1
|
Mayattu K, Ghormade V. Controlled delivery of nikkomycin by PEG coated PLGA nanoparticles inhibits chitin synthase to prevent growth of Aspergillus flavus and Aspergillus fumigatus. Z NATURFORSCH C 2024; 79:155-162. [PMID: 38842117 DOI: 10.1515/znc-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Aspergillosis is one of the most common fungal infections that can threaten individuals with immune compromised condition. Due to the increasing resistance of pathogens to the existing antifungal drugs, it is difficult to tackle such disease conditions. Whereas, nikkomycin is an emerging safe and effective antifungal drug which causes fungal cell wall disruption by inhibiting chitin synthase. Hence, the study aims at the development of nikkomycin loaded PEG coated PLGA nanoparticles for its increased antifungal efficiency and inhibiting Aspergillus infections. The P-PLGA-Nik NPs were synthesized by w/o/w double emulsification method which resulted in a particle size of 208.3 ± 15 nm with a drug loading of 52.97 %. The NPs showed first order diffusion-controlled drug release which was sustained for 24 h. These nanoparticle's antifungal efficacy was tested using the CLSI - M61 guidelines and the MIC50 defined against Aspergillus flavus and Aspergillus fumigatus was found to be >32 μg/ml which was similar to the nikkomycin MIC. The hyphal tip bursting showed the fungal cell wall disruption. The non-cytotoxic and non-haemolytic nature highlights the drug safety profile.
Collapse
Affiliation(s)
- Kamal Mayattu
- Nanobioscience Group, 72467 Agharkar Research Institute , GG Agarkar Road, Pune 411004, Maharashtra, India
| | - Vandana Ghormade
- Nanobioscience Group, 72467 Agharkar Research Institute , GG Agarkar Road, Pune 411004, Maharashtra, India
| |
Collapse
|
2
|
Kalita B, Roy A, Jayaprakash A, Arunachalam A, P.T.V L. Identification of lncRNA and weighted gene coexpression network analysis of germinating Rhizopus delemar causing mucormycosis. Mycology 2024; 14:344-357. [PMID: 38187880 PMCID: PMC10769135 DOI: 10.1080/21501203.2023.2265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Rhizopus delemar, an opportunistic fungal pathogen, causes a highly fatal disease, mucormycosis. Spore germination is a crucial mechanism for disease pathogenesis. Thus, exploring the molecular mechanisms of fungal germination would underpin our knowledge of such transformation and, in turn, help control mucormycosis. To gain insight into the developmental process particularly associated with cell wall modification and synthesis, weighted gene co-expression network analysis (WGCNA) was performed including both coding and non-coding transcripts identified in the current study, to find out the module of interest in the germination stages. The module-trait relationship identified a particular module to have a high correlation only at the resting phase and further analysis revealed the module to be enriched for protein phosphorylation, carbohydrate metabolic process, and cellular response to stimulus. Moreover, co-expression network analysis of highly connected nodes revealed cell wall modifying enzymes, especially those involved in mannosylation, chitin-glucan crosslinking, and polygalacturonase activities co-expressing and interacting with the novel lncRNAs among which some of them predicted to be endogenous target mimic (eTM) lncRNAs. Hence, the present study provides an insight into the onset of spore germination and the information on the novel non-coding transcripts with key cell wall-related enzymes as potential targets against mucormycosis.
Collapse
Affiliation(s)
- Barsha Kalita
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Abhijeet Roy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | | | | | - Lakshmi P.T.V
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Tezcan EF, Demirtas Y, Cakar ZP, Ulgen KO. Comprehensive genome-scale metabolic model of the human pathogen Cryptococcus neoformans: A platform for understanding pathogen metabolism and identifying new drug targets. FRONTIERS IN BIOINFORMATICS 2023; 3:1121409. [PMID: 36714093 PMCID: PMC9880062 DOI: 10.3389/fbinf.2023.1121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: The fungal priority pathogen Cryptococcus neoformans causes cryptococcal meningoencephalitis in immunocompromised individuals and leads to hundreds of thousands of deaths per year. The undesirable side effects of existing treatments, the need for long application times to prevent the disease from recurring, the lack of resources for these treatment methods to spread over all continents necessitate the search for new treatment methods. Methods: Genome-scale models have been shown to be valuable in studying the metabolism of many organisms. Here we present the first genome-scale metabolic model for C. neoformans, iCryptococcus. This comprehensive model consists of 1,270 reactions, 1,143 metabolites, 649 genes, and eight compartments. The model was validated, proving accurate when predicting the capability of utilizing different carbon and nitrogen sources and growth rate in comparison to experimental data. Results and Discussion: The compatibility of the in silico Cryptococcus metabolism under infection conditions was assessed. The steroid and amino acid metabolisms found in the essentiality analyses have the potential to be drug targets for the therapeutic strategies to be developed against Cryptococcus species. iCryptococcus model can be applied to explore new targets for antifungal drugs along with essential gene, metabolite and reaction analyses and provides a promising platform for elucidation of pathogen metabolism.
Collapse
Affiliation(s)
- Enes Fahri Tezcan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Yigit Demirtas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Zeynep Petek Cakar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey,*Correspondence: Kutlu O. Ulgen,
| |
Collapse
|
4
|
Gupta S, Kumar A, Tamuli R. CRZ1 transcription factor is involved in cell survival, stress tolerance, and virulence in fungi. J Biosci 2022. [DOI: 10.1007/s12038-022-00294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Huang X, Zheng D, Yong J, Li Y. Antifungal activity and potential mechanism of berberine hydrochloride against fluconazole-resistant Candida albicans. J Med Microbiol 2022; 71. [PMID: 35679157 DOI: 10.1099/jmm.0.001542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The emergence of resistance to fluconazole in Candida albicans has made the clinical treatment of this microbe difficult. A potential strategy to address this problem involves diminishing fungal resistance to antimicrobial drugs.Hypothesis. Berberine hydrochloride (BH), the primary active ingredient of the traditional Chinese medicine (TCM) Coptis, inhibits the growth of fluconazole-resistant C. albicans through its action on the high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway.Aim. To examine the effect of BH on the HOG-MAPK pathway to assess the potential molecular mechanism by which BH inhibits fluconazole-resistant C. albicans.Methodology. The minimum inhibitory concentration (MIC) of BH to fluconazole-resistant C. albicans was measured using the broth microdilution approach to determine the concentration of effective drug intervention. Changes in physiological functions regulated by the HOG-MAPK pathway in response to BH treatment were measured, as well as the expression of central signalling pathway genes and key downstream factors by qRT-PCR and Western blotting, respectively.Results. BH inhibited fluconazole-resistant C. albicans and the sensitivity to fluconazole increased after BH treatment. At a concentration of 256 and 64 μg ml-1 BH may affect key downstream factors that regulate several physiological functions of C. albicans by upregulating the core genes expression of SLN1, SSK2, HOG1, and PBS2 in the HOG-MAPK pathway. Upregulation of GPD1, the key gene for glycerol synthesis, increased cell osmotic pressure. BH treatment increased the accumulation of reactive oxygen species by upregulating the expression of the key respiratory metabolism gene ATP11 and downregulating the expression of the superoxide dismutase gene SOD2. Furthermore, downregulation of mycelial-specific HWP1 hindered the morphological transformation of C. albicans and inhibition of the chitin synthase gene CHS3 and the β-(1,3) glucan synthase gene GSC1 impaired cytoderm integrity.Conclusion. BH affects multiple target genes in diminishing the resistance of C. albicans strains to fluconazole. This effect may be related to the action of BH on the HOG-MAPK pathway.
Collapse
Affiliation(s)
- Xiaoxue Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan 610041, PR China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Jiangyan Yong
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan 610075, PR China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| |
Collapse
|
6
|
Solid-state NMR analysis of unlabeled fungal cell walls from Aspergillus and Candida species. J Struct Biol X 2022; 6:100070. [PMID: 35899175 PMCID: PMC9310124 DOI: 10.1016/j.yjsbx.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
An NMR investigation strategy with atomic resolution for unlabeled fungal cell walls. Conserved carbohydrate core revealed in conidia and mycelia of Aspergillus fumigatus. Confirmation of the structural function of α-glucans in A. fumigatus. Carbohydrate fingerprints preserved in liquid and solid cultures of Candida albicans.
Fungal infections cause high mortality in immunocompromised individuals, which has emerged as a significant threat to human health. The efforts devoted to the development of antifungal agents targeting the cell wall polysaccharides have been hindered by our incomplete picture of the assembly and remodeling of fungal cell walls. High-resolution solid-state nuclear magnetic resonance (ss NMR) studies have substantially revised our understanding of the polymorphic structure of polysaccharides and the nanoscale organization of cell walls in Aspergillus fumigatus and multiple other fungi. However, this approach requires 13C/15N-enrichment of the sample being studied, severely restricting its application. Here we employ the dynamic nuclear polarization (DNP) technique to compare the unlabeled cell wall materials of A. fumigatus and C. albicans prepared using both liquid and solid media. For each fungus, we have identified a highly conserved carbohydrate core for the cell walls of conidia and mycelia, and from liquid and solid cultures. Using samples prepared in different media, the recently identified function of α-glucan, which packs with chitin to form the mechanical centers, has been confirmed through conventional ss NMR measurements of polymer dynamics. These timely efforts not only validate the structural principles recently discovered for A. fumigatus cell walls in different morphological stages, but also open up the possibility of extending the current investigation to other fungal materials and cellular systems that are challenging to label.
Collapse
|
7
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Ahmadipour S, Field RA, Miller GJ. Prospects for anti- Candida therapy through targeting the cell wall: A mini-review. Cell Surf 2021; 7:100063. [PMID: 34746525 PMCID: PMC8551693 DOI: 10.1016/j.tcsw.2021.100063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
The impact of fungal infections on humans is a serious public health issue that has received much less attention than bacterial infection and treatment, despite ever-increasing incidence exacerbated by an increased incidence of immunocompromised individuals in the population. Candida species, in particular, cause some of the most prevalent hospital-related fungal infections. Fungal infections are also detrimental to the well-being of grazing livestock, with milk production in dairy cows, and body and coat condition adversely affected by fungal infections. Fungal cell walls are essential for viability, morphogenesis and pathogenesis: numerous anti-fungal drugs rely on targeting either the cell wall or cell membrane, but the pipeline of available bioactives is limited. There is a clear and unmet need to identify novel targets and develop new classes of anti-fungal agents. This mini review focuses on fungal cell wall structure, composition and biosynthesis in Candida spp., including C. auris. In addition, an overview of current advances in the development of cell wall targeted therapies is considered.
Collapse
Affiliation(s)
- Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.,Iceni Diagnostics Ltd, The Innovation Centre, Norwich Research Park, Norwich, Norfolk NR4 7GJ, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.,Iceni Diagnostics Ltd, The Innovation Centre, Norwich Research Park, Norwich, Norfolk NR4 7GJ, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
9
|
Ibe C, Oladele RO, Alamir O. Our pursuit for effective antifungal agents targeting fungal cell wall components, where are we? Int J Antimicrob Agents 2021; 59:106477. [PMID: 34798234 DOI: 10.1016/j.ijantimicag.2021.106477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
Invasive mycotic infections account for an unacceptably high mortality rates in humans. These infections are initiated by the fungal cell wall which mediates host-fungi interactions. The cell wall is fused to the physiology of fungi, and it is involved in essential functions in the entire cell functionality. Components of the cell wall are synthesised and modified in the cell wall space by the activities of cell wall proteins through a range of signalling pathways that have only been described in many fungi, therefore making them suitable drug targets. The echinocandins class of cell wall-active drugs block cell wall β-1,3-glucan biosynthesis through inhibiting the catalytic subunit of the synthetic protein complex. Resistance to echinocandins can be through the acquisition of single nucleotide polymorphisms and/or through activation of cell wall signalling pathways resulting in altered cell wall proteome and elevated chitin content in the cell wall. Countering the cell wall remodelling process will enhance the effectiveness of β-1,3-glucan-active antifungal agents. Cell surface proteins are also important antifungal targets which can be used to develop rapid and robust diagnostics and more effective therapeutics. The cell wall remains a crucial target in fungi that needs to be harnessed to combat mycotic infections.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Abia State University, PMB 2000 Uturu, Abia State, Nigeria.
| | - Rita O Oladele
- Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Omran Alamir
- Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Al Asimah, Kuwait
| |
Collapse
|
10
|
Inhibitory effect of berberine hydrochloride against Candida albicans and the role of the HOG-MAPK pathway. J Antibiot (Tokyo) 2021; 74:807-816. [PMID: 34408288 DOI: 10.1038/s41429-021-00463-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Berberine hydrochloride (BH), an active component of Coptis chinensis and other plant taxa, has broad antimicrobial activity and may be useful for the treatment of Candida infections. In this study, the mechanisms underlying the inhibitory effect of BH against Candida albicans were evaluated, with a focus on the high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway, which regulates multiple physiological functions. BH (256 and 64 μg ml-1) significantly increased intracellular glycerol and ROS levels in C. albicans, inhibited germ tube and hyphal formation, and increased chitin and β-1,3-glucan exposure on the cell wall. The inhibitory effect of BH was positively correlated with its concentration, and the inhibitory effect of 256 μg ml-1 BH was greater than that of 4 μg ml-1 fluconazole (FLC). Furthermore, RT-PCR analysis showed that 256 and 64 μg ml-1 BH altered the HOG-MAPK pathway in C. albicans. In particular, the upregulation of the core genes, SLN1, SSK2, HOG1, and PBS2 may affect the expression of key downstream factors related to glycerol synthesis and osmotic pressure (GPD1), ROS accumulation (ATP11 and SOD2), germ tube and hyphal formation (HWP1), and cell wall integrity (CHS3 and GSC1). BH affects multiple biological processes in C. albicans; thus, it can be an effective alternative to conventional azole antifungal agents.
Collapse
|
11
|
Fernando LD, Dickwella Widanage MC, Penfield J, Lipton AS, Washton N, Latgé JP, Wang P, Zhang L, Wang T. Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front Mol Biosci 2021; 8:727053. [PMID: 34513930 PMCID: PMC8423923 DOI: 10.3389/fmolb.2021.727053] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Chitin is a major carbohydrate component of the fungal cell wall and a promising target for novel antifungal agents. However, it is technically challenging to characterize the structure of this polymer in native cell walls. Here, we recorded and compared 13C chemical shifts of chitin using isotopically enriched cells of six Aspergillus, Rhizopus, and Candida strains, with data interpretation assisted by principal component analysis (PCA) and linear discriminant analysis (LDA) methods. The structure of chitin is found to be intrinsically heterogeneous, with peak multiplicity detected in each sample and distinct fingerprints observed across fungal species. Fungal chitin exhibits partial similarity to the model structures of α- and γ-allomorphs; therefore, chitin structure is not significantly affected by interactions with other cell wall components. Addition of antifungal drugs and salts did not significantly perturb the chemical shifts, revealing the structural resistance of chitin to external stress. In addition, the structure of the deacetylated form, chitosan, was found to resemble a relaxed two-fold helix conformation. This study provides high-resolution information on the structure of chitin and chitosan in their cellular contexts. The method is applicable to the analysis of other complex carbohydrates and polymer composites.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jackson Penfield
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nancy Washton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jean-Paul Latgé
- Unité des Aspergillus, Département de Mycologie, Institut Pasteur, Paris, France
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Su S, Yan H, Min L, Wang H, Chen X, Shi J, Sun S. The antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy. Expert Rev Anti Infect Ther 2021; 20:161-178. [PMID: 34128761 DOI: 10.1080/14787210.2021.1941868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Candida species have been regarded as global health threats due to their ability to cause invasive infections. It is challenging to treat Candida bloodstream infections, which are associated with high mortality levels. Monotherapy with antifungals is sometimes not effective against severe Candida infections, and combination therapy is needed in clinical practice.Areas covered: This review was undertaken based on data from a PubMed search for English language reports published before March 2021 by using the terms 'caspofungin,' 'Candida species,' 'combination therapy,' 'antifungal effect,' and 'novel antifungal agent.'Expert opinion: Combination therapy is an empirical strategy for treating refractory Candida infections. Caspofungin has been recommended to treat candidaemia. Caspofungin in combination therapy has some applications, while the efficacy of combination therapy in the treatment of refractory Candida infections needs more study, such as randomized controlled trials. In addition, novel compounds or drugs with potential antifungal activities have been examined, and some of them exhibit synergistic interactions with caspofungin. Thus, the antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy is summarized.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Haiying Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| | - Li Min
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| | - Hongmei Wang
- Department of Pharmacy, Zibo Sixth People's Hospital, Zibo, Shandong, People's Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Jinyi Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| |
Collapse
|