1
|
Luo L, Ye P, Lin Q, Liu M, Hao G, Wei T, Sahu SK. From sequences to sustainability: Exploring dipterocarp genomes for oleoresin production, timber quality, and conservation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112139. [PMID: 38838990 DOI: 10.1016/j.plantsci.2024.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Dipterocarp species dominate tropical forest ecosystems and provide key ecological and economic value through their use of aromatic resins, medicinal chemicals, and high-quality timber. However, habitat loss and unsustainable logging have endangered many Dipterocarpaceae species. Genomic strategies provide new opportunities for both elucidating the molecular pathways underlying these desirable traits and informing conservation efforts for at-risk taxa. This review summarizes the progress in dipterocarp genomics analysis and applications. We describe 16 recently published Dipterocarpaceae genome sequences, representing crucial genetic blueprints. Phylogenetic comparisons delineate evolutionary relationships among species and provide frameworks for pinpointing functional changes underlying specialized metabolism and wood development patterns. We also discuss connections revealed thus far between specific gene families and both oleoresin biosynthesis and wood quality traits-including the identification of key terpenoid synthases and cellulose synthases likely governing pathway flux. Moreover, the characterization of adaptive genomic markers offers vital resources for supporting conservation practices prioritizing resilient genotypes displaying valuable oleoresin and timber traits. Overall, progress in dipterocarp functional and comparative genomics provides key tools for addressing the intertwined challenges of preserving biodiversity in endangered tropical forest ecosystems while sustainably deriving aromatic chemicals and quality lumber that support diverse human activities.
Collapse
Affiliation(s)
- Liuming Luo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Ye
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiongqiong Lin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Gang Hao
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China.
| |
Collapse
|
2
|
Pocasap P, Tamprasit K, Rungsri T, Kaimuangpak K, Srisongkram T, Katekaew S, Kamwilaisak K, Puthongking P, Weerapreeyakul N. Pickering Emulsion of Oleoresin from Dipterocarpus alatus Roxb. ex G. Don and Its Antiproliferation in Colon (HCT116) and Liver (HepG2) Cancer Cells. Molecules 2024; 29:2695. [PMID: 38893569 PMCID: PMC11174047 DOI: 10.3390/molecules29112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Oleoresin of Dipterocarpus alatus Roxb. ex G. Don (DA) has been traditionally used for local medicinal applications. Several in vitro studies have indicated its pharmacological potential. However, the low water solubility hinders its use and development for pharmaceutical purposes. The study aimed to (1) formulate oil-in-water (o/w) Pickering emulsions of DA oleoresin and (2) demonstrate its activities in cancer cells. The Pickering emulsions were formulated using biocompatible carboxylated cellulose nanocrystal (cCNC) as an emulsifier. The optimized emulsion comprised 3% (F1) and 4% (v/v) (F2) of oleoresin in 1% cCNC and 0.1 M NaCl, which possessed homogeneity and physical stability compared with other formulations with uniform droplet size and low viscosity. The constituent analysis indicated the presence of the biomarker dipterocarpol in both F1 and F2. The pharmacological effects of the two emulsions were demonstrated in vitro against two cancer cell lines, HepG2 and HCT116. Both F1 and F2 suppressed cancer cell viability. The treated cells underwent apoptosis, as demonstrated by distinct nuclear morphological changes in DAPI-stained cells and Annexin V/PI-stained cells detected by flow cytometry. Our study highlights the prospect of Pickering emulsions for oleoresin, emphasizing enhanced stability and potential pharmacological advantages.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kawintra Tamprasit
- Graduate School in the Program of Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (K.K.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Thanyathanya Rungsri
- Faculty of Pharmaceutical Sciences in the Program of Doctor of Pharmacy, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Karnchanok Kaimuangpak
- Graduate School in the Program of Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (K.K.)
| | - Tarapong Srisongkram
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ploenthip Puthongking
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
3
|
Szmechtyk T, Małecka M. Phytochemicals from Bark Extracts and Their Applicability in the Synthesis of Thermosetting Polymers: An Overview. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2123. [PMID: 38730929 PMCID: PMC11084627 DOI: 10.3390/ma17092123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review focuses on recent research on the phytochemicals found in bark from different trees and their potential to be used as substrates for the synthesis of thermosetting resins. Recent studies about the influence of each bark harvesting step on the extracted phytochemicals, from debarking to extraction, are investigated. A comparison of bark extracts in terms of the correlation between extraction conditions and efficiency (based on the total phenolic content (TPC) and extraction yield) is presented for six groups of trees (Norway spruce, pine species, other conifers, oak species, other deciduous trees of the north temperate zone, tropical and subtropical trees) and evaluated. The evaluation revealed that there is an interesting relationship between the extraction time and the type of solvent for some types of tree bark. It was found that a relatively short extraction time and a solvent temperature close to the boiling point are favourable. The latest research on the application of bark extracts in different types of thermosetting resins is described. This review discusses the attractiveness of bark extracts in terms of functional groups and the possibilities arising from extractable phytochemicals. In addition, different approaches (selective versus holistic) and methods of application are presented and compared.
Collapse
Affiliation(s)
- Tomasz Szmechtyk
- Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland;
| | | |
Collapse
|
4
|
Senawong K, Katekaew S, Juntahum S, Laloon K. Impact of Grinding and Sorting Particle Size on Phytochemical Yield in Dipterocarpus alatus Leaf Extract. Int J Biomater 2023; 2023:4512665. [PMID: 38162461 PMCID: PMC10756739 DOI: 10.1155/2023/4512665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The main objective of this study was to investigate the impact of grinding (pretreatment) with a pin mill on the crude extract yields of Dipterocarpus alatus (Yang-Na) leaves. A factorial design in a completely randomized design was conducted to study the combinational effects of sieve sizes (1.0, 1.5, and 3.0 mm) and feed rates (1.0, 1.5, and 3.0 kg min-1), examining the interaction of parameters for grinding oven-dried Yang-Na leaves. Ethanol extraction initially evaluated the influence of Yang-Na leaf powder with diverse particle sizes. When sorting particle size, the crude extract yield increased as the particle size decreased, with 0.038-0.150 mm particles yielding the highest extraction, although yields decline when the particle size is lower than 0.038 mm. The average particle sizes, production capacity, and fineness modulus all exhibited a significant decrease as the sieve size and feeding rate were reduced, while the specific energy consumption showed an inversely proportional relationship with these parameters. Intriguingly, the crude extract yield remained independent of the average particle size. Notably, the highest yield (14.79 g kg-1) was derived from a 0.31 mm average particle size, ground with a 1.5 mm sieve and a 3 kg min-1 feeding rate. This suggests that the pretreatment, involving both grinding conditions and sorting size, has an impact on the performance of the extraction process. However, this study offers an energy-efficient alternative, advocating for using average particle sizes without prior sorting, streamlining the extraction process while maintaining substantial yields. These insights underline the crucial influence of particle size and grinding techniques, advancing our understanding of efficient herbal extraction techniques for industrial applications.
Collapse
Affiliation(s)
- Kritsadang Senawong
- General Education Teaching Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchat Juntahum
- Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kittipong Laloon
- Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
- Food, Energy, Water Security Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S. A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:940. [PMID: 37436672 DOI: 10.1007/s10661-023-11432-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/27/2023] [Indexed: 07/13/2023]
Abstract
Water bodies with the dye methylene blue pose serious environmental and health risks to humans. Therefore, the creation and investigation of affordable, potential adsorbents to remove methylene blue dye from water resources as a long-term fix is one focus of the scientific community. Food plants and other carbon-source serve as a hotspot for a wider range of application on different pollutants that impact the environment and living organisms. Here, we reviewed the use of treated and untreated biosorbents made from plant waste leaves for removing the dye methylene blue from aqueous media. After being modified, activated carbon made from various plant leaves improves adsorption performance. The range of activating chemicals, activation methods, and bio-sorbent material characterisation using FTIR analysis, Barunauer-Emmett-Teller (BET) surface area, scanning electron microscope (SEM-EDX), and SEM-EDX have all been covered in this review. It has been thoroughly described how the pH solution of the methylene blue dye compares to the pHPZC of the adsorbent surface. The presentation also includes a thorough analysis of the application of the isotherm model, kinetic model, and thermodynamic parameters. The selectivity of the adsorbent is the main focus of the adsorption kinetics and isotherm models. It has been studied how adsorption occurs, how surface area and pH affect it, and how biomass waste compares to other adsorbents. The use of biomass waste as adsorbents is both environmentally and economically advantageous, and it has been discovered to have exceptional color removal capabilities.
Collapse
Affiliation(s)
| | | | - Fouad Fadhil Al-Qaim
- Department of Chemistry, Faculty of Science for Women, University of Babylon, PO Box 4, Hilla, Iraq.
| | - Issa Farhan Deyab
- Medical Physics Department, Al-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Chatuphonprasert W, Tatiya-aphiradee N, Sutthanut K, Thammawat S, Puthongking P, Nopwinyoowong N, Jarukamjorn K. Combinatory effects of Dipterocarpus alatus twig emulgel: Wound-restoring, antibacterial, and anti-inflammatory activities against methicillin-resistant Staphylococcus aureus-infected mouse superficial wounds. Heliyon 2023; 9:e17483. [PMID: 37416687 PMCID: PMC10320117 DOI: 10.1016/j.heliyon.2023.e17483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/22/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Dipterocarpus alatus has been used for the treatment of infectious skin diseases and ulcerative wounds in Thai traditional medicine. A major pathogen in human superficial skin infections is methicillin-resistant Staphylococcus aureus (MRSA). This study determined the wound healing, antibacterial, and anti-inflammatory activities of D. alatus twig emulgel against MRSA-infected mouse superficial skin wounds. Ethyl acetate-methanol crude extract of D. alatus twig was incorporated into emulgel at concentrations of 20 and 40 mg/g (D20 and D40) and its activity was compared to tetracycline emulgel (160 μg/g, Tetra). MRSA-infected superficial wounds demonstrated decreased skin barrier strength, increased transepidermal water loss (TEWL), and mast cell accumulation. Expression of toll-like receptor 2 (TLR-2), NF-κβ, TNFα, IL-1β, IL-6 and IL-10 genes were induced after MRSA infection. Daily application of 100 μL of D20 or D40 for 9 days restored skin barrier strength and TEWL while reducing mast cell and MRSA numbers compared to the non-treated group (MRSA-NT). The wounds treated with D20 and D40 were entirely healed on day 9. Expression of TLR-2 and cytokine-related genes NF-κβ, TNFα, IL-1β, IL-6 and IL-10 were normalized by treatment with either D20 or D40. Therefore, emulgel containing 20 to 40 mg/g ethyl acetate-methanol crude D. alatus twig extract is a good candidate for development as a topical formulation for MRSA-infected ulcerated wounds.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Division of Pre-clinic, Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nitima Tatiya-aphiradee
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Khaetthareeya Sutthanut
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Sutthiwan Thammawat
- Division of Pre-clinic, Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
| | - Ploenthip Puthongking
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Naroeporn Nopwinyoowong
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| |
Collapse
|
7
|
Wang P, Chi J, Guo H, Wang SX, Wang J, Xu EP, Dai LP, Wang ZM. Identification of Differential Compositions of Aqueous Extracts of Cinnamomi Ramulus and Cinnamomi Cortex. Molecules 2023; 28:molecules28052015. [PMID: 36903261 PMCID: PMC10004064 DOI: 10.3390/molecules28052015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Cinnamomi ramulus (CR) and Cinnamomi cortex (CC), both sourced from Cinnamomum cassia Presl, are commonly used Chinese medicines in the Chinese Pharmacopeia. However, while CR functions to dissipate cold and to resolve external problems of the body, CC functions to warm the internal organs. To clarify the material basis of these different functions and clinical effects, a simple and reliable UPLC-Orbitrap-Exploris-120-MS/MS method combined with multivariate statistical analyses was established in this study with the aim of exploring the difference in chemical compositions of aqueous extracts of CR and CC. As the results indicated, a total of 58 compounds was identified, including nine flavonoids, 23 phenylpropanoids and phenolic acids, two coumarins, four lignans, four terpenoids, 11 organic acids and five other components. Of these compounds, 26 significant differential compounds were identified statistically including six unique components in CR and four unique components in CC. Additionally, a robust HPLC method combined with hierarchical clustering analysis (HCA) was developed to simultaneously determine the concentrations and differentiating capacities of five major active ingredients in CR and CC: coumarin, cinnamyl alcohol, cinnamic acid, 2-methoxycinnamic acid and cinnamaldehyde. The HCA results showed that these five components could be used as markers for successfully distinguishing CR and CC. Finally, molecular docking analyses were conducted to obtain the affinities between each of the abovementioned 26 differential components, focusing on targets involved in diabetes peripheral neuropathy (DPN). The results indicated that the special and high-concentration components in CR showed high docking scores of affinities with targets such as HbA1c and proteins in the AMPK-PGC1-SIRT3 signaling pathway, suggesting that CR has greater potential than CC for treating DPN.
Collapse
Affiliation(s)
- Pei Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jun Chi
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Guo
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shun-Xiang Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Er-Ping Xu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Li-Ping Dai
- Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (L.-P.D.); (Z.-M.W.); Tel.: +86-187-0365-1652 (L.-P.D.)
| | - Zhi-Min Wang
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (L.-P.D.); (Z.-M.W.); Tel.: +86-187-0365-1652 (L.-P.D.)
| |
Collapse
|
8
|
Dipterocarpol in Oleoresin of Dipterocarpus alatus Attributed to Cytotoxicity and Apoptosis-Inducing Effect. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103187. [PMID: 35630669 PMCID: PMC9145408 DOI: 10.3390/molecules27103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Dipterocarpus alatus Roxb. ex G. Don is widely found in Southeast Asia. Its oleo-resin has reportedly been used in biodiesel production. Two different biodiesel production processes produce resinous byproducts, namely degumming (DG) and distillation (DT). Gas chromatography-mass spectrometry identified sesquiterpenes and triterpenes in oleo-resin, DG, and DT; and long-chain hydrocarbons in oleo-resin. High-performance liquid chromatography detected dipterocarpol as a marker compound, with the highest to lowest amounts detected in DG, DT, and oleo-resin, respectively. Oleo-resin, DG, and DT exerted more cytotoxicity than dipterocarpol, and melphalan, a chemotherapeutic drug. Oleo-resin, DG, and DT exerted cytotoxicity to a different degree in T cell leukemia (Jurkat), cervical adenocarcinoma (HeLa), and human hepatocellular carcinoma (HepG2) cells, while the highest selectivity was found in the Jurkat cells compared to the non-cancer Vero cells. Dipterocarpol exhibited the highest cytotoxicity in HepG2 cells and the lowest cytotoxicity in Jurkat cells. Oleo-resin, DG, and DT induced apoptosis in Jurkat cells. In oleo-resin, DG, and DT, dipterocarpol and other compounds may act in synergy leading to cytotoxicity and an apoptosis-inducing effect. Oleo-resin, DG, and DT could be potential sources for anticancer agents. Dipterocarpol could serve as a biomarker for follow ups on the anticancer activity of a sample from D. alatus.
Collapse
|
9
|
Wang S, Liang H, Wang H, Li L, Xu Y, Liu Y, Liu M, Wei J, Ma T, Le C, Yang J, He C, Liu J, Zhao J, Zhao Y, Lisby M, Sahu SK, Liu H. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:538-553. [PMID: 34687252 PMCID: PMC8882806 DOI: 10.1111/pbi.13735] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 05/30/2023]
Abstract
Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.
Collapse
Affiliation(s)
- Sibo Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Hongping Liang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongli Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Linzhou Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Yan Xu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Min Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Jinpu Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Tao Ma
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cheng Le
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
| | - Jinlong Yang
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
- College of Forensic ScienceXi'an Jiaotong UniversityXi'anChina
| | | | - Jie Liu
- Forestry Bureau of RuiliYunnan Dehong, RuiliChina
| | | | | | - Michael Lisby
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Artchayasawat A, Boueroy P, Boonmars T, Pumhirunroj B, Sriraj P, Aukkanimart R, Boonjaraspinyo S, Pitaksakulrat O, Ratanasuwan P, Suwannatrai A, Eamudomkarn C, Laummaunwai P, Zhiliang W. Efficacy of Dipterocarpus alatus oil combination with Rhinacanthus nasutus leaf and Garcinia mangostana pericarps against canine demodicosis. Vet World 2021; 14:2919-2928. [PMID: 35017839 PMCID: PMC8743773 DOI: 10.14202/vetworld.2021.2919-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: Canine demodicosis is a skin disease that is a major global health problem in dogs. Ivermectin is a drug of choice for treatment, but it may cause toxicity in dogs carrying multidrug resistance mutation-1 gene mutations. Hence, alternative herbal medicines are used instead of the drug, such as Dipterocarpus alatus oil (YN oil), Rhinacanthus nasutus leaf (WC), and Garcinia mangostana pericarps (MG) extracts. This study aimed to determine the efficacy of D. alatus oil, R. nasutus leaf, and G. mangostana pericarp extracts on canine demodicosis in vivo. Materials and Methods: Twenty-five mixed-breed dogs with localized demodicosis were examined. Dogs were diagnosed with demodicosis through deep skin scraping and screened with the inclusion criteria. Five dogs of each group were treated in five treatment groups (ivermectin, YN oil, YN oil+WC, YN oil+MG, and YN oil+WC+MG) for 1 month. The individual dogs were clinically evaluated, and the dermatological lesions were monitored daily for 60 days. Results: Dermatological lesion improvement was predominantly observed in the group of dogs treated with YN oil+WC. This was evidenced by the disappearance of the hyperpigmentation and lichenification on day 28 post-treatment and alopecia on day 56 post-treatment. Moreover, no allergic or clinical signs were observed during treatment. Conclusion: YN oil+WC is an alternative herbal medicine that could be used for the treatment of localized canine demodicosis.
Collapse
Affiliation(s)
- Atchara Artchayasawat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Parichart Boueroy
- Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Benjamabhorn Pumhirunroj
- Program in Animal Science, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Pranee Sriraj
- Department of Traditional Medicine, Faculty of Natural Resources, Rajamangala University of Technology ISAN Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| | - Ratchadawan Aukkanimart
- Department of Traditional Medicine, Faculty of Natural Resources, Rajamangala University of Technology ISAN Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| | - Sirintip Boonjaraspinyo
- Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Opal Pitaksakulrat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panaratana Ratanasuwan
- Department of Anesthesiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiporn Suwannatrai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatanun Eamudomkarn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wu Zhiliang
- Department of Parasitology, Gifu University School of medicine, Gifu 501-1194, Japan
| |
Collapse
|
11
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
12
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
13
|
Smallholder decision-making process in technology adoption intention: implications for Dipterocarpus alatus in Northeastern Thailand. Heliyon 2021; 7:e06633. [PMID: 33898806 PMCID: PMC8056417 DOI: 10.1016/j.heliyon.2021.e06633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/16/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
Coupled with newly introduced technology, sustainable agriculture is considered a cooperative strategy for low-income countries to improve farm productivity and economic growth. This study focuses on analyzing the process of adoption intention with a new technology associated with the use of Dipterocarpus alatus, a large tree species restricted to Thailand. A conceptual framework of the technology acceptance model (TAM) has been applied to explain farmers' decision-making processes. The purposive sampling approach targets farmers in the area who have D. alatus trees on their properties. Structural equation models, latent variables, and the hypothesized adoption intention interactions are the primary tools used in analyzing the decision-making process. Results showed that adoption intention concerning D. alatus technology was significantly influenced by perceived ease of use and attitudes based on experience and environmental sensibilities. This study has extended the application of TAM, providing insight into decision-making processes that are not hindered by technology implementation.
Collapse
|
14
|
Phetcharaburanin J, Deewai S, Kulthawatsiri T, Moolpia K, Suksawat M, Promraksa B, Klanrit P, Namwat N, Loilome W, Poopasit K, Katekaew S, Phetcharaburanin P. 1H NMR metabolic phenotyping of Dipterocarpus alatus as a novel tool for age and growth determination. PLoS One 2020; 15:e0243432. [PMID: 33320902 PMCID: PMC7737897 DOI: 10.1371/journal.pone.0243432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/21/2020] [Indexed: 11/18/2022] Open
Abstract
Dipterocarpus alatus belongs to Family Dipterocarpaceae that can be commonly found in Southeast Asian countries. It is a perennial plant with oval-shaped leaves and oleoresin-rich wood. It has been considered as a multipurpose plant since all parts can be practically utilized. One of the major problems for utilizing Dipterocarpus alatus is the difficulty knowing the exact age as this kind of plant is ready for multipurpose use after 20 years of age. At present, the most commonly used method for determining age of Dipterocarpus alatus is the annual ring estimation. However, this conventional method is unable to provide the high precision and accuracy of age determination due to its limitation including blurry annual rings caused by enriched oleoresin in the wood. The current study aimed to investigate the differences of 1H -NMR spectroscopy-based metabolic profiles from bark and leaf of Dipterocarpus alatus at different ages including 2, 7, 15 and 25 years. Our findings demonstrated that there is a total of 56 metabolites shared between bark and leaf. It is noticeable that bark at different ages exhibited the strongest variation and sugar or sugar derivatives that were found in higher concentrations in bark compared with those in leaf. We found that decreasing levels of certain metabolites including tagatose, 1'kestose and 2'-fucosyllactose exhibited the promising patterns. In conclusion, panel metabolites involved in the sucrose biosynthesis can precisely determine the age and growth of Dipterocarpus alatus.
Collapse
Affiliation(s)
- Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suthicha Deewai
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Komkid Moolpia
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Museum and Lifelong Learning Center, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Bundit Promraksa
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Kitisak Poopasit
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Penprapa Phetcharaburanin
- Museum and Lifelong Learning Center, Khon Kaen University, Khon Kaen, Thailand
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Coordination Center of the Royal Initiative Projects, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Extract of Pogostemon cablin Possesses Potent Anticancer Activity against Colorectal Cancer Cells In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9758156. [PMID: 32963578 PMCID: PMC7499317 DOI: 10.1155/2020/9758156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Pogostemon cablin (PCa), an herb used in traditional Chinese medicine, is routinely used in the amelioration of different types of gastrointestinal discomfort. However, the mechanisms underlying the cancer suppression activity of PCa in colorectal cancer (CRC) cells have yet to be clarified. The aim of this study was to investigate the anticancer effects of PCa, specifically the induction of apoptosis in CRC cells. The growth inhibition curve of CRC cells following exposure to PCa was detected by an MTT assay. Moreover, PCa combined with 5-FU revealed a synergic effect of decreased cell viability. PCa inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase and cell apoptosis through regulation of associated protein expression. An in vivo study showed that PCa suppressed the growth of CRC via induction of cell apoptosis with no significant change in body weight or organ histology. Our results demonstrated that PCa inhibits the growth of CRC cells and induces apoptosis in vitro and in vivo, which suggests the potential applicability of PCa as an anticancer agent.
Collapse
|
16
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
17
|
Duan L, Zhang C, Zhao Y, Chang Y, Guo L. Comparison of Bioactive Phenolic Compounds and Antioxidant Activities of Different Parts of Taraxacum mongolicum. Molecules 2020; 25:molecules25143260. [PMID: 32708908 PMCID: PMC7397316 DOI: 10.3390/molecules25143260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Herbs derived from Taraxacum genus have been used as traditional medicines and food supplements in China for hundreds of years. Taraxacum mongolicum is a famous traditional Chinese medicine derived from Taraxacum genus for the treatment of inflammatory disorders and viral infectious diseases. In the present study, the bioactive phenolic chemical profiles and antioxidant activities of flowers, leaves, and roots of Taraxacum mongolicum were investigated. Firstly, a high performance liquid chromatography method combined with segmental monitoring strategy was employed to simultaneously determine six bioactive phenolic compounds in Taraxacum mongolicum samples. Moreover, multivariate statistical analysis, including hierarchical clustering analysis, principal component analysis, and partial least squares discriminant analysis were performed to compare and discriminate different parts of Taraxacum mongolicum based on the quantitative data. The results showed that three phenolic compounds, caftaric acid, caffeic acid, and luteolin, could be regarded as chemical markers for the differences of flowers, leaves, and roots of Taraxacum mongolicum. In parallel, total phenolic contents, total flavonoid contents and antioxidant activities of different parts of Taraxacum mongolicum were also evaluated and compared. It is clear that Taraxacum mongolicum had antioxidant properties, and the antioxidant capacities of different parts of Taraxacum mongolicum in three antioxidant assays showed a similar tendency: Flowers ≈ leaves > roots, which revealed a positive relationship with their total phenolic and flavonoid contents. Furthermore, to find the potential antioxidant components of Taraxacum mongolicum, the latent relationships of the six bioactive phenolic compounds and antioxidant activities of Taraxacum mongolicum were investigated by Pearson correlation analysis. The results indicated caftaric acid and caffeic acid could be the potential antioxidant ingredients of Taraxacum mongolicum. The present work may facilitate better understanding of differences of bioactive phenolic constituents and antioxidant activities of different parts of Taraxacum mongolicum and provide useful information for utilization of this herbal medicine.
Collapse
Affiliation(s)
- Li Duan
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (L.D.); (C.Z.); (Y.Z.)
| | - Chenmeng Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (L.D.); (C.Z.); (Y.Z.)
| | - Yang Zhao
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (L.D.); (C.Z.); (Y.Z.)
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China;
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Correspondence: ; Tel.: +86-0311-8992-6017
| |
Collapse
|
18
|
Salleh WMNHW, Khamis S, Rahman MNA, Nafiah MA. Chemical composition and biological activities of Dipterocarpus cornutus Dyer essential oil. Z NATURFORSCH C 2020. [DOI: 10.1515/znc-2020-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The design of this study was developed to examine the chemical composition, anticholinesterase and anti-inflammatory inhibitory activities of the essential oil of Dipterocarpus cornutus Dyer from Malaysia. Gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) analysis of the essential oil revealed 20 components, representing 94.6% of the oil. The major components identified were α-gurjunene (50.6%), α-selinene (8.3%), spathulenol (5.7%), and bicyclogermacrene (5.4%). Anticholinesterase and anti-inflammatory activity were also evaluated using the Ellman method and lipoxygenase (LOX) enzyme, respectively, in which the essential oil revealed weak inhibitory activity against the acetylcholinesterase (AChE) (I%: 30.2%) and butyrylcholinesterase (BChE) (I%: 32.5%), while moderate inhibitory activity was reported in the LOX (I%: 70.2%). The approach adopted in this study and results are reported for the first time which could be useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Dipterocarpus genus.
Collapse
Affiliation(s)
- Wan Mohd Nuzul Hakimi Wan Salleh
- Department of Chemistry, Faculty of Science and Mathematics , Universiti Pendidikan Sultan Idris (UPSI) , 35900 Tanjong Malim , Perak , Malaysia , Phone: +6015-48797123
| | - Shamsul Khamis
- School of Environmental and Natural Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , 43600 Bangi , Selangor , Malaysia
| | - Muhammad Nurakmal Abdul Rahman
- Department of Chemistry, Faculty of Science and Mathematics , Universiti Pendidikan Sultan Idris (UPSI) , 35900 Tanjong Malim , Perak , Malaysia
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics , Universiti Pendidikan Sultan Idris (UPSI) , 35900 Tanjong Malim , Perak , Malaysia
| |
Collapse
|
19
|
Effects of the Ethanol Extract of Dipterocarpus alatus Leaf on the Unpredictable Chronic Mild Stress-Induced Depression in ICR Mice and Its Possible Mechanism of Action. Molecules 2019; 24:molecules24183396. [PMID: 31540539 PMCID: PMC6767234 DOI: 10.3390/molecules24183396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
Treatment of the unpredictable chronic mild stress (UCMS) mice with the ethanol extract of Dipterocarpus alatus leaf attenuated anhedonia (increased sucrose preference) and behavioral despair (decreased immobility time in tail suspension test (TST) and forced swimming test (FST)). The extract not only decreased the elevation of serum corticosterone level and the index of over-activation of the hypothalamic-pituitary-adrenal (HPA) axis, caused by UCMS, but also ameliorated UCMS-induced up-regulation of serum- and glucocorticoid-inducible kinase 1 (SGK1) mRNA expression and down-regulation of cyclic AMP-responsive element binding (CREB) and brain-derived neurotrophic factor (BDNF) mRNAs in frontal cortex and hippocampus. In vitro monoamine oxidase (MAO) inhibition assays showed that the extract exhibited the partial selective inhibition on MAO-A. HPLC analysis of the extract showed the presence of flavonoids (luteolin-7-O-glucoside, kaempferol-3-glucoside, rutin) and phenolic acids (gallic acid, ferulic acid, and caffeic acid) as major constituents.
Collapse
|