1
|
Peng T, Li X, Tong X. Insights into the methods for separation and chromatographic determination of nucleotides/nucleosides in Cordyceps spp. J Chromatogr A 2024; 1734:465279. [PMID: 39197362 DOI: 10.1016/j.chroma.2024.465279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Cordyceps genus is entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries. Nucleosides (Ns), nucleotide(Nt), Nucleobases (Nb) and their analogues play a critically physiological role and have a great potential in drug development, such as pentostatin and cordycepin (COR). Due to their significance bioactivity, several Nt/Ns were used as markers for quality evaluation for medicinal Cordyceps, including adenosine, inosine, guanosine, uridine and COR. Among them, COR is the most considerable adenosine analogue, exhibiting significant therapeutic potential and has many intracellular targets. Nt/Ns contains polar compounds and the phosphate groups of Nt deprotonate and carry negative charges with a broad range of pH values. Recent years, various advanced methods of extraction and separation, and nanomaterials have been developed to extract, isolate and determine these molecules, such as ultrasound-assisted extraction (UAE), Supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for the extraction, the solid phase extraction (SPE) methods (microextraction SPE (SPME), magnetic SPE (MSPE), and unique SPE materials based on the boronate affinity for the separation, and chromatography methods employing ultraviolet (UV), fluorescence, MS detection and electrospray ionization (ESI), along with matrix-assisted laser desorption/ ionization (MALDI) for the determination. COR derived from adenosine and its structure is very similar to that of 2'-deoxyadenosine (2'-dA) and adenosine, resulting in an incorrect identification, which will influence its therapeutic effects. Therefore, this review primarily focused on the characteristics of Nt/Ns, the advanced methods, strategies, nanomaterials for extracting and determining Nt/Ns (COR in particular) in Cordyceps spp, as well as the methods for distinguishing COR from its structure analogs.
Collapse
Affiliation(s)
- Ting Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xiaoxing Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China.
| |
Collapse
|
2
|
Krishna KV, Ulhas RS, Malaviya A. Bioactive compounds from Cordyceps and their therapeutic potential. Crit Rev Biotechnol 2024; 44:753-773. [PMID: 37518188 DOI: 10.1080/07388551.2023.2231139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023]
Abstract
The Clavicipitaceae family's largest and most diverse genus is Cordyceps. They are most abundant and diverse in humid temperate and tropical forests and have a wide distribution in: Europe, North America, and East and Southeast Asian countries, particularly: Bhutan, China, Japan, Nepal, Korea, Thailand, Vietnam, Tibet, and the Himalayan region of India, and Sikkim. It is a well-known parasitic fungus that feeds on insects and other arthropods belonging to 10 different orders. Over 200 bioactive metabolites, that include: nucleotides and nucleosides, polysaccharides, proteins, polypeptides, amino acids, sterols, and fatty acids, among others have been extracted from Cordyceps spp. demonstrating the phytochemical richness of this genus. These components have been associated with a variety of pharmacological effects, including: anti-microbial, anti-apoptotic, anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities. In this paper, the bioactivity of various classes of metabolites produced by Cordyceps spp., and their therapeutic properties have been reviewed in an attempt to update the existing literature. Furthermore, one of its nucleoside and a key bioactive compound, cordycepin has been critically elaborated with regard to its biosynthesis pathway and the recently proposed protector-protégé mechanism as well as various biological and pharmacological effects, such as: suppression of purine and nucleic acid biosynthesis, induction of apoptosis, and cell cycle regulation with their mechanism of action. This review provides current knowledge on the bioactive potential of Cordyceps spp.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, Christ (Deemed-to-be University), Bangalore, Karnataka, India
| | - Rutwick Surya Ulhas
- Institute of Biochemistry and Biophysics, Faculty of Life Sciences, University of Jena (Friedrich-Schiller-Universität Jena), Jena, Germany
| | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, Christ (Deemed-to-be University), Bangalore, Karnataka, India
- Division of Life Sciences, Gyeongsang National University, Gyeongsangnam-do, South Korea
- QuaLife Biotech Pvt Ltd, Bangalore, India
| |
Collapse
|
3
|
Julianti E, Azhari M, Singgih M, Aminah FSD, Putra MY, Lin J, Kimishima A, Arai M. Cytotoxic activity of cordycepin produced by marine-derived fungus Emericella sp. against HT29 human colon cancer cell lines. Arch Microbiol 2023; 205:378. [PMID: 37946003 DOI: 10.1007/s00203-023-03706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Colorectal cancer accounted for the third most common cancer in the world. The search for new drug candidates that can be used for colorectal cancer treatment from marine-derived fungi, Emericella sp. The present study was performed to isolate the cytotoxic compound from Emericella sp. The isolation method was carried out by using a combination of chromatographic techniques to afford compound 1. The cytotoxic activity and the exosome production property were determined by using proliferation and luciferase assay against HT29 CD63 Nluc cells, respectively. The chemical structure of compound 1 was identified as cordycepin based on spectroscopy methods such as mass spectrometry and nuclear magnetic resonance (1D and 2D NMR) analyses and comparison with authentic spectral data. The biological activity assay showed that cordycepin exhibited cytotoxic activity with an IC50 value of 92.05 µM through proliferation assay, and also inhibited the exosome production by luciferase assay with an IC50 value of 86.47 µM. Cordycepin was isolated from culture broth Emericella sp., exhibiting moderate cytotoxic activity and inhibitory activity of exosome production. Thus, cordycepin is a potential compound to be investigated further for its exosome production inhibition activity for further use as an anticancer lead compound.
Collapse
Affiliation(s)
- Elin Julianti
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.
| | - Muhammad Azhari
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Marlia Singgih
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | | | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organisation for Health, National Research and Innovation (BRIN), Cibinong, Indonesia
| | - Jianyu Lin
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Atsushi Kimishima
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Jesmin A, Anh LH, Mai NP, Khanh TD, Xuan TD. Fulvic Acid Improves Salinity Tolerance of Rice Seedlings: Evidence from Phenotypic Performance, Relevant Phenolic Acids, and Momilactones. PLANTS (BASEL, SWITZERLAND) 2023; 12:2359. [PMID: 37375984 DOI: 10.3390/plants12122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Salinity is a severe stress that causes serious losses in rice production worldwide. This study, for the first time, investigated the effects of fulvic acid (FA) with various concentrations of 0.125, 0.25, 0.5, and 1.0 mL/L on the ability of three rice varieties, Koshihikari, Nipponbare, and Akitakomachi, to cope with a 10 dS/m salinity level. The results show that the T3 treatment (0.25 mL/L FA) is the most effective in stimulating the salinity tolerance of all three varieties by enhancing their growth performance. T3 also promotes phenolic accumulation in all three varieties. In particular, salicylic acid, a well-known salt-stress-resistant substance, is found to increase during salinity stress in Nipponbare and Akitakomachi treated with T3 by 88% and 60%, respectively, compared to crops receiving salinity treatment alone. Noticeably, the levels of momilactones A (MA) and B (MB) fall in salt-affected rice. However, their levels markedly rise in rice treated with T3 (by 50.49% and 32.20%, respectively, in Nipponbare, and by 67.76% and 47.27%, respectively, in Akitakomachi), compared to crops receiving salinity treatment alone. This implies that momilactone levels are proportional to rice tolerance against salinity. Our findings suggest that FA (0.25 mL/L) can effectively improve the salinity tolerance of rice seedlings even in the presence of a strong salt stress of 10 dS/m. Further studies on FA application in salt-affected rice fields should be conducted to confirm its practical implications.
Collapse
Affiliation(s)
- Akter Jesmin
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - La Hoang Anh
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Phuong Mai
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam
- Center for Agricultural Innovation, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Tran Dang Xuan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| |
Collapse
|
5
|
Tan H, Wang L, Wang H, Cheng Y, Li X, Wan H, Liu C, Liu T, Li Q. Engineering Komagataella phaffii to biosynthesize cordycepin from methanol which drives global metabolic alterations at the transcription level. Synth Syst Biotechnol 2023; 8:242-252. [PMID: 37007278 PMCID: PMC10060148 DOI: 10.1016/j.synbio.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cordycepin has the potential to be an alternative to the disputed herbicide glyphosate. However, current laborious and time-consuming production strategies at low yields based on Cordyceps militaris lead to extremely high cost and restrict its application in the field of agriculture. In this study, Komagataella phaffii (syn. Pichia pastoris) was engineered to biosynthesize cordycepin from methanol, which could be converted from CO2. Combined with fermentation optimization, cordycepin content in broth reached as high as 2.68 ± 0.04 g/L within 168 h, around 15.95 mg/(L·h) in productivity. Additionally, a deaminated product of cordycepin was identified at neutral or weakly alkaline starting pH during fermentation. Transcriptome analysis found the yeast producing cordycepin was experiencing severe inhibition in methanol assimilation and peroxisome biogenesis, responsible for delayed growth and decreased carbon flux to pentose phosphate pathway (PPP) which led to lack of precursor supply. Amino acid interconversion and disruption in RNA metabolism were also due to accumulation of cordycepin. The study provided a unique platform for the manufacture of cordycepin based on the emerging non-conventional yeast and gave practical strategies for further optimization of the microbial cell factory.
Collapse
Affiliation(s)
- Huiping Tan
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan Road, Ganjingzi District, Dalian, 116034, China
| | - Huiguo Wang
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Yanghao Cheng
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Xiang Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Huihui Wan
- Analytical Instrumentation Centre, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Qian Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| |
Collapse
|
6
|
Berestetskiy A. Modern Approaches for the Development of New Herbicides Based on Natural Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:234. [PMID: 36678947 PMCID: PMC9864389 DOI: 10.3390/plants12020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 05/12/2023]
Abstract
Weeds are a permanent component of anthropogenic ecosystems. They require strict control to avoid the accumulation of their long-lasting seeds in the soil. With high crop infestation, many elements of crop production technologies (fertilization, productive varieties, growth stimulators, etc.) turn out to be practically meaningless due to high yield losses. Intensive use of chemical herbicides (CHs) has led to undesirable consequences: contamination of soil and wastewater, accumulation of their residues in the crop, and the emergence of CH-resistant populations of weeds. In this regard, the development of environmentally friendly CHs with new mechanisms of action is relevant. The natural phytotoxins of plant or microbial origin may be explored directly in herbicidal formulations (biorational CHs) or indirectly as scaffolds for nature-derived CHs. This review considers (1) the main current trends in the development of CHs that may be important for the enhancement of biorational herbicides; (2) the advances in the development and practical application of natural compounds for weed control; (3) the use of phytotoxins as prototypes of synthetic herbicides. Some modern approaches, such as computational methods of virtual screening and design of herbicidal molecules, development of modern formulations, and determination of molecular targets, are stressed as crucial to make the exploration of natural compounds more effective.
Collapse
Affiliation(s)
- Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Treatment of Drug-Induced Liver Injury. Biomedicines 2022; 11:biomedicines11010015. [PMID: 36672522 PMCID: PMC9855719 DOI: 10.3390/biomedicines11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Current pharmacotherapy options of drug-induced liver injury (DILI) remain under discussion and are now evaluated in this analysis. Needless to say, the use of the offending drug must be stopped as soon as DILI is suspected. Normal dosed drugs may cause idiosyncratic DILI, and drugs taken in overdose commonly lead to intrinsic DILI. Empirically used but not substantiated regarding efficiency by randomized controlled trials (RCTs) is the intravenous antidote treatment with N-acetylcysteine (NAC) in patients with intrinsic DILI by N-acetyl-p-aminophenol (APAP) overdose. Good data recommending pharmacotherapy in idiosyncratic DILI caused by hundreds of different drugs are lacking. Indeed, a recent analysis revealed that just eight RCTs have been published, and in only two out of eight trials were DILI cases evaluated for causality by the worldwide used Roussel Uclaf Causality Assessment Method (RUCAM), representing overall a significant methodology flaw, as results of DILI RCTs lacking RUCAM are misleading since many DILI cases are known to be attributable erroneously to nondrug alternative causes. In line with these major shortcomings and mostly based on anecdotal reports, glucocorticoids (GCs) and other immuno-suppressants may be given empirically in carefully selected patients with idiosyncratic DILI exhibiting autoimmune features or caused by immune checkpoint inhibitors (ICIs), while some patients with cholestatic DILI may benefit from ursodeoxycholic acid use; in other patients with drug-induced hepatic sinusoidal obstruction syndrome (HSOS) and coagulopathy risks, the indication for anticoagulants should be considered. In view of many other mechanistic factors such as the hepatic microsomal cytochrome P450 with a generation of reactive oxygen species (ROS), ferroptosis with toxicity of intracellular iron, and modification of the gut microbiome, additional therapy options may be available in the future. In summation, stopping the offending drug is still the first line of therapy for most instances of acute DILI, while various therapies are applied empirically and not based on good data from RCTs awaiting further trials using the updated RUCAM that asks for strict exclusion and inclusion details like liver injury criteria and provides valid causality rankings of probable and highly probable grades.
Collapse
|
8
|
Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. STRESSES 2022. [DOI: 10.3390/stresses3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-based residues (SBRs) of Cordyceps militaris are often considered as waste after the cultivation of the fruiting body. To demonstrate the value of this by-product, different ratios of two favorable green solvents (EtOH and water) were employed to optimize the yields of cordycepin (Cor) and adenosine (Ado) and investigate relevant activities of plant growth inhibition (allelopathy), antioxidants, and xanthine oxidase. The SBR extracts of 60% EtOH-40% water (W4) and 40% EtOH-60% water (W6) exhibited the highest antioxidant activity as well as yielded the optimum content of Cor and Ado. The W4 and Wt (hot water) exhibited maximum inhibitory effects on the growth of Raphanus sativus (radish), Lactuca sativa (lettuce) and two noxious weeds, Echinochloa crus-galli (barnyard grass) and Bidens pilosa (beggarticks). Furthermore, GC-MS scan analysis revealed the presence of 14 major compounds in the SBRs. W4 is the best solvent to optimize yields of Cor and Ado, as well as having the strongest levels of antioxidant activity, xanthine oxidase, and growth-inhibitory activity. This study reveals that SBRs are a potential source of medicinal and agricultural utilization.
Collapse
|
9
|
Simple Isolation of Cordycepin from Cordyceps militaris by Dual-Normal Phase Column Chromatography and Its Potential for Making Kombucha Functional Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cordycepin (3′-deoxyadenosine) is a potent bioactive metabolite of the medicinal fungus Cordyceps militaris, which has been increasingly exploited to treat various chronic diseases in humans. However, the current synthesis and purification procedures of cordycepin are principally laborious and complicated. This study provides a simple protocol approach to isolate and purify cordycepin from C. militaris by normal phase column chromatography at room temperature. Besides, this is the first to investigate the potential of cordycepin and cordycepin-included extracts from C. militaris for making Kombucha functional products. By a repeated column chromatography, an amount of 1.16 g of cordycepin is isolated from 2.8 kg of fruiting bodies of C. militaris, which obtained an efficiency of 83.26% compared to that estimated by high-performance liquid chromatography (HPLC). The purity of cordycepin is confirmed by thin-layer chromatography (TLC), HPLC, and proton nuclear magnetic resonance (1H NMR). In addition, kombucha-fermented extracts from cordycepin and cordycepin-included fractions show potential biological activities in terms of antioxidant, anti-diabetes via α-glucosidase inhibitory assay, and cytotoxicity via MTT assay on Meg-01 and HL-60 cell lines. Further studies on optimization of extraction protocol and verification of health benefits of kombucha products from cordycepin should be conducted prior to the official mass production.
Collapse
|
10
|
Alamoudi AJ, Alessi SA, Rizg WY, Jali AM, Safhi AY, Sabei FY, Alshehri S, Hosny KM, Abdel-Naim AB. Cordycepin Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats via Modulation of AMPK and AKT Activation. Pharmaceutics 2022; 14:pharmaceutics14081652. [PMID: 36015278 PMCID: PMC9415290 DOI: 10.3390/pharmaceutics14081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a disease that commonly affects elderly men. Cordycepin is an adenosine analog with a wide range of pharmacological activities including antiproliferative and prostatic smooth muscle relaxant effects. This study was designed to assess the actions of cordycepin in testosterone-induced BPH in rats. Animals were divided into six treatment groups: control, cordycepin-alone (10 mg/kg), testosterone-alone (3 mg/kg), cordycepin (5 mg/kg) + testosterone, cordycepin (10 mg/kg) + testosterone, and finasteride (0.5 mg/kg) + testosterone. Treatments were continued daily, 5 days a week, for 4 weeks. Cordycepin significantly prevented the increase in prostate weight and prostate index induced by testosterone. This was confirmed by histopathological examinations. Cordycepin antiproliferative activity was further defined by its ability to inhibit cyclin-D1 and proliferating cell nuclear antigen (PCNA) expression. In addition, cordycepin exhibited significant antioxidant properties as proven by the prevention of lipid peroxidation, reduced glutathione diminution, and superoxide dismutase exhaustion. This was paralleled by anti-inflammatory activity as shown by the inhibition of interleukin-6, tumor necrosis factor-α, and nuclear factor-κB expression in prostatic tissues. It also enhanced apoptosis as demonstrated by its ability to enhance and inhibit mRNA expression of Bax and Bcl2, respectively. Western blot analysis indicated that cordycepin augmented phospho-AMP-activated protein kinase (p-AMPK) and inhibited p-AKT expression. Collectively, cordycepin has the ability to prevent testosterone-induced BPH in rats. This is mediated, at least partially, by its antiproliferative, antioxidant, anti-inflammatory, and pro-apoptotic actions in addition to its modulation of AMPK and AKT activation.
Collapse
Affiliation(s)
- Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-551624044
| | - Sami A. Alessi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Care, King Abdulaziz Hospital, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Wang L, Yan H, Zeng B, Hu Z. Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris. Bioengineering (Basel) 2022; 9:bioengineering9020069. [PMID: 35200422 PMCID: PMC8869658 DOI: 10.3390/bioengineering9020069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
C. militaris is an insect-born fungus that belongs to Ascomycota and Cordyceps. It has a variety of biological activities that can be applied in medicine, health-care products, cosmeceuticals and other fields. Cordycepin (COR) is one of the major bioactive components identified from C. militaris. Thus, C. militaris and COR have attracted extensive attention. In this study, chemical synthetic methods and the biosynthesis pathway of COR were reviewed. As commercially COR was mainly isolated from C. militaris fermentation, the optimizations for liquid and solid fermentation and genetic modifications of C. militaris to increase COR content were also summarized. Moreover, the research progress of genetic modifications of C. militaris and methods for separation and purification COR were introduced. Finally, the existing problems and future research direction of C. militaris were discussed. This study provides a reference for the production of COR in the future.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (B.Z.); (Z.H.); Tel.: +86-13755679856 (B.Z.); +86-15797865372 (Z.H.)
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
- Correspondence: (B.Z.); (Z.H.); Tel.: +86-13755679856 (B.Z.); +86-15797865372 (Z.H.)
| |
Collapse
|
12
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
13
|
Chen J, Li HF, Zhao G, Lin JM, He X. Matrix-assisted laser desorption ionization mass spectrometry based quantitative analysis of cordycepin from Cordyceps militaris. J Pharm Anal 2021; 11:499-504. [PMID: 34513126 PMCID: PMC8424359 DOI: 10.1016/j.jpha.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Cordycepin, which has great immunomodulatory activities such as anticancer, antifungal, antivirus, antileukemia and lipid-lowering ones, is the secondary metabolite of Cordyceps militaris (C. militaris). Liquid submerged fermentation is the common cultivation process to produce cordycepin. To optimize the fermentation process and improve production, monitoring the cordycepin secretion in the fermentation is essential. The measurement based on chromatography-mass spectrometry methods is generally involved in the complex sample pretreatments and time-consuming separation, so more rapid and convenient methods are required. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is more attractive for faster and direct detection. Therefore, MALDI-MS detection combined with isotope-labeled internal standard was applied to the measurement of cordycepin content in the fermentation broth and mycelium. This method made accurate quantification of cordycepin in the range of 5–400 μg/mL with a relative standard deviation of 5.6%. The recovery rates of fermentation samples after the 1, 13, and 25 days were 90.15%, 94.27%, and 95.06%, respectively. The contents of cordycepin in the mycelium and fermentation broth were 136 mg/g and 148.39 mg/mL on the 20th culture day, respectively. The cordycepin secretion curve of the liquid fermentation of C. militaris was real-time traced over 25 days. A rapid quantification method of cordycepin based on MALDI-MS is proposed. The quantification relies on the stable isotope standard method. Rapid determination of the cordycepin content in the liquid fermentation broth of Cordyceps militaris without pre-treatment. Monitoring the fermentation state of C. militaris fermentation broth is benefit to improve the yield of cordycepin.
Collapse
Affiliation(s)
- Jian Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.,Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Guozhu Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiangwei He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
14
|
Berestetskiy A, Hu Q. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms 2021; 9:1379. [PMID: 34202923 PMCID: PMC8307166 DOI: 10.3390/microorganisms9071379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Biorational insecticides (for instance, avermectins, spinosins, azadirachtin, and afidopyropen) of natural origin are increasingly being used in agriculture. The review considers the chemical ecology approach for the search for new compounds with insecticidal properties (entomotoxic, antifeedant, and hormonal) produced by fungi of various ecological groups (entomopathogens, soil saprotrophs, endophytes, phytopathogens, and mushrooms). The literature survey revealed that insecticidal metabolites of entomopathogenic fungi have not been sufficiently studied, and most of the well-characterized compounds show moderate insecticidal activity. The greatest number of substances with insecticidal properties was found to be produced by soil fungi, mainly from the genera Aspergillus and Penicillium. Metabolites with insecticidal and antifeedant properties were also found in endophytic and phytopathogenic fungi. It was noted that insect pests of stored products are mostly low sensitive to mycotoxins. Mushrooms were found to be promising producers of antifeedant compounds as well as insecticidal proteins. The expansion of the number of substances with insecticidal properties detected in prospective fungal species is possible by mining fungal genomes for secondary metabolite gene clusters and secreted proteins with their subsequent activation by various methods. The efficacy of these studies can be increased with high-throughput techniques of extraction of fungal metabolites and their analysis by various methods of chromatography and mass spectrometry.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
15
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Kaushik V, Singh A, Arya A, Sindhu SC, Sindhu A, Singh A. Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00557. [PMID: 33294405 PMCID: PMC7691154 DOI: 10.1016/j.btre.2020.e00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/24/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Cordycepin is a crucial bioactive compound produced by the fungus Cordyceps spp. Its therapeutic potential has been recognized for a wide range of biological properties such as anticancer, anti-diabetic, antidepressant, antioxidant, immunomodulation, etc. Moreover, its human random clinical trials depicted a promising anti-inflammatory activity that reduced the airway inflammation remarkably in asthmatic patients. But its overexploitation and low production of cordycepin in naturally growing biomass are insufficient to meet its existing market demand for its therapeutic use. Therefore, strategies for enhancement of cordycepin production in Cordyceps spp. are warranted. However, specifically, wild type Ophiocordyceps sinensis possesses a very low content of cordycepin and has restricted growth in natural mycelial biomass. To overcome these limitations, this study attempted to enhance cordycepin production in its mycelial biomass in vitro under submerged conditions by adding various growth supplements. The effect of these growth supplements was evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) which demonstrated that among nucleosides- hypoxanthine and adenosine; amino acids-glycine and glutamine; plant hormones- 1-naphthaleneacetic acid (NAA) and 3-indoleacetic acid (IAA); vitamin-thiamine (B1) from each group of growth supplements yielded a higher amount of cordycepin with 466.48 ± 3.88, 380.23 ± 1.78, 434.97 ± 2.32, 269.78 ± 2.92, 227.61 ± 2.34, 226.02 ± 1.69 and 185.26 ± 2.35 mg/L respectively as compared to control with 13.66 ± 0.64 mg/L. Further, at the transcriptional level, quantitative real time-polymerase chain reaction (qRT-PCR) analysis of genes associated with metabolism and cordycepin biosynthesis depicted significant upregulation of major downstream genes- NT5E, RNR, purA, and ADEK which corroborated well with RP-HPLC analysis. Taken together, the present study identified growth supplements as potential precursors to activate the cordycepin biosynthesis pathway leading to improved cordycepin production in O. sinensis.
Collapse
Key Words
- ANOVA, Analysis of Variance
- Cordycepin biosynthesis pathway
- Cordycepin production
- Growth supplements
- KH2PO4, Potassium dihydrogen phosphate
- Medicinal mushroom
- MgSO4, Magnesium sulfate
- Mycelial biomass
- RP-HPLC, Reversed-phase high-performance liquid chromatography
- SDA, Sabouraud dextrose agar
- SEM, Standard error mean
- cDNA, Complementary deoxyribonucleic acid
- dNTP, Deoxyribonucleotide triphosphate
- mRNA, Messenger ribonucleic acid
- mTOR, Mammalian target of rapamycin
- qRT-PCR, Quantitative reverse transcriptase-polymerase chain reaction
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Amanvir Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Sangeeta Chahal Sindhu
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Ajay Singh
- Haryana Agro Industries Corporation, Research and Development Centre, Murthal, 131039, Sonepat, Haryana, India
| |
Collapse
|
17
|
Marsup P, Yeerong K, Neimkhum W, Sirithunyalug J, Anuchapreeda S, To-anun C, Chaiyana W. Enhancement of Chemical Stability and Dermal Delivery of Cordyceps militaris Extracts by Nanoemulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1565. [PMID: 32784892 PMCID: PMC7466510 DOI: 10.3390/nano10081565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to develop nanoemulsions for enhancing chemical stability and dermal delivery of Cordyceps militaris extracts. C. militaris was extracted by maceration and infusion. The extracts were investigated for cordycepin, phenolic, and flavonoid content. The antioxidant activity was investigated by in vitro spectrophotometric methods. The irritation profile was investigated by hen's egg-chorioallantoic membrane test. Nanoemulsions were developed using high-pressure homogenizer. C. militaris extract was incorporated into the nanoemulsion and investigated for safety, release profile, permeation, and skin retention. The results demonstrated that water extract (CW) contained the significantly highest content of cordycepin, phenolics, and flavonoids, which were responsible for antioxidant activity. CW was the most potent antioxidant. CW possessed comparable 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity and lipid peroxidation inhibition to l-ascorbic acid (96.9 ± 3.1%) and alpha-tocopherol (87.2 ± 1.0%). Consequently, ten mg/mL of CW was incorporated into nanoemulsions composing of sugar squalene, Tween® 85, and deionized water. Nanoemulsion, which had the smallest internal droplet size (157.1 ± 2.6 nm), enhanced the stability of CW, had no cytotoxicity effect and no skin irritation, released the most CW (0.9 ± 0.0% w/w after 24 h), and delivered the highest CW into the skin layer (33.5 ± 0.7% w/w). Therefore, nanoemulsion was suggested for enhancing the stability and dermal delivery of CW.
Collapse
Affiliation(s)
- Pachabadee Marsup
- Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
| | - Kankanit Yeerong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
| | - Waranya Neimkhum
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn 10250, Thailand;
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat To-anun
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
18
|
Wang G, Li M, Zhang C, Cheng H, Gao Y, Deng W, Li T. Transcriptome and proteome analyses reveal the regulatory networks and metabolite biosynthesis pathways during the development of Tolypocladium guangdongense. Comput Struct Biotechnol J 2020; 18:2081-2094. [PMID: 32802280 PMCID: PMC7419252 DOI: 10.1016/j.csbj.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Tolypocladium guangdongense has a similar metabolite profile to Ophiocordyceps sinensis, a highly regarded fungus used for traditional Chinese medicine with high nutritional and medicinal value. Although the genome sequence of T. guangdongense has been reported, relatively little is known about the regulatory networks for fruiting body development and about the metabolite biosynthesis pathways. In order to address this, an analysis of transcriptome and proteome at differential developmental stages of T. guangdongense was performed. In total, 9076 genes were found to be expressed and 2040 proteins were identified. There were a large number of genes that were significantly differentially expressed between the mycelial stage and the stages. Interestingly, the correlation between the transcriptomic and proteomic data was low, suggesting the importance of the post-transcriptional processes in the growth and development of T. guangdongense. Among the genes/proteins that were both differentially expressed during the developmental process, there were numerous heat shock proteins and transcription factors. In addition, there were numerous proteins involved in terpenoid, ergosterol, adenosine and polysaccharide biosynthesis that also showed significant downregulation in their expression levels during the developmental process. Furthermore, both tryptophan and tryptamine were present at higher levels in the primordium stage. However, indole-3-acetic acid (IAA) levels continuously decreased as development proceeded, and the enzymes involved in IAA biosynthesis were also clearly differentially downregulated. These data could be meaningful in studying the molecular mechanisms of fungal development, and for the industrial and medicinal application of macro-fungi.
Collapse
Affiliation(s)
- Gangzheng Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Min Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,College of Agriculture and Animal Husbandry, Tibet University, Nyingchi, 860000 Tibet, China
| | - Chenghua Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huijiao Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,South China Agricultural University, Guangzhou 510642, China
| | - Yu Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wangqiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Taihui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
19
|
Yang L, Li G, Chai Z, Gong Q, Guo J. Synthesis of cordycepin: Current scenario and future perspectives. Fungal Genet Biol 2020; 143:103431. [PMID: 32610064 DOI: 10.1016/j.fgb.2020.103431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Cordyceps genus, such as C. militaris and C. kyushuensis, is a source of a rare traditional Chinese medicine that has been used for the treatment of numerous chronic and malignant diseases. Cordycepin, 3'-deoxyadenosine, is a major active compound found in most Cordyceps. Cordycepin exhibits a variety of biological activities, including anti-tumor, immunomodulation, antioxidant, and anti-aging, among others, which could be applied in health products, medicine, cosmeceutical etc. fields. This review focuses on the synthesis methods for cordycepin. The current methods for cordycepin synthesis involve chemical synthesis, microbial fermentation, in vitro synthesis and biosynthesis; however, some defects are unavoidable and the production is still far from the demand of cordycepin. For the future study of cordycepin synthesis, based on the illumination of cordycepin biosynthesis pathway, genetical engineering of the Cordyceps strain or introducing microbes by virtue of synthetic biology will be the great potential strategies for cordycepin synthesis. This review will aid the future synthesis of the valuable cordycepin.
Collapse
Affiliation(s)
- Liyang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Guilan Li
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Zhi Chai
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Qiang Gong
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Jianquan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
20
|
Alburae NA, Mohammed AE, Alorfi HS, Turki AJ, Asfour HZ, Alarif WM, Abdel-Lateff A. Nidulantes of Aspergillus (Formerly Emericella): A Treasure Trove of Chemical Diversity and Biological Activities. Metabolites 2020; 10:E73. [PMID: 32079311 PMCID: PMC7073611 DOI: 10.3390/metabo10020073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
The genus Emericella (Ascomycota) includes more than thirty species with worldwide distribution across many ecosystems. It is considered a rich source of diverse metabolites. The published classes of natural compounds that are discussed here are organized according to the following biosynthetic pathways: polyketides (azaphilones, cyclopentenone pigments, dicyanides, furan derivatives, phenolic ethers, and xanthones and anthraquinones); shikimate derivatives (bicoumarins); mevalonate derivatives (meroterpenes, sesquiterpenes, sesterterpenes and steroids) and amino acids derivatives (alkaloids (indole-derivatives, isoindolones, and piperazine) and peptides (depsipeptides)). These metabolites produce the wide array of biological effects associated with Emericella, including antioxidant, antiproliferative, antimalarial, antiviral, antibacterial, antioxidant, antihypertensive, anti-inflammatory, antifungal and kinase inhibitors. Careful and extensive study of the diversity and distribution of metabolites produced by the genus Emericella (either marine or terrestrial) revealed that, no matter the source of the fungus, the composition of the culture medium effectively controls the metabolites produced. The topic of this review is the diversity of metabolites that have been identified from Emericella, along with the contextual information on either their biological or geographic sources. This review presents 236 natural compounds, which were reported from marine and terrestrial Emericella. Amongst the reported compounds, only 70.2% were biologically assayed for their effects, including antimicrobial or cytotoxicity. This implies the need for substantial investigation of alternative activities. This review includes a full discussion of compound structures and disease management, based on materials published from 1982 through December 2019.
Collapse
Affiliation(s)
- Najla Ali Alburae
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hajer Saeed Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Adnan Jaman Turki
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia;
| | - Hani Zakaria Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Walied Mohamed Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia;
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|