and several Asian and African countries as a functional food and provides health promising properties. Other benefits of pumpkin, such as improving spermatogenesis, wound healing, antimicrobial, anti-inflammatory, antioxidative, anti-ulcerative properties, and treatment of benign prostatic hyperplasia have also been confirmed by researchers. For better drug delivery, nanoemulsions and niosomes made from pumpkin seeds have also been reported as a health promising tool, but further research is still required in this field. This review mainly focuses on compiling and summarizing the most relevant literature to highlight the nutritional value, phytochemical potential, and therapeutic benefits of pumpkin.
Collapse
Affiliation(s)
- Maria Batool
- University Institute of Diet and Nutritional Sciences, University of Lahore, Gujrat 50700, Pakistan;
| | | | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (R.K.)
| | | | - Umar Farooq
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan 59300, Pakistan;
| | - Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 59300, Pakistan;
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan; (M.M.A.N.R.); (M.N.)
| | - Rabia Kanwal
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (R.K.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
20
|
Yang Y, Lin L, Zhao M, Yang X. The hypoglycemic and hypolipemic potentials of Moringa oleifera leaf polysaccharide and polysaccharide-flavonoid complex. Int J Biol Macromol 2022; 210:518-529. [PMID: 35523361 DOI: 10.1016/j.ijbiomac.2022.04.206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023]
Abstract
In this study, Moringa oleifera leaf (MOL) flavonoids (MOLF) with strong α-glucosidase inhibitory activity and MOL polysaccharides (MOLP) with strong cholic acid-binding capacity were efficiently prepared by two-stage extraction method and mixed in a certain proportion for development of MOL highly-processed products with hypoglycemic and hypolipemic potentials. Quercetin-3-O-glucoside (6.86%) and kaempferol-3-O-glucoside (4.02%) were identified as the main components of MOLF. MOLP constructed by galactose, arabinose, rhamnose and galacturonic acid possessed the strongest effects on delaying glucose diffusion and dialysis, delaying starch digestion, binding bile acids and inhibiting cholesterol micelle solubility, being the best MOL highly-processed products for regulating carbohydrate and lipid digestion and absorption. MOLF and MOLP had synergistic effect on delaying glucose diffusion and dialysis, delaying starch digestion and binding bile acids, while MOLF impaired the inhibitory effect of MOLP on cholesterol micelle solubility. Compared with MOL primary-processed products including MOL powder and de-phenolic MOL powder, MOL highly-processed products including MOLP and MOLF-MOLP complex possessed stronger hypoglycemic/hypolipemic potentials.
Collapse
Affiliation(s)
- Yanqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xinyi Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
21
|
Protective Effect of Pueraria lobate (Willd.) Ohwi root extract on Diabetic Nephropathy via metabolomics study and mitochondrial homeostasis-involved pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Li Y, Saravana Kumar P, Liu Y, Qiu J, Ran Y, Yuan M, Fang X, Tan X, Zhao R, zhu J, He M. Tailoring enhanced production and identification of isoflavones in the callus cultures of Pueraria thomsonii Benth and its model verification using response surface methodology (RSM): a combined in vitro and statistical optimization. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Scientifically, isoflavones from Pueraria thomsonii Benth possess diverse pharmacological activities and have been used to treat various diseases. In vitro propagation of callus has contributed to the reliability for large-scale production of target compounds. However, the factors affecting the biosynthesis of major isoflavones daidzin, puerarin and daidzein in the callus culture of P. thomsonii are still not known. Therefore, we aimed to enhance the in vitro production of daidzin, puerarin and daidzein by optimizing three independent factors such as temperature, NAA and 6-BA concentrations.
Results
Our findings showed that the optimal concentrations for in vitro biomass production and efficient synthesis of puerarin, daidzin and daidzein were found to be 0.158%, 0.463% and 0.057%, respectively. In addition, the HPLC fingerprint with chemo-metrics analysis was constructed by linear regression of the puerarin, daidzin and daidzein which was found to be in the range of 1.0–36.0, 5.0–72.0 and 1.0–15.0 mg/mL and the LODs and LOQs were found to be 0.15, 0.52, 0.35 and 0.28, 1.50, 0.50 mg/mL for puerarin, daidzin and daidzein, respectively. Surprisingly, our results were also in agreement with the concentration obtained from the model verification for optimal and efficient production of puerarin, daidzin and daidzein which was found to be 0.162%, 0.458% and 0.049%, respectively.
Conclusions
In summary, our present investigation provides new insights that could facilitate the enhanced production of valuable isoflavones in P. thomsonii using plant cell cultures treated with appropriate elicitor combinations and temperature. As far as the authors are concerned, this is the first report on production of daidzin, puerarin and daidzein at higher yield at laboratory level for a wide range of applications in future food, medicinal and pharmaceutical companies.
Collapse
|
23
|
Liang R, Tong X, Dong Z, Qin W, Fan L, Bai Z, Zhang Z, Xiang T, Wang Z, Tan N. Suhuang antitussive capsule ameliorates post-infectious cough in mice through AhR-Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114664. [PMID: 34555451 DOI: 10.1016/j.jep.2021.114664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suhuang antitussive capsule (SH capsule), a typical traditional Chinese medicines (TCMs) compound, is widely used for the treatment of post-infectious cough (PIC) in the clinic. Our previous studies have demonstrated that SH capsule possesses significant ameliorative effects on cough variant asthma (CVA), sputum obstruction and airway remodeling. AIM OF THE STUDY This study is designed to investigate the ameliorative effects and potential mechanisms of SH capsule on PIC in mice. MATERIALS AND METHODS To establish the PIC model, ICR mice were induced by lipopolysaccharide (LPS) (3 mg/kg) once, followed by cigarettes smoke (CS) exposure for 30 min per day for 30 days. Mice were intragastrically (i.g.) administrated with SH capsule at the doses of 3.5, 7, 14 g/kg each day for 2 weeks since the 24th day. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA) and histological analysis were used to investigate the effects of SH capsule on PIC mice. Quantitative-polymerase chain reaction (Q-PCR) and western blotting were conducted to evaluate the levels of mRNA and proteins associated with Aryl hydrocarbon receptor (AhR)-NF-E2-related factor 2 (Nrf2) pathway. Superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity (T-AOC) assays were performed to evaluate the oxidative stress. A549 cells were used to investigate the ameliorative effects of SH capsule in vitro. RESULTS SH capsule effectively diminished the number of coughs and extended coughs latencies in PIC mice. The airway inflammation was alleviated by decreasing the expression levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Moreover, SH capsule dose-dependently activated AhR-Nrf2 pathway and induced the nuclear translocation in vitro and in vivo. Besides, SH capsule significantly increased the levels of SOD, GSH and T-AOC in mice. CONCLUSION Our study demonstrates that SH capsule ameliorates airway inflammation-associated PIC in mice through activating AhR-Nrf2 pathway and consequently alleviating inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Rongyao Liang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiyang Tong
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhikui Dong
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China; Jiangsu Longfengtang Traditional Chinese Medicine Co., Ltd., Yangtze River Pharmaceutical Group, Taizhou, 225321, PR China.
| | - Weiwei Qin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Lingling Fan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ziyu Bai
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhihao Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ting Xiang
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China.
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
24
|
Liu J, Lin J, Huang Z, Zheng Q, Lin F, Wu L. Chemical characterization of Tianshan green tea polysaccharides and its protective effects on cell oxidative injury. J Food Biochem 2021; 46:e14000. [PMID: 34825388 DOI: 10.1111/jfbc.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to analyze the chemical characterization of Tianshan green tea polysaccharides (TSPS), and evaluate its antioxidant activity by chemical-based and cellular-based antioxidant models in vitro. The results showed that the TSPS were composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose with a molar ratio of 14.5:33.5:10.5:6.5:111.5:22.3:59.5:51: 1.0, and an average molecular weight of 19.49 kDa. TSPS exhibited excellent antioxidant ability to DPPH radical, hydroxyl radical, and ABTS radical, and enhanced the ferric-reducing power (FRAP). The antioxidation model of LO2 and HepG2 cells was established, and found that TSPS had no significant toxicity to either of the two cells at the range of 0.1-5 mg/mL, but clearly protected cells from H2 O2 -induced apoptosis and significantly reduced intracellular ROS level. In addition, the activities of antioxidant-associated enzymes were detected in LO2 cells, which suggested that TSPS could significantly improve the activities of SOD and CAT enzyme when the concentration was higher than 0.5 mg/mL. Furthermore, TSPS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway by promoting Nrf2 nuclear translocation and inhibited the expression of Kelch-like ECH-associated protein 1 (Keap-1) and enhanced the expression of heme oxygenase-1 (HO-1). PRACTICAL APPLICATIONS: Tianshan green tea, a local variety in Fujian Province, belongs to unfermented tea. Polysaccharide is considered as the most promising component in Tianshan green tea. This study showed that TSPS had excellent antioxidant activity and had no significant toxicity to cells, which provides a scientific foundation and new idea for its further development and application in functional foods.
Collapse
Affiliation(s)
- Jianbing Liu
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Jun Lin
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Zuohua Huang
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuxia Zheng
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Feng Lin
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Liyun Wu
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| |
Collapse
|
25
|
Wu HQ, Ma ZL, Zhang DX, Wu P, Guo YH, Yang F, Li DY. Sequential Extraction, Characterization, and Analysis of Pumpkin Polysaccharides for Their Hypoglycemic Activities and Effects on Gut Microbiota in Mice. Front Nutr 2021; 8:769181. [PMID: 34805250 PMCID: PMC8596442 DOI: 10.3389/fnut.2021.769181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to extract polysaccharides from pumpkin, characterize the structures of four of them, and evaluate their in vitro antioxidant and hypoglycemic activities. Additionally, an animal model of type 2 diabetes mellitus (T2DM) was established and used to determine their hypoglycemic and hypolipidemic effects in vivo, and the underlying mechanisms related to the regulation of gut microbiota. Water-extracted crude pumpkin polysaccharides (W-CPPs), water extraction and alcohol precipitation crude pumpkin polysaccharides (WA-CPPs), deproteinized pumpkin polysaccharides (DPPs), and refined pumpkin polysaccharides (RPPs) were sequentially extracted and purified from pumpkin powder by hot water extraction, water extraction, and alcohol precipitation, deproteinization and DEAE-52 cellulose gel column, respectively. The extraction and purification methods had significant influence on the extraction yield, physicochemical properties, and in vitro antioxidant and hypoglycemic activities. W-CCP and RPPs had a significant positive free radical-scavenging capacities and inhibitory activities on α-glucosidase and α-amylase. RPP-3 not only inhibited the uptake of glucose in Caco-2 monolayer but also promoted the excretion of glucose, while RPP-2 had no inhibitory effect. Animal experiment results showed that W-CPP treatment significantly improved the T2DM symptoms in mice, which included lowering of fasting blood glucose (FBG), reducing insulin resistance (IR), and lowering of blood lipid levels. It increased the diversity of intestinal flora and reduced the harmful flora of model mice, which included Clostridium, Thermoanaerobe, Symbiotic bacteria, Deinococcus, Vibrio haematococcus, Proteus gamma, and Corio. At the family level, W-CPP (1,200 mg/kg) treatment significantly reduced the abundance of Erysipelotrichaceae, and the Akkermanaceae of Verrucobacterium became a biomarker. Pumpkin polysaccharides reshaped the intestinal flora by reducing Erysipelotrichaceae and increasing Akkermansia abundance, thereby improving blood glucose and lipid metabolism in the T2DM mice. Our results suggest that W-CCP and RPP-3 possess strong antioxidant and hypoglycemic activities, and are potential candidates for food additives or natural medicines.
Collapse
Affiliation(s)
- Hui-Qing Wu
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Li Ma
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - De-Xin Zhang
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wu
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Hua Guo
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Yang
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - De-Yuan Li
- Wuhan Functional Food Engineering and Technology Research Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
26
|
Niu P, Sun Y, Wang S, Li G, Tang X, Sun J, Pan C, Sun J. Puerarin alleviates the ototoxicity of gentamicin by inhibiting the mitochondria‑dependent apoptosis pathway. Mol Med Rep 2021; 24:851. [PMID: 34651662 PMCID: PMC8532108 DOI: 10.3892/mmr.2021.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Gentamicin (GM) is a commonly used antibiotic, and ototoxicity is one of its side effects. Puerarin (PU) is an isoflavone in kudzu roots that exerts a number of pharmacological effects, including antioxidative and free radical scavenging effects. The present study investigated whether PU could protect against GM-induced ototoxicity in C57BL/6J mice and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. C57BL/6J mice and HEI-OC1 cells were used to establish models of GM-induced ototoxicity in this study. Auditory brainstem responses were measured to assess hearing thresholds, and microscopy was used to observe the morphology of cochlear hair cells after fluorescent staining. Cell viability was examined with Cell Counting Kit-8 assays. To evaluate cell apoptosis and reactive oxygen species (ROS) production, TUNEL assays, reverse transcription-quantitative PCR, DCFH-DA staining, JC-1 staining and western blotting were performed. PU protected against GM-induced hearing damage in C57BL/6J mice. PU ameliorated the morphological changes of mouse cochlear hair cells and reduced the apoptosis rate of HEI-OC1 cells after GM-mediated damage. GM-induced ototoxicity may be closely related to the upregulation of p53 expression and the activation of endogenous mitochondrial apoptosis pathways, and PU could protect cochlear hair cells from GM-mediated damage by reducing the production of ROS and inhibiting the mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Ping Niu
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuxuan Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Shiyi Wang
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Guang Li
- Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaomin Tang
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jiaqiang Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Chunchen Pan
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Jingwu Sun
- Department of Otolaryngology‑Head and Neck Surgery, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
27
|
Savych A, Duchenko M, Shepeta Y, Davidenko A, Polonets O. Analysis of carbohydrates content in the plant components of antidiabetic herbal mixture by GC-MS. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e69107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants and their combinations due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. One of such combinations is an antidiabetic herbal mixture (Urticae folia, Rosae frucrus, Myrtilli folia, Menthae folia and Taraxaci radices) with established hypoglycemic, hypolipidemic, antioxidant, hepatoprotective, pancreatoprotective activity in previous pharmacological study in vivo. Thus, the aim of this study was to identify and establish the content of carbohydrates in free and bound form in the plant components of antidiabetic herbal mixture. The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. The monomeric composition of polysaccharides was studied after their hydrolysis to form monosaccharides and polyalcohols. The results of the quantitative study showed that the predominant carbohydrate in free form was saccharose in Urticae folia, L-fructose in Myrtilli folia, Rosae frucrus, Taraxaci radices and Menthae folia, L-glucose in Rosae frucrus. Concerning the determination of monomers of polysaccharides after hydrolysis, L-glucose prevailed in all plant components of antidiabetic herbal mixture. The chromatographic study revealed a number of polyalcohols that are important for the treatment and prevention of progression of diabetes mellitus and its complications, namely, mannitol and myo-inositol.
Collapse
|
28
|
Determination of carbohydrates in the herbal antidiabetic mixtures by GC-MC. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:429-443. [PMID: 36654090 DOI: 10.2478/acph-2021-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 01/20/2023]
Abstract
Due to the wide range of biologically active substances, the herbal mixtures can influence the development of diabetes mellitus and its complications. Carbohydrates attract particular attention due to their hypoglycemic, hypolipidemic, anticholesterolemic, antioxidant, antiinflammatory and detoxifying activities. The aim of this study was to investigate the content of carbohydrates through their monomeric composition in the herbal mixture samples: a) Urtica dioica leaf, Cichorium intybus roots, Rosa majalis fruits, Elymys repens rhizome, Taraxacum officinale roots, b) Arctium lappa roots, Elymys repens rhizome, Zea mays columns with stigmas, Helichrysum arenarium flowers, Rosa majalis fruits, c) Inula helenium rhizome with roots, Helichrysi arenarium flowers, Zea mays columns with stigmas, Origanum vulgare herb, Rosa majalis fruits, Taraxacum officinale roots, d) Cichorium intybus roots, Elymys repens rhizome, Helichrysum arenarium flowers, Rosa majalis fruits, Zea mays columns with stigmas and e) Urtica dioica leaf, Taraxacum officinale roots, Vaccinium myrtillus leaf, Rosa majalis fruits, Mentha piperita herb, which were used in Ukrainian folk medicine for the prevention and treatment of diabetes mellitus type 2.The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile aldononitrile acetate derivatives. The monomeric composition of polysaccharides was studied after their hydrolysis to form monosaccharides and poly-alcohols.Quantitative analyses of free carbohydrates showed that the predominant sugars were fructose, glucose and disaccharide - sucrose, in all samples. Concerning the determination of polysaccharide monomers after hydrolysis, glucose was the most abundant in all samples. The chromatographic study revealed a number of polyalcohols that are important for the treatment and prevention of progression of diabetes mellitus and its complications, namely, mannitol, pinitol and myo-inositol.
Collapse
|
29
|
Hou BY, Zhao YR, Ma P, Xu CY, He P, Yang XY, Zhang L, Qiang GF, DU GH. Hypoglycemic activity of puerarin through modulation of oxidative stress and mitochondrial function via AMPK. Chin J Nat Med 2021; 18:818-826. [PMID: 33308602 DOI: 10.1016/s1875-5364(20)60022-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Hyperglycemia is the dominant phenotype of diabetes and the main contributor of diabetic complications. Puerarin is widely used in cardiovascular diseases and diabetic vascular complications. However, little is known about its direct effects on diabetes. The aim of our study is to investigate its antidiabetic effect in vivo and in vitro, and explore the underlying mechanism. We used type I diabetic mice induced by streptozotocin to observe the effects of puerarin on glucose metabolism. In addition, oxidative stress and hepatic mitochondrial respiratory activity were evaluated in type I diabetic mice. In vitro, glucose consumption in HepG2 cells was assayed along with the qPCR detection of glucogenesis genes expression. Moreover, ATP production was examined and phosphorylation of AMPK was determined using Western blot. Finally, the molecular docking was performed to predict the potential interaction of puerarin with AMPK utilizing program LibDock of Discovery Studio 2018 software. The results showed that puerarin improved HepG2 glucose consumption and upregulated the glucogenesis related genes expression. Also, puerarin lowered fasting and fed blood glucose with improvement of glucose tolerance in type I diabetic mice. Further mechanism investigation showed that puerarin suppressed oxidative stress and improved hepatic mitochondrial respiratory function with enhancing ATP production and activating phosphorylation of AMPK. Docking study showed that puerarin interacted with AMPK activate site and enhancing phosphorylation. Taken together, these findings indicated that puerarin exhibited the hypoglycemic effect through attenuating oxidative stress and improving mitochondrial function via AMPK regulation, which may serve as a potential therapeutic option for diabetes treatment.
Collapse
Affiliation(s)
- Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Yue-Rong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Guan-Hua DU
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
30
|
Zeng XP, Zeng JH, Lin X, Ni YH, Jiang CS, Li DZ, He XJ, Wang R, Wang W. Puerarin Ameliorates Caerulein-Induced Chronic Pancreatitis via Inhibition of MAPK Signaling Pathway. Front Pharmacol 2021; 12:686992. [PMID: 34149430 PMCID: PMC8207514 DOI: 10.3389/fphar.2021.686992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP), and pancreatic stellate cells (PSCs) are considered to be the key cells. Puerarin is the most important flavonoid active component in Chinese herb Radix Puerariae, and it exhibited anti-fibrotic effect in various fibrous diseases recently. However, the impact and molecular mechanism of puerarin on CP and pancreatic fibrosis remain unknown. This study systematically investigated the effect of puerarin on CP and pancreatic fibrosis in vivo and in vitro. H&E staining, Sirius Red staining, qRT-PCR and Western blotting analysis of fibrosis and inflammation related genes of pancreatic tissues showed that puerarin notably ameliorated pancreatic atrophy, inflammation and fibrosis in a model of caerulein-induced murine CP. Western blotting analysis of pancreatic tissues showed the phosphorylation level of MAPK family proteins (JNK1/2, ERK1/2 and p38 MAPK) significantly increased after modeling of cerulein, while puerarin could inhibit their phosphorylation levels to a certain extent. We found that puerarin exerted a marked inhibition on the proliferation, migration and activation of PSCs, determined by CCK-8 assay, transwell migration assay, scratch wound-healing assay and expression levels of α-SMA, Fibronectin, Col1α1 and GFAP. Western blotting result demonstrated that puerarin markedly inhibited the phosphorylation of MAPK family proteins (JNK1/2, ERK1/2 and p38 MAPK) of PSCs in a dose-dependent manner whether or not stimulated by platelet-activating factor. In conclusion, the present study showed that puerarin could be a potential therapeutic candidate in the treatment of CP, and the MAPK pathway might be its important target.
Collapse
Affiliation(s)
- Xiang-Peng Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jing-Hui Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xia Lin
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yan-Hong Ni
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xiao-Jian He
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Rong Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Wen Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| |
Collapse
|
31
|
Ji X, Peng B, Ding H, Cui B, Nie H, Yan Y. Purification, Structure and Biological Activity of Pumpkin Polysaccharides: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904973] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Baixiang Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hehui Ding
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Bingbing Cui
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hui Nie
- Guangxi Talent Highland of Preservation and Deep Processing Research in Fruit and Vegetables, Hezhou University, Hezhou, P.R. China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
32
|
He P, Zhang J, Gao T, Wang Y, Peng T. Huangyusang decoction for Type 2 diabetes: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e24576. [PMID: 33663065 PMCID: PMC7909227 DOI: 10.1097/md.0000000000024576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diabetes is a chronic metabolic disease characterized by elevated blood glucose levels due to insulin resistance and β-cell dysfunction. In China, Huangyusang decoction (HYS) has been widely used to treat Type 2 diabetes. However, there is no systematic review found. In order to evaluate the efficacy and safety of HYS in the treatment of Type 2 diabetes, we need to conduct a meta-analysis and systematic evaluation. METHODS We will enroll the randomized controlled trials (RCTs) evaluating the effectiveness and safety of HYS in the treatment of Type 2 diabetes. Data come mainly from 4 Chinese databases (CNKI, Wanfang, CBM, and VIP Database) and 4 English databases (PubMed, Embase, Cochrane Library, and Web of science). The enrollment of RCTs is from the starting date of database establishment till January 30, 2021. Fasting blood glucose is considered as the main indicator of the dyslipidemia, while the body mass index, glycated hemoglobin, fasting insulin, triglycerides, and cholesterol are regarded as the secondary indicators. There are safety indicators including liver enzyme and kidney function. The work such as selection of literature, data collection, quality evaluation of included literature, and assessment of publication bias will be conducted by 2 independent researchers. Meta-analysis will be performed by RevMan 5.0 software. RESULTS This study will provide high-quality evidence for the effectiveness and safety of HYS in the treatment of type 2 diabetes. CONCLUSION The results of the study will help us determine whether HYS can effectively treat type 2 diabetes. ETHICS AND DISSEMINATION This study does not require ethical approval. We will disseminate our findings by publishing results in a peer-reviewed journal. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/AXBRV.
Collapse
|
33
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
34
|
Wu Z, Gao R, Li H, Wang Y, Luo Y, Zou J, Zhao B, Chen S. New insight into the joint significance of dietary jujube polysaccharides and 6-gingerol in antioxidant and antitumor activities. RSC Adv 2021; 11:33219-33234. [PMID: 35497558 PMCID: PMC9042247 DOI: 10.1039/d1ra03640h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
The combinatorial use of dietary jujube (Ziziphus jujuba) and ginger play a critical role in traditional Chinese medicines, folk medicine and dietary therapy. Joint effects were investigated from the viewpoint of the antioxidant (scavenging DPPH˙) and antitumor activities (against SW620 cells) of jujube polysaccharides and ginger 6-gingerol (G6G) alone and in combination. Jujube polysaccharides were extracted, purified, and characterized, and then their inhibiting and apoptotic effects alone and in combination with G6G were evaluated by the cytological tests, including Cell Counting Kit-8, colony-forming, Annexin V-FITC and propidium iodide, TdT-mediated dUTP nick end labeling (TUNEL) staining, and cell cycle assays. Results showed that the purified polysaccharide fraction (ZJPs-II) with average molecular weight of 115 kDa consisted of arabinose, rhamnose, glucose, xylose, and galactose. ZJPs-II and G6G alone dose-dependently scavenged DPPH˙ and inhibited the proliferation of SW620 cells, while their combination showed synergistic interactions (all combination index < 1). The studies further demonstrated that ZJPs-II and G6G alone reduced the cell colony-formation, induced apoptosis and arrested the cell-cycle at G2/M phase, while their combination achieved better effects and significantly arrested the growth at the G0/G1 phase. Collectively, our findings suggest enhancing the intake of jujube polysaccharides and G6G in a combinatorial approach for maintaining health and preventing cancer. The combinatorial use of dietary jujube (Ziziphus jujuba) and ginger play a critical role in traditional Chinese medicines, folk medicine and dietary therapy.![]()
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P. R. China
| | - Ruiping Gao
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Hong Li
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Yongde Wang
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P. R. China
| | - Yang Luo
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P. R. China
| | - Jiang Zou
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Bo Zhao
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| |
Collapse
|
35
|
Jia RB, Li ZR, Ou ZR, Wu J, Sun B, Lin L, Zhao M. Physicochemical Characterization of Hizikia fusiforme Polysaccharide and Its Hypoglycemic Activity via Mediating Insulin-Stimulated Blood Glucose Utilization of Skeletal Muscle in Type 2 Diabetic Rats. Chem Biodivers 2020; 17:e2000367. [PMID: 32955163 DOI: 10.1002/cbdv.202000367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
In the current study, a functional polysaccharide fraction (HFP) was obtained from Hizikia fusiforme by ultrasound-assisted enzymatic extraction, and its structural characterization and hypoglycemic activity and potential molecular mechanism were investigated. The results indicated that HFP with high uronic acid was a heterogeneous polysaccharide composed of six monosaccharides. Congo red test explained that HFP had no triple helix conformation. AFM analysis revealed that HFP was spherical particle with flame-like aggregates and multiple strands closely arranged. Rheological analysis showed that HFP exhibited shear-thinning flow behavior. HFP significantly ameliorated diabetes-related symptoms and serum profiles and increased muscle glycogen storage in rats. HFP administration at 400 mg/kg body weight/day displayed greater advantages than metformin in controlling the levels of fasting blood glucose, triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bile acid (TBA) of diabetic rats. Intervention of HFP up-regulated markedly the expression of AMPK-α, GLUT4, PI3K and Akt in skeletal muscle of diabetic rats at the mRNA and protein levels, revealing hypoglycemic effects of HFP may be related closely to improving insulin resistance and mitochondrial function of skeletal muscle.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Chemistry, Physical
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Insulin Resistance
- Male
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Polysaccharides/chemistry
- Polysaccharides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sargassum/chemistry
Collapse
Affiliation(s)
- Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510640, P. R. China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510640, P. R. China
| | - Zhi-Rong Ou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510640, P. R. China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510640, P. R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510640, P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P. R. China
| |
Collapse
|
36
|
Luo J, Chai Y, Zhao M, Guo Q, Bao Y. Hypoglycemic effects and modulation of gut microbiota of diabetic mice by saponin fromPolygonatum sibiricum. Food Funct 2020; 11:4327-4338. [DOI: 10.1039/d0fo00428f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polygonatum sibiricumis a medicinal and homologous plant grown in China. The saponin inPolygonatum sibiricumhas shown its good hypoglycemic performance, and it can be developed as functional foods and drugs with hypoglycemic effect.
Collapse
Affiliation(s)
- Jiayuan Luo
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
| | - Yangyang Chai
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
| | - Min Zhao
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
- Harbin 150040
- PR China
- College of Life Sciences
- Northeast Forestry University
| | - Qingqi Guo
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
| | - Yihong Bao
- School of Forestry
- Northeast Forestry University
- Harbin 150040
- PR China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province
| |
Collapse
|
37
|
Qin L, Zhang X, Zhou X, Wu X, Huang X, Chen M, Wu Y, Lu S, Zhang H, Xu X, Wei X, Zhang S, Huang R. Protective Effect of Benzoquinone Isolated from the Roots of Averrhoa carambola L. on Streptozotocin-Induced Diabetic Mice by Inhibiting the TLR4/NF-κB Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:2129-2138. [PMID: 32606871 PMCID: PMC7319517 DOI: 10.2147/dmso.s241998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Studies have demonstrated that the roots of Averrhoa carambola L. (Oxalidaceae), a traditional Chinese medicine, can be used to treat diabetes and diabetes-related diseases. Nevertheless, the potential beneficial effects and mechanism of benzoquinone isolated from the roots of Averrhoa carambola L. (BACR) on diabetes remain unclear. METHODS Diabetic Kunming mice were injected with STZ (120 mgkg-1) in the tail vein. Fasting blood glucose (FBG) and the change of body weight were measured after oral administration of BACR (120, 60, 30 mg/kg/d) every week. The levels of the total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), glucosylated hemoglobin (GHb), fasting insulin (FINS), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. The histological examination of pancreatic tissues and the TLR4/NF-κB pathway was analyzed by RT-PCR, immunohistochemistry and Western blot. RESULTS The study found that clearly the BACR obviously reduced the blood glucose, serum lipids, GHb and FINS. In addition, BACR treatment markedly reduced the release of inflammatory factors, including IL-6 and TNF-α, and down-regulated the expression of the TLR4/NF-κB pathway. CONCLUSION BACR has potential benefits for the treatment of diabetes by ameliorating metabolic functions and attenuating the inflammatory response via inhibition of the activation of theTLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Luhui Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Center for Translational Medicine, Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaolin Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xing Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xingchun Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiang Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Ming Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yani Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shunyu Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hongliang Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaohui Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaojie Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shijun Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Correspondence: Renbin Huang; Shijun Zhang Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of ChinaTel +86 771 533 9805Fax +86 771 535 8272 Email ;
| |
Collapse
|
38
|
Anti-Diabetic Effects and Mechanisms of Dietary Polysaccharides. Molecules 2019; 24:molecules24142556. [PMID: 31337059 PMCID: PMC6680889 DOI: 10.3390/molecules24142556] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a multifactorial, heterogeneous metabolic disorder, causing various health complications and economic issues, which apparently impacts the human's life. Currently, commercial diabetic drugs are clinically managed for diabetic treatment that has definite side effects. Dietary polysaccharides mainly derive from natural sources, including medicinal plants, grains, fruits, vegetables, edible mushroom, and medicinal foods, and possess anti-diabetic potential. Hence, this review summarizes the effects of dietary polysaccharides on diabetes and underlying molecular mechanisms related to inflammatory factors, oxidative stress, and diabetes in various animal models. The analysis of literature and appropriate data on anti-diabetic polysaccharide from electronic databases was conducted. In vivo and in vitro trials have revealed that treatment of these polysaccharides has hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects, which enhance pancreatic β-cell mass and alleviates β-cell dysfunction. It enhances insulin signaling pathways through insulin receptors and activates the PI3K/Akt pathway, and eventually modulates ERK/JNK/MAPK pathway. In conclusion, dietary polysaccharides can effectively ameliorate hyperglycemia, hyperlipidemia, low-grade inflammation, and oxidative stress in type 2 diabetes mellitus (T2DM), and, thus, consumption of polysaccharides can be a valuable choice for diabetic control.
Collapse
|