1
|
Saini P, Gao W, Soliman A, Fatehi P. A new solvent-free pathway for inducing quaternized lignin-derived high molecular weight polymer. Int J Biol Macromol 2023; 252:126382. [PMID: 37595716 DOI: 10.1016/j.ijbiomac.2023.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In this work, kraft lignin (KL) was polymerized with vinylbenzyl chloride (VBC) in a molar ratio of 1.8:1 (KL: VBC) using sodium persulfate (Na2S2O8) as an initiator at pH 9-10 and temperature of 80-90 °C for 3 h to produce polymer kraft lignin-g-poly(4-vinylbenzyl chloride) KL-poly(VBC) 1. Then, the grafting reaction was conducted with two different imidazole-based monomers of different side-chain lengths (methyl and n-butyl), namely, 1-methylimidazole (MIM), 1-n-butylimidazole (BIM), which led to the formation of novel polymers, kraft lignin-g-poly(4-vinylbenzyl-1-methylimidazolium chloride) KL-poly(VBC-MIM) 2a and kraft lignin-g-poly(4-vinylbenzyl-1-n-butyl imidazolium chloride) KL-poly(VBC-BIM) 2b. The polymer 2a generated a larger molecular weight polymer with a higher charge density and solubility than polymer 2b since the n-butyl group would cause steric hindrance and weaker monomer to react with intermediate polymer 1 in the second stage. The contact angle analysis confirmed more hydrophilicity of polymer 2a, and elemental analysis confirmed the more successful polymerization of polymer 2a. Applying the generated polymers as flocculants for a kaolin suspension confirmed that polymer 2a had similar performance with commercial cationic polyacrylamide (CPAM) flocculants, even though polymer 2a had a smaller molecular weight. This polymerization offers a promising pathway for generating cationic polymers with excellent performance as a flocculant for suspensions.
Collapse
Affiliation(s)
- Preety Saini
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 3E1, Canada
| | - Weijue Gao
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 3E1, Canada
| | - Ahmed Soliman
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 3E1, Canada.
| |
Collapse
|
2
|
Sehrawat N, Nehra E, Kumar Rohilla K, Kobayashi T, Nishiyama Y, Kumar Pandey M. Determination of the relative orientation between 15N- 1H dipolar coupling and 1H chemical shift anisotropy tensors under fast MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107428. [PMID: 37018911 DOI: 10.1016/j.jmr.2023.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
In this work, we have proposed a proton-detected three-dimensional (3D) 15N-1H dipolar coupling (DIP)/1H chemical shift anisotropy (CSA)/1H chemical shift (CS) correlation experiment to measure the relative orientation between the 15N-1H dipolar coupling and the 1H CSA tensors under fast magic angle spinning (MAS) solid-state NMR. In the 3D correlation experiment, the 15N-1H dipolar coupling and 1H CSA tensors are recoupled using our recently developed windowless C-symmetry-based C331-ROCSA (recoupling of chemical shift anisotropy) DIPSHIFT and C331-ROCSA pulse-based methods, respectively. The 2D 15N-1H DIP/1H CSA powder lineshapes extracted using the proposed 3D correlation method are shown to be sensitive to the sign and asymmetry of the 1H CSA tensor, a feature that allows the determination of the relative orientation between the two correlating tensors with improved accuracy. The experimental method developed in this study is demonstrated on a powdered U-15N L-Histidine.HCl·H2O sample.
Collapse
Affiliation(s)
- Neelam Sehrawat
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab 140001, India
| | - Ekta Nehra
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab 140001, India
| | | | - Takeshi Kobayashi
- U.S. DOE, Ames Laboratory, Iowa State University, Ames, IA 50011-3020, United States
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Manoj Kumar Pandey
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
3
|
Cui J, Prisk TR, Olmsted DL, Su V, Asta M, Hayes SE. Resolving the Chemical Formula of Nesquehonite via NMR Crystallography, DFT Computation, and Complementary Neutron Diffraction. Chemistry 2023; 29:e202203052. [PMID: 36411247 DOI: 10.1002/chem.202203052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Nesquehonite is a magnesium carbonate mineral relevant to carbon sequestration envisioned for carbon capture and storage of CO2 . Its chemical formula remains controversial today, assigned as either a hydrated magnesium carbonate [MgCO3 ⋅ 3H2 O], or a hydroxy- hydrated- magnesium bicarbonate [Mg(HCO3 )OH ⋅ 2H2 O]. The resolution of this controversy is central to understanding this material's thermodynamic, phase, and chemical behavior. In an NMR crystallography study, using rotational-echo double-resonance 13 C{1 H} (REDOR), 13 C-1 H distances are determined with precision, and the combination of 13 C static NMR lineshapes and density functional theory (DFT) calculations are used to model different H atomic coordinates. [MgCO3 ⋅ 3H2 O] is found to be accurate, and evidence from neutron powder diffraction bolsters these assignments. Refined H positions can help understand how H-bonding stabilizes this structure against dehydration to MgCO3 . More broadly, these results illustrate the power of NMR crystallography as a technique for resolving questions where X-ray diffraction is inconclusive.
Collapse
Affiliation(s)
- Jinlei Cui
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1134, St. Louis Missouri, 63130, United States
| | - Timothy R Prisk
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - David L Olmsted
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, United States
| | - Vicky Su
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1134, St. Louis Missouri, 63130, United States
| | - Mark Asta
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1134, St. Louis Missouri, 63130, United States
| |
Collapse
|
4
|
Sánchez‐Andrada P, Marín‐Luna M, Alkorta I, Elguero J, Percho G, Santa María D, Claramunt RM. Conformational analysis of 2,5‐diaryl‐4‐methyl‐2,
4‐dihydro‐3
H
‐1,2,4‐triazol‐3‐ones: Multinuclear
NMR
and
DFT
calculations. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Sánchez‐Andrada
- Departamento de Química Orgánica, Facultad de Química Universidad de Murcia, Regional Campus of International Excellence “Campus Mare Nostrum” Murcia Spain
| | - Marta Marín‐Luna
- Departamento de Química Orgánica, Facultad de Química Universidad de Murcia, Regional Campus of International Excellence “Campus Mare Nostrum” Murcia Spain
| | | | | | - Gema Percho
- Departamento de Química Orgánica y Bio‐Orgánica, Facultad de Ciencias UNED Madrid Spain
| | - Dolores Santa María
- Departamento de Química Orgánica y Bio‐Orgánica, Facultad de Ciencias UNED Madrid Spain
| | - Rosa M. Claramunt
- Departamento de Química Orgánica y Bio‐Orgánica, Facultad de Ciencias UNED Madrid Spain
| |
Collapse
|
5
|
Czernek J, Brus J. Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments. Int J Mol Sci 2020; 21:E7908. [PMID: 33114411 PMCID: PMC7662755 DOI: 10.3390/ijms21217908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Most recently a renewed interest in several areas has arisen in factors governing the 1H NMR chemical shift (1H CS) of protons in aromatic systems. Therefore, it is important to describe how 1H CS values are affected by π-stacking intermolecular interactions. The parametrization of radial and angular dependences of the 1H CS is proposed, which is based on conventional gauge-independent atomic orbital (GIAO) calculations of explicit molecular fragments. Such a parametrization is exemplified for a benzene dimer with intermonomer vertical and horizontal distances which are in the range of values often found in crystals of organic compounds. Results obtained by the GIAO calculations combined with B3LYP and MP2 methods were compared, and revealed qualitatively the same trends in the 1H CS data. The parametrization was found to be quantitatively correct for the T-shaped benzene dimers, and its limitations were discussed. Parametrized 1H CS surfaces should become useful for providing additional restraints in the search of site-specific information through an analysis of structurally induced 1H CS changes.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square #2, 16206 Prague, Czech Republic;
| | | |
Collapse
|
6
|
Jurczak E, Mazurek AH, Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M. Pharmaceutical Hydrates Analysis-Overview of Methods and Recent Advances. Pharmaceutics 2020; 12:pharmaceutics12100959. [PMID: 33050621 PMCID: PMC7601571 DOI: 10.3390/pharmaceutics12100959] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
This review discusses a set of instrumental and computational methods that are used to characterize hydrated forms of APIs (active pharmaceutical ingredients). The focus has been put on highlighting advantages as well as on presenting some limitations of the selected analytical approaches. This has been performed in order to facilitate the choice of an appropriate method depending on the type of the structural feature that is to be analyzed, that is, degree of hydration, crystal structure and dynamics, and (de)hydration kinetics. The presented techniques include X-ray diffraction (single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD)), spectroscopic (solid state nuclear magnetic resonance spectroscopy (ssNMR), Fourier-transformed infrared spectroscopy (FT-IR), Raman spectroscopy), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), gravimetric (dynamic vapour sorption (DVS)), and computational (molecular mechanics (MM), Quantum Mechanics (QM), molecular dynamics (MD)) methods. Further, the successful applications of the presented methods in the studies of hydrated APIs as well as studies on the excipients' influence on these processes have been described in many examples.
Collapse
Affiliation(s)
- Ewa Jurczak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Anna Helena Mazurek
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
- Correspondence: ; Tel.: +48-501-255-121
| | - Dariusz Maciej Pisklak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland;
| |
Collapse
|
7
|
Nardelli F, Borsacchi S, Calucci L, Carignani E, Martini F, Geppi M. Anisotropy and NMR spectroscopy. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
In this paper, different aspects concerning anisotropy in Nuclear Magnetic Resonance (NMR) spectroscopy have been reviewed. In particular, the relevant theory has been presented, showing how anisotropy stems from the dependence of internal nuclear spin interactions on the molecular orientation with respect to the external magnetic field direction. The consequences of anisotropy in the use of NMR spectroscopy have been critically discussed: on one side, the availability of very detailed structural and dynamic information, and on the other side, the loss of spectral resolution. The experiments used to measure the anisotropic properties in solid and soft materials, where, in contrast to liquids, such properties are not averaged out by the molecular tumbling, have been described. Such experiments can be based either on static low-resolution techniques or on one- and two-dimensional pulse sequences exploiting Magic Angle Spinning (MAS). Examples of applications of NMR spectroscopy have been shown, which exploit anisotropy to obtain important physico-chemical information on several categories of systems, including pharmaceuticals, inorganic materials, polymers, liquid crystals, and self-assembling amphiphiles in water. Solid-state NMR spectroscopy can be considered, nowadays, one of the most powerful characterization techniques for all kinds of solid, either amorphous or crystalline, and semi-solid systems for the obtainment of both structural and dynamic properties on a molecular and supra-molecular scale.
Graphic abstract
Collapse
|
8
|
Czernek J, Brus J. Polymorphic Forms of Valinomycin Investigated by NMR Crystallography. Int J Mol Sci 2020; 21:E4907. [PMID: 32664570 PMCID: PMC7404035 DOI: 10.3390/ijms21144907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
A dodecadepsipeptide valinomycin (VLM) has been most recently reported to be a potential anti-coronavirus drug that could be efficiently produced on a large scale. It is thus of importance to study solid-phase forms of VLM in order to be able to ensure its polymorphic purity in drug formulations. The previously available solid-state NMR (SSNMR) data are combined with the plane-wave DFT computations in the NMR crystallography framework. Structural/spectroscopical predictions (the PBE functional/GIPAW method) are obtained to characterize four polymorphs of VLM. Interactions which confer a conformational stability to VLM molecules in these crystalline forms are described in detail. The way how various structural factors affect the values of SSNMR parameters is thoroughly analyzed, and several SSNMR markers of the respective VLM polymorphs are identified. The markers are connected to hydrogen bonding effects upon the corresponding (13C/15N/1H) isotropic chemical shifts of (CO, Namid, Hamid, Hα) VLM backbone nuclei. These results are expected to be crucial for polymorph control of VLM and in probing its interactions in dosage forms.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square #2, 16206 Prague, Czech Republic;
| | | |
Collapse
|
9
|
Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int J Mol Sci 2020; 21:ijms21082700. [PMID: 32295042 PMCID: PMC7215618 DOI: 10.3390/ijms21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reliable values of the solid-state NMR (SSNMR) parameters together with precise structural data specific for a given amino acid site in an oligopeptide are needed for the proper interpretation of measurements aiming at an understanding of oligopeptides' function. The periodic density functional theory (DFT)-based computations of geometries and SSNMR chemical shielding tensors (CSTs) of solids are shown to be accurate enough to support the SSNMR investigations of suitably chosen models of oriented samples of oligopeptides. This finding is based on a thorough comparison between the DFT and experimental data for a set of tripeptides with both 13Cα and 15Namid CSTs available from the single-crystal SSNMR measurements and covering the three most common secondary structural elements of polypeptides. Thus, the ground is laid for a quantitative description of local spectral parameters of crystalline oligopeptides, as demonstrated for the backbone 15Namid nuclei of samarosporin I, which is a pentadecapeptide (composed of five classical and ten nonproteinogenic amino acids) featuring a strong antimicrobial activity.
Collapse
|