1
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Thathy V, Hackett F, Yeo T, Li VL, Muir R, Faucher F, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets. Cell Chem Biol 2024; 31:1714-1728.e10. [PMID: 39137783 PMCID: PMC11457795 DOI: 10.1016/j.chembiol.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA; Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Jerye K, Lüken H, Steffen A, Schlawis C, Jänsch L, Schulz S, Brönstrup M. Activity-Based Protein Profiling Identifies Protein Disulfide-Isomerases as Target Proteins of the Volatile Salinilactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309515. [PMID: 38430530 PMCID: PMC11095149 DOI: 10.1002/advs.202309515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Indexed: 03/04/2024]
Abstract
The salinilactones, volatile marine natural products secreted from Salinispora arenicola, feature a unique [3.1.0]-lactone ring system and cytotoxic activities through a hitherto unknown mechanism. To find their molecular target, an activity-based protein profiling with a salinilactone-derived probe is applied that disclosed the protein disulfide-isomerases (PDIs) as the dominant mammalian targets of salinilactones, and thioredoxin (TRX1) as secondary target. The inhibition of protein disulfide-isomerase A1 (PDIA1) and TRX1 is confirmed by biochemical assays with recombinant proteins, showing that (1S,5R)-salinilactone B is more potent than its (1R,5S)-configured enantiomer. The salinilactones bound covalently to C53 and C397, the catalytically active cysteines of the isoform PDIA1 according to tandem mass spectrometry. Reactions with a model substrate demonstrated that the cyclopropyl group is opened by an attack of the thiol at C6. Fluorophore labeling experiments showed the cell permeability of a salinilactone-BODIPY (dipyrrometheneboron difluoride) conjugate and its co-localization with PDIs in the endoplasmic reticulum. The study is one of the first to pinpoint a molecular target for a volatile microbial natural product, and it demonstrates that salinilactones can achieve high selectivity despite their small size and intrinsic reactivity.
Collapse
Affiliation(s)
- Karoline Jerye
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Helko Lüken
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Anika Steffen
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Christian Schlawis
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Lothar Jänsch
- Research Group Cellular Proteome ResearchHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Stefan Schulz
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
- Biomolecular Drug Research Center (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- German Center for Infection ResearchSite Hannover‐BraunschweigInhoffenstraße 738124BraunschweigGermany
| |
Collapse
|
3
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
4
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Hackett F, Yeo T, Li VL, Muir RK, Faucher FF, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed Alkyl/Aryl Phosphonates Identify Metabolic Serine Hydrolases as Antimalarial Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575224. [PMID: 38260474 PMCID: PMC10802587 DOI: 10.1101/2024.01.11.575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan K Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
- Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032 USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G. Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis. FEBS J 2023; 290:1563-1582. [PMID: 36197115 DOI: 10.1111/febs.16645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
Collapse
Affiliation(s)
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Giri Raj Gnawali
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, MO, USA
| | - Patrick Fourquet
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | - Vanessa Point
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Yves Bourne
- CNRS, AFMB, Aix-Marseille University, France
| | - Stéphane Audebert
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | - Luc Camoin
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | | | | |
Collapse
|
6
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
7
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
8
|
Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T, Mok S, Gnädig NF, Zhou Y, Kurita K, Foe IT, Terrell SM, Boucher MJ, Cieplak P, Kumpornsin K, Lee MCS, Linington RG, Long JZ, Uhlemann AC, Weerapana E, Fidock DA, Bogyo M. The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites. Cell Chem Biol 2020; 27:143-157.e5. [PMID: 31978322 PMCID: PMC8027986 DOI: 10.1016/j.chembiol.2020.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/β serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher J Schulze
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yani Zhou
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Kenji Kurita
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|