1
|
Patil SS, khulbe P, Nitalikar MM, Das K, B.P. M, Alshehri S, Khormi AMS, Almalki MEM, Hussain SA, Rabbani SI, Asdaq SMB. Development of topical silver nano gel formulation of Bixin: Characterization, and evaluation of anticancer activity. Saudi Pharm J 2024; 32:102125. [PMID: 38933714 PMCID: PMC11201344 DOI: 10.1016/j.jsps.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Skin cancer refers to the pathological condition characterized by the proliferation of atypical skin cells in an uncontrolled manner. Plant-based products such as bixin although show promising anticancer properties, but maintaining their stability in a formulation is a difficult task. The objective of the research is to formulate a silver nanoparticle gel preparation of bixin and evaluate its anticancer properties. Methods The extract from Bixa orellana seed was prepared by hot extraction technique to isolate the active ingredient, bixin. A green synthesis approach was utilized for preparing the silver nanoparticle gel of bixin (BOAgNPs). Characterization of silver nanoparticles was done using FTIR, scanning electron microscopy, compatibility study, homogeneity testing, pH evaluation, and drug content determination. The in-vitro anticancer activity was performed using cell lines (B16F10) and in-vivo by chemical carcinogen (7,12-dimethylbenz (a) anthracene) in mice. Results The BOAgNPs-loaded topical gel was found to be homogeneous (clear orange color) and pH-compatible (pH ≈ 6.66) with the skin. The characterization studies indicated the presence of all functional groups in the formulation. An optimized batch of bixin-nano gel showed about 60% inhibitory effects on B16F10 cell lines (in-vitro activity) when equated with a reference drug, 5-fluorouracil. The in-vivo anticancer study suggested suppression of tumorigenesis and promotion of the healing process with bixin-nano gel application on the skin. Conclusion The results suggested the promising anticancer property of bixin when formulated in silver nanoparticle gel. The preparation of silver particles nano gel with bixin might provide an effective alternative option for treating skin cancers, provided more research complements the findings of the present study.
Collapse
Affiliation(s)
- Swapnil S. Patil
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University Jaipur, 302017 Rajasthan, India
| | - Preeti khulbe
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University Jaipur, 302017 Rajasthan, India
| | | | - Kuntal Das
- Mallige College of Pharmacy, #71, Silvepura, Chikkabanavara Post, Bangalore 560090, India
| | - Mallikarjuna B.P.
- MB School of Pharmaceutical Sciences (Erstwhile Sree Vidyanikethan College of Pharmacy), Mohan Babu University, Tirupati, Andhra Pradesh, 517102, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | | | | | - Syed Arif Hussain
- Department of Respiratory Care, College of Applied Sciences, AlMaarefa University, Dariyah 13713, Riyadh, Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452 Buraydah, Saudi Arabia
| | | |
Collapse
|
2
|
Baek EB, Rho JH, Jung E, Seo CS, Kim JH, Kwun HJ. Protective effect of Palmijihwanghwan in a mouse model of cigarette smoke and lipopolysaccharide-induced chronic obstructive pulmonary disease. BMC Complement Med Ther 2021; 21:281. [PMID: 34784929 PMCID: PMC8594196 DOI: 10.1186/s12906-021-03453-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background Palmijihwanghwan (PJH) is a traditional medicine and eight constituents derived from PJH possess anti-inflammatory activities. However, the scientific evidence for its potential as a therapeutic agent for inflammatory lung disease has not yet been studied. In this study, we examined the protective effect of PJH in a mouse model of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) with lipopolysaccharide (LPS). Methods Mice received CS exposure for 8 weeks and intranasal instillation of LPS on weeks 1, 3, 5 and 7. PJH (100 and 200 mg/kg) was administrated daily 1 h before CS treatment for the last 4 weeks. Results Compared with CS plus LPS-exposed mice, mice in the PJH-treated group showed significantly decreased inflammatory cells count and reduced inflammatory cytokines including interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α) levels in broncho-alveolar lavage fluid (BALF) and lung tissue. PJH also suppressed the phosphorylation of nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) caused by CS plus LPS exposure. Furthermore, CS plus LPS induced increases in matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-β (TGF-β) expression and collagen deposition that were inhibited in PJH-treated mice. Conclusions This study demonstrates that PJH prevents respiratory inflammation and airway remodeling caused by CS with LPS exposure suggesting potential therapy for the treatment of COPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03453-5.
Collapse
Affiliation(s)
- Eun Bok Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea
| | - Jin-Hyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea
| | - Eunhye Jung
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Jin-Hee Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea.
| |
Collapse
|
3
|
Santos MFC, Oliveira LC, Ribeiro VP, Soares MG, Morae GDOI, Sartori AGDO, Rosalen PL, Bastos JK, de Alencar SM, Veneziani RCS, Ambrósio SR. Isolation of diterpenes from Araucaria sp Brazilian brown propolis and development of a validated high-performance liquid chromatography method for its analysis. J Sep Sci 2021; 44:3089-3097. [PMID: 34169651 DOI: 10.1002/jssc.202100374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Propolis comprises a complex resinous product composed of plant's parts or exudates, pollen, bee wax, and enzymes. Brazilian brown propolis from Araucaria sp displays several biological activities. Considering the lack of validated analytical methods for its analysis, we are reporting the development of a validated high-performance liquid chromatography with photodiode array detector method to analyze Araucaria brown propolis. The crude propolis were extracted and chromatographed, furnishing six main diterpenes. The isolated standards were used to draw the analytical curves, allowing the studies of selectivity, precision, accuracy, recovery, robustness, the determination of limits of detection and limits of quantification. The mobile phase consisted of 0.1% acetic acid in water and acetonitrile, using an octadecylsilane column, 1 mL/min flow rate and detection at 200 or 241 nm. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4% for all diterpenes. From the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.808 to 10.359 μg/mL and from 2.448 to 31.392 μg/mL, respectively. The recoveries were between 105.03 and 108.13%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analyzing Araucaria brown propolis.
Collapse
Affiliation(s)
| | - Larissa Costa Oliveira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marisi Gomes Soares
- Chemistry Institute, Federal University of Alfenas - UNIFAL-MG, Alfenas-MG, Brazil
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| |
Collapse
|
4
|
Wu PY, Li TM, Chen SI, Chen CJ, Chiou JS, Lin MK, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Liang WM, Lin YJ. Complementary Chinese Herbal Medicine Therapy Improves Survival in Patients With Pemphigus: A Retrospective Study From a Taiwan-Based Registry. Front Pharmacol 2020; 11:594486. [PMID: 33362549 PMCID: PMC7756119 DOI: 10.3389/fphar.2020.594486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Pemphigus is a life-threatening and skin-specific inflammatory autoimmune disease, characterized by intraepidermal blistering between the mucous membranes and skin. Chinese herbal medicine (CHM) has been used as an adjunct therapy for treating many diseases, including pemphigus. However, there are still limited studies in effects of CHM treatment in pemphigus, especially in Taiwan. To more comprehensively explore the effect of long-term CHM treatment on the overall mortality of pemphigus patients, we performed a retrospective analysis of 1,037 pemphigus patients identified from the Registry for Catastrophic Illness Patients database in Taiwan. Among them, 229 and 177 patients were defined as CHM users and non-users, respectively. CHM users were young, predominantly female, and had a lesser Charlson comorbidity index (CCI) than non-CHM users. After adjusting for age, sex, prednisolone use, and CCI, CHM users had a lower overall mortality risk than non-CHM users (multivariate model: hazard ratio (HR): 0.422, 95% confidence interval (CI): 0.242–0.735, p = 0.0023). The cumulative incidence of overall survival was significantly higher in CHM users than in non-users (p = 0.0025, log rank test). Association rule mining and network analysis showed that there was one main CHM cluster with Qi–Ju–Di–Huang–Wan (QJDHW), Dan–Shen (DanS; Radix Salviae miltiorrhizae; Salvia miltiorrhiza Bunge), Jia–Wei–Xiao–Yao-–San (JWXYS), Huang–Lian (HL; Rhizoma coptidis; Coptis chinensis Franch.), and Di–Gu–Pi (DGP; Cortex lycii; Lycium barbarum L.), while the second CHM cluster included Jin–Yin–Hua (JYH; Flos lonicerae; Lonicera hypoglauca Miq.) and Lian–Qiao (LQ; Fructus forsythiae; Forsythia suspensa (Thunb.) Vahl). In Taiwan, CHMs used as an adjunctive therapy reduced the overall mortality to approximately 20% among pemphigus patients after a follow-up of more than 6 years. A comprehensive CHM list may be useful in future clinical trials and further scientific investigations to improve the overall survival in these patients.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-I Chen
- Department of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Jarouche M, Suresh H, Hennell J, Sullivan S, Lee S, Singh S, Power D, Xu C, Khoo C. The Quality Assessment of Commercial Lycium Berries Using LC-ESI-MS/MS and Chemometrics. PLANTS (BASEL, SWITZERLAND) 2019; 8:E604. [PMID: 31847243 PMCID: PMC6963852 DOI: 10.3390/plants8120604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
Lycium (also known as Goji berry) is used in traditional Chinese medicine (TCM) with claimed benefits, including eye and liver protection, immune system fortification and blood glucose control. The commercially available product comes from either the L. barbarum or L. chinense species, with the former dominating the marketplace due to its better taste profile. The main objective of this study was to develop a validated LC-ESI-MS/MS method to quantify multiple key bio-active analytes in commercially available Lycium berries and to qualitatively assess these samples using a principal component analysis (PCA). A LC-ESI-MS/MS method for the quantitation of seven analytes selected using the Herbal Chemical Marker Ranking System (Herb MaRS) was developed. The Herb MaRS ranking system considered bioavailability, bioactivity and physiological action of each target analyte, its intended use and the commercial availability of an analytical standard. After method optimization combining high resolving power with selective detection, seven analytes were quantified and the Lycium samples were quantitatively profiled. Chromatographic spectra were also obtained using longer run-time LC-UV and GC-MS methods in order to qualitatively assess the samples using a principal component analysis (PCA). The result of the method validation procedure was a 15.5 min LC-ESI-MS/MS method developed for the quantification of seven analytes in commercial Lycium samples. Wide variation in analyte concentration was observed with the following results (analyte range in mg/g): rutin, 16.1-49.2; narcissin, 0.37-1.65; nictoflorin, 0.26-0.78; coumaric acid, 6.84-12.2; scopoletin, 0.33-2.61; caffeic acid, 0.08-0.32; chlorogenic acid, 1.1-9.12. The quantitative results for the L. barbarum and L. chinense species samples indicate that they cannot be differentiated based on the bio-actives tested. A qualitative assessment using PCA generated from un-targeted LC-UV and GC-MS phytochemical spectra led to the same conclusion. The un-targeted quantitative and qualitative phytochemical profiling indicates that commercial L. barbarum and L. chinense cannot be distinguished using chemical analytical methods. Genetic fingerprinting and pharmacological testing may be needed to ensure the efficacy of commercial Lycium in order to validate label claims.
Collapse
Affiliation(s)
- Mariam Jarouche
- Herbal Analysis and Pharmacological Laboratories (HAPL), National Institute of Complementary Medicine (NICM), Western Sydney University, Campbelltown, NSW 2560, Australia; (M.J.); (J.H.); (S.S.); (S.S.)
| | - Harsha Suresh
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - James Hennell
- Herbal Analysis and Pharmacological Laboratories (HAPL), National Institute of Complementary Medicine (NICM), Western Sydney University, Campbelltown, NSW 2560, Australia; (M.J.); (J.H.); (S.S.); (S.S.)
| | - Shaun Sullivan
- Herbal Analysis and Pharmacological Laboratories (HAPL), National Institute of Complementary Medicine (NICM), Western Sydney University, Campbelltown, NSW 2560, Australia; (M.J.); (J.H.); (S.S.); (S.S.)
| | - Samiuela Lee
- Reference Standards Department, National Measurement Institute (NMI), North Ryde, NSW 2113, Australia;
| | - Swastika Singh
- Herbal Analysis and Pharmacological Laboratories (HAPL), National Institute of Complementary Medicine (NICM), Western Sydney University, Campbelltown, NSW 2560, Australia; (M.J.); (J.H.); (S.S.); (S.S.)
| | - Declan Power
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Cindy Xu
- Wentworth Institute, Surry Hills, NSW 2010, Australia; (C.X.); (C.K.)
| | - Cheang Khoo
- Wentworth Institute, Surry Hills, NSW 2010, Australia; (C.X.); (C.K.)
| |
Collapse
|