1
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Łysakowska M, Głowacka IE, Honkisz-Orzechowska E, Handzlik J, Piotrowska DG. New 3-(Dibenzyloxyphosphoryl)isoxazolidine Conjugates of N1-Benzylated Quinazoline-2,4-diones as Potential Cytotoxic Agents against Cancer Cell Lines. Molecules 2024; 29:3050. [PMID: 38999000 PMCID: PMC11243672 DOI: 10.3390/molecules29133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a new series of cis and trans 5-substituted-3-(dibenzyloxyphosphoryl)isoxazolidines 16a-g were synthesized by the 1,3-dipolar cycloaddition reaction of N-benzyl-C-(dibenzyloxyphosphoryl)nitrone and selected N1-allyl-N3-benzylquinazoline-2,4-diones. All the obtained trans-isoxazolidines 16a-g and the samples enriched in respective cis-isomers were evaluated for anticancer activity against three tumor cell lines. All the tested compounds exhibited high activity against the prostate cancer cell line (PC-3). Isoxazolidines trans-16a and trans-16b and diastereoisomeric mixtures of isoxazolidines enriched in cis-isomer using HPLC, namely cis-16a/trans-16a (97:3) and cis-16b/trans-16b (90:10), showed the highest antiproliferative properties towards the PC-3 cell line (IC50 = 9.84 ± 3.69-12.67 ± 3.45 μM). For the most active compounds, induction apoptosis tests and an evaluation of toxicity were conducted. Isoxazolidine trans-16b showed the highest induction of apoptosis. Moreover, the most active compounds turned out safe in vitro as none affected the cell viability in the HEK293, HepG2, and HSF cellular models at all the tested concentrations. The results indicated isoxazolidine trans-16b as a promising new lead structure in the search for effective anticancer drugs.
Collapse
Affiliation(s)
- Magdalena Łysakowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ł.); (I.E.G.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ł.); (I.E.G.)
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (E.H.-O.); (J.H.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (E.H.-O.); (J.H.)
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ł.); (I.E.G.)
| |
Collapse
|
3
|
Rady GS, El Deeb MA, Sarg MTM, Taher AT, Helwa AA. Design, synthesis and biological evaluation of novel morpholinopyrimidine-5-carbonitrile derivatives as dual PI3K/mTOR inhibitors. RSC Med Chem 2024; 15:733-752. [PMID: 38389871 PMCID: PMC10880895 DOI: 10.1039/d3md00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
In this study, novel morpholinopyrimidine-5-carbonitriles were designed and synthesized as dual PI3K/mTOR inhibitors and apoptosis inducers. The integration of a heterocycle at position 2, with or without spacers, of the new key intermediate 2-hydrazinyl-6-morpholinopyrimidine-5-carbonitrile (5) yielded compounds 6-10, 11a-c and 12a-h. The National Cancer Institute (USA) tested all compounds for antiproliferative activity. Schiff bases, 12a-h analogs, were the most active ones. The most promising compounds 12b and 12d exhibited excellent antitumor activity against the leukemia SR cell line, which is the most sensitive cell line, with IC50 0.10 ± 0.01 and 0.09 ± 0.01 μM, respectively, along with significant effects on PI3Kα/PI3Kβ/PI3Kδ with IC50 values of 0.17 ± 0.01, 0.13 ± 0.01 and 0.76 ± 0.04 μM, respectively, for 12b and 1.27 ± 0.07, 3.20 ± 0.16 and 1.98 ± 0.11, respectively, for 12d compared to LY294002. Compared to Afinitor, these compounds inhibited mTOR with IC50 values of 0.83 ± 0.05 and 2.85 ± 0.17 μM, respectively. Annexin-V and propidium iodide (PI) double labeling showed that compounds 12b and 12d promote cytotoxic leukemia SR apoptosis. Compounds 12b and 12d also caused a G2/M cell cycle arrest in the leukaemia SR cell line. The findings of this study indicate that the highest effect was observed for 12b, which was supported by western blot and docking analysis.
Collapse
Affiliation(s)
- Ghada S Rady
- Directorate of Health Affairs in Giza, Ministry of Health Egypt
| | - Moshira A El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Marwa T M Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U) 6th of October city Giza 12585 Egypt
| | - Amira A Helwa
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) Al-Motamayez District, P.O. Box: 77, 6th of October city Giza Egypt
| |
Collapse
|
4
|
Khalymbadzha IA, Fatykhov RF, Butorin II, Sharapov AD, Potapova AP, Muthipeedika NJ, Zyryanov GV, Melekhin VV, Tokhtueva MD, Deev SL, Kukhanova MK, Mochulskaya NN, Tsurkan MV. Bioinspired Pyrano[2,3- f]chromen-8-ones: Ring C-Opened Analogues of Calanolide A: Synthesis and Anti-HIV-1 Evaluation. Biomimetics (Basel) 2024; 9:44. [PMID: 38248618 PMCID: PMC10813249 DOI: 10.3390/biomimetics9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
We have designed and synthesized a series of bioinspired pyrano[2,3-f]coumarin-based Calanolide A analogs with anti-HIV activity. The design of these new calanolide analogs involved incorporating nitrogen heterocycles or aromatic groups in lieu of ring C, effectively mimicking and preserving their bioactive properties. Three directions for the synthesis were explored: reaction of 5-hydroxy-2,2-dimethyl-10-propyl-2H,8H-pyrano[2,3-f]chromen-8-one with (i) 1,2,4-triazines, (ii) sulfonylation followed by Suzuki cross-coupling with (het)aryl boronic acids, and (iii) aminomethylation by Mannich reaction. Antiviral assay of the synthesized compounds showed that compound 4 has moderate activity against HIV-1 on enzymes and poor activity on the cell model. A molecular docking study demonstrates a good correlation between in silico and in vitro HIV-1 reverse transcriptase (RT) activity of the compounds when docked to the nonnucleoside RT inhibitor binding site, and alternative binding modes of the considered analogs of Calanolide A were established.
Collapse
Affiliation(s)
- Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ilya I. Butorin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Anastasia P. Potapova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Nibin Joy Muthipeedika
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Vsevolod V. Melekhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
- Department of Medical Biology and Genetics, Ural State Medical University, 620028 Yekaterinburg, Russia
| | - Maria D. Tokhtueva
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | - Sergey L. Deev
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | | | - Nataliya N. Mochulskaya
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia; (R.F.F.); (I.I.B.); (A.D.S.); (A.P.P.); (N.J.M.); (G.V.Z.); (V.V.M.); (M.D.T.); (S.L.D.); (N.N.M.)
| | | |
Collapse
|
5
|
Patil SB. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon 2023; 9:e16773. [PMID: 37346348 PMCID: PMC10279829 DOI: 10.1016/j.heliyon.2023.e16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Pyrimidine derivatives attract researchers due to their versatile scaffold & their medicinal significance. Pyrimidine associated analogs are majorly contributed to the field of medicinal chemistry. In this review article, the recent new structural design and development of active agent studies and biological approaches are highlighted. In addition, the biological potency and the structure-activity relationship of pyrimidines such as antimicrobial, anticancer, anti-inflammatory, analgesic, anti-diabetic, anti-HIV, anthelmintic, CNS depressants, and cardiac agents are discussed. Finally, this review article may attract the researchers for new structural design and development of novel active pyrimidine scaffolds with more active and less harmful.
Collapse
|
6
|
Kang JX, Zhao GK, Yang XM, Huang MX, Hui WQ, Zeng R, Ouyang Q. Recent advances on dual inhibitors targeting HIV reverse transcriptase associated polymerase and ribonuclease H. Eur J Med Chem 2023; 250:115196. [PMID: 36787657 DOI: 10.1016/j.ejmech.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Reverse transcriptase (RT) plays an indispensable role in the replication of human immunodeficiency virus (HIV) through its associated polymerase and ribonuclease H (RNase H) activities during the viral RNA genome transformation into proviral DNA. Due to the fact that HIV is a highly mutagenic virus and easily resistant to single-target RT inhibitors, dual inhibitors targeting HIV RT associated polymerase and RNase H have been developed. These dual inhibitors have the advantages of increasing efficacy, reducing drug resistance, drug-drug interactions, and cytotoxicity, as well as improving patient compliance. In this review, we summarize recent advances in polymerase/RNase H dual inhibitors focusing on drug design strategies, and structure-activity relationships and share new insights into developing anti-HIV drugs.
Collapse
Affiliation(s)
- Jia-Xiong Kang
- Department of Pharmacy, Armed Police Forces Hospital of Sichuan, 614000, Leshan, China
| | - Guang-Kuan Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Xiu-Ming Yang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Mou-Xin Huang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Wen-Qi Hui
- Department of Pharmacy, Xi'an Fifth Hospital, Xian, 710082, Shaanxi, China
| | - Rong Zeng
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
7
|
Varshney R, Kumar V, Fatima GN, Saraf SK. Small Heterocyclic Molecules as Anticancer Agents: Design, Synthesis, and Evaluation Against MCF-7 Cell Lines. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
An insight on medicinal attributes of pyrimidine scaffold: An updated review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Kumar A, Wahan SK, Virendra SA, Chawla PA. Recent Advances on the Role of Nitrogen‐Based Heterocyclic Scaffolds in Targeting HIV through Reverse Transcriptase Inhibition. ChemistrySelect 2022. [DOI: 10.1002/slct.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankur Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Simranpreet K. Wahan
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy GT Road Ghal Kalan Moga 142001 India
| |
Collapse
|
11
|
Hussain Z, Ibrahim MA, El-Gohary NM, Badran AS. Synthesis, Characterization, DFT, QSAR, Antimicrobial, and Antitumor Studies of Some Novel Pyridopyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Ramesh D, Mohanty AK, De A, Vijayakumar BG, Sethumadhavan A, Muthuvel SK, Mani M, Kannan T. Uracil derivatives as HIV-1 capsid protein inhibitors: design, in silico, in vitro and cytotoxicity studies. RSC Adv 2022; 12:17466-17480. [PMID: 35765450 PMCID: PMC9190787 DOI: 10.1039/d2ra02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
A series of novel uracil derivatives such as bispyrimidine dione and tetrapyrimidine dione derivatives were designed based on the existing four-point pharmacophore model as effective HIV capsid protein inhibitors. The compounds were initially docked with an HIV capsid protein monomer to rationalize the ideas of design and to find the potential binding modes. The successful design and computational studies led to the synthesis of bispyrimidine dione and tetrapyrimidine dione derivatives from uracil and aromatic aldehydes in the presence of HCl using novel methodology. The in vitro evaluation in HIV p24 assay revealed five potential uracil derivatives with IC50 values ranging from 191.5 μg ml−1 to 62.5 μg ml−1. The meta-chloro substituted uracil compound 9a showed promising activity with an IC50 value of 62.5 μg ml−1 which is well correlated with the computational studies. As expected, all the active compounds were noncytotoxic in BA/F3 and Mo7e cell lines highlighting the thoughtful design. The structure activity relationship indicates the position priority and lower log P values as the possible cause of inhibitory potential of the uracil compounds. The paper describes the design, synthesis, computational and biological validation of a series of novel uracil derivatives as effective HIV capsid protein inhibitors.![]()
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India
| | - Amaresh Kumar Mohanty
- Department of Bioinformatics, Pondicherry University Kalapet Puducherry-605014 India
| | - Anirban De
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India
| | | | | | - Suresh Kumar Muthuvel
- Department of Bioinformatics, Pondicherry University Kalapet Puducherry-605014 India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University Kalapet Puducherry-605014 India
| | | |
Collapse
|
13
|
Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 2022; 233:114217. [DOI: 10.1016/j.ejmech.2022.114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
|
14
|
Cherukumalli PKR, Tadiboina BR, Gulipalli KC, Bodige S, Badavath VN, Sridhar G, Gangarapu K. Design and synthesis of novel urea derivatives of pyrimidine-pyrazoles as anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
16
|
Vilas Borge V, Vaze J. A Comprehensive Study of Pyrimidine and Its Medicinal Applications. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
N JB, Goudgaon N. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem 2021; 114:105121. [PMID: 34214754 DOI: 10.1016/j.bioorg.2021.105121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
BODIPY-Pyrimidine (BP) is a highly selective, highly active, and highly biocompatible fluorescent drug, which is characterized by its own activity combined with a fluorophore. The combination of pyrimidines with good biological activity and fluorophores to obtain new compounds with both anti-tumor activity and fluorescent targeting probe functions is the focus of this research. In terms of biological activity, in vitro cytotoxicity of the compounds on four human cancer cells (HepG2, HeLa, A-459, and HCT-116) and the human normal cell line L-02 was studied. BP-4 has good antiproliferative activity, and its IC50 values are 19.12 ± 2.29, 13.47 ± 3.80, 18.59 ± 7.42, 14.57 ± 2.44 and 92.48 ± 6.03 μM, respectively. Good biocompatibility with tumor cells can be observed in cell imaging. The anti-tumor mechanism of the compound was further studied by flow cytometry. After BP-2, BP-3 and BP-4 treated HeLa cells, the percentage of apoptotic cells was 19.07%, 22.09% and 27.3%, respectively. The cell cycle study found that, compared with the positive control 5-FU (48.05%), the compounds BP-2, BP-3 and BP-4 all increased the proportion of HeLa cells in the G1 phase, reaching 57.65%, 55.46% and 53.58%, respectively. In vivo bioimaging results show that all three compounds can be targeted and accurately expressed in tumor tissues. In addition, molecular docking analyzes the possible interaction between the compound and the active site of thymidylate synthase.
Collapse
Affiliation(s)
- Chi Xu
- Digestive Disease Center, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Tingyu Shao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Shihe Shao
- Digestive Disease Center, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Multisubstituted pyrimidines effectively inhibit bacterial growth and biofilm formation of Staphylococcus aureus. Sci Rep 2021; 11:7931. [PMID: 33846401 PMCID: PMC8041844 DOI: 10.1038/s41598-021-86852-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Biofilms are multicellular communities of microorganisms that generally attach to surfaces in a self-produced matrix. Unlike planktonic cells, biofilms can withstand conventional antibiotics, causing significant challenges in the healthcare system. Currently, new chemical entities are urgently needed to develop novel anti-biofilm agents. In this study, we designed and synthesized a set of 2,4,5,6-tetrasubstituted pyrimidines and assessed their antibacterial activity against planktonic cells and biofilms formed by Staphylococcus aureus. Compounds 9e, 10d, and 10e displayed potent activity for inhibiting the onset of biofilm formation as well as for killing pre-formed biofilms of S. aureus ATCC 25923 and Newman strains, with half-maximal inhibitory concentration (IC50) values ranging from 11.6 to 62.0 µM. These pyrimidines, at 100 µM, not only decreased the number of viable bacteria within the pre-formed biofilm by 2–3 log10 but also reduced the amount of total biomass by 30–50%. Furthermore, these compounds were effective against planktonic cells with minimum inhibitory concentration (MIC) values lower than 60 µM for both staphylococcal strains. Compound 10d inhibited the growth of S. aureus ATCC 25923 in a concentration-dependent manner and displayed a bactericidal anti-staphylococcal activity. Taken together, our study highlights the value of multisubstituted pyrimidines to develop novel anti-biofilm agents.
Collapse
|
20
|
Ahmed NM, Youns MM, Soltan MK, Said AM. Design, Synthesis, Molecular Modeling and Antitumor Evaluation of Novel Indolyl-Pyrimidine Derivatives with EGFR Inhibitory Activity. Molecules 2021; 26:molecules26071838. [PMID: 33805918 PMCID: PMC8037142 DOI: 10.3390/molecules26071838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/15/2023] Open
Abstract
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1-4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53-79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
| | - Mahmoud M. Youns
- Biochemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Oman College of Health Sciences, Muscat 123, Oman;
| | - Moustafa K. Soltan
- Oman College of Health Sciences, Muscat 123, Oman;
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Correspondence: ; Tel.: +1-716-907-5016
| |
Collapse
|
21
|
Mu Y, Cory TJ. Suppression of HIV-1 Viral Replication by Inhibiting Drug Efflux Transporters in Activated Macrophages. Curr HIV Res 2021; 19:128-137. [PMID: 33032513 DOI: 10.2174/1570162x18666201008143833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ethanol has been shown to increase oxidative stress, drug efflux transporter expression, and promote HIV progression. Macrophages, which express drug efflux transporters, serve as an essential sanctuary site for HIV. The antiretroviral drug lopinavir, a protease inhibitor, is a substrate of the drug efflux transporters P-glycoprotein and multidrug resistance-associated protein 1. The NF-κB signaling pathway is associated with inflammation and drug efflux transporter expression. OBJECTIVE To examine the effects of ethanol on drug efflux transporters and HIV replication of macrophages and develop strategies to increase the efficacy of the protease inhibitor. METHODS The expression of PGP and MRP1 was examined with western blot. The NF- κB inhibition was assessed with nuclear western blot. LC-MS/MS and p24 ELISA were used to assess intracellular LPV and viral replication. RESULTS Ethanol at 40mM slightly increased drug efflux transporter PGP and MRP1 expression in activated macrophages. IKK-16, an NF- κB inhibitor, counteracted the increased transporter expression caused by ethanol exposure. MK571, an MRP1 inhibitor, and IKK-16 significantly increased intracellular LPV concentration with or without ethanol treatment. MK571 significantly increased LPV efficacy in suppressing viral replication with or without ethanol treatment. A decreasing trend and a significant decrease were observed with IKK-16+LPV treatment compared with LPV alone in the no ethanol treatment and ethanol treatment groups, respectively. CONCLUSION In activated macrophages, inhibiting drug efflux transporter MRP1 activity and reducing its expression may represent a promising approach to suppress viral replication by increasing intracellular antiretroviral concentrations. However, different strategies may be required for ethanolrelated vs. untreated groups.
Collapse
Affiliation(s)
- Ying Mu
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| |
Collapse
|
22
|
BHARDWAJ N, CHOUDHARY D, PATHANIA A, BARANWAL S, KUMAR P. Synthesis and molecular docking studies of quinoline derivatives as HIV non-nucleoside reverse transcriptase inhibitors. Turk J Chem 2020; 44:1623-1641. [PMID: 33488258 PMCID: PMC7772092 DOI: 10.3906/kim-2004-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Quinoline moiety is an important scaffold in the field of drug discovery and drug development, with a wide range of pharmacological activities. Quinoline derivatives are potent inhibitors for reverse transcriptase, which is responsible for the conversion of single-stranded viral RNA into double-stranded viral DNA.In the present study, we have designed and synthesized 2 series, namely pyrazoline and pyrimidine containing quinoline derivatives as non nucleoside reverse transcriptase inhibitors (NNRTIs). Eleven compounds were synthesized and characterized by 1H and 13C NMR and mass spectrophotometry. The synthesized compounds were also docked on an HIV reverse transcriptase binding site (PDB: 4I2P); most of these compounds showed good binding interactions with the active domain of the receptor. Most of the compounds displayed a docking score higher than those of standard drugs. Among the synthesized quinoline derivatives, compound 4 exhibited the highest docking score (-10.675).
Collapse
Affiliation(s)
- Nivedita BHARDWAJ
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), VaranasiIndia
| | - Diksha CHOUDHARY
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
| | - Akashdeep PATHANIA
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
| | - Somesh BARANWAL
- Department of Microbiology, Central University of Punjab, BathindaIndia
| | - Pradeep KUMAR
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, BathindaIndia
| |
Collapse
|
23
|
Excellency of pyrimidinyl moieties containing α-aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. Int J Biol Macromol 2020; 165:2010-2021. [DOI: 10.1016/j.ijbiomac.2020.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
|
24
|
Synthesis of Novel 2-(Pyridin-2-yl) Pyrimidine Derivatives and Study of Their Anti-Fibrosis Activity. Molecules 2020; 25:molecules25225226. [PMID: 33182574 PMCID: PMC7697764 DOI: 10.3390/molecules25225226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
A pyrimidine moiety exhibiting a wide range of pharmacological activities has been employed in the design of privileged structures in medicinal chemistry. To prepare libraries of novel heterocyclic compounds with potential biological activities, a series of novel 2-(pyridin-2-yl) pyrimidine derivatives were designed, synthesized and their biological activities were evaluated against immortalized rat hepatic stellate cells (HSC-T6). Fourteen compounds were found to present better anti-fibrotic activities than Pirfenidone and Bipy55'DC. Among them, compounds ethyl 6-(5-(p-tolylcarbamoyl)pyrimidin-2-yl)nicotinate (12m) and ethyl 6-(5-((3,4-difluorophenyl)carbamoyl)pyrimidin-2-yl)nicotinate (12q) show the best activities with IC50 values of 45.69 μM and 45.81 μM, respectively. Furthermore, the study of anti-fibrosis activity was evaluated by Picro-Sirius red staining, hydroxyproline assay and ELISA detection of Collagen type I alpha 1 (COL1A1) protein expression. Our study showed that compounds 12m and 12q effectively inhibited the expression of collagen, and the content of hydroxyproline in cell culture medium in vitro, indicating that compounds 12m and 12q might be developed the novel anti-fibrotic drugs.
Collapse
|
25
|
Kaur H, Singh L, Chibale K, Singh K. Structure elaboration of isoniazid: synthesis, in silico molecular docking and antimycobacterial activity of isoniazid–pyrimidine conjugates. Mol Divers 2019; 24:949-955. [DOI: 10.1007/s11030-019-10004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
|