1
|
Yang S, Lü F, Wang L, Liu S, Wu Z, Cheng Y, Liu F. pH-Responsive Metal-Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection. Molecules 2024; 29:5330. [PMID: 39598719 PMCID: PMC11596698 DOI: 10.3390/molecules29225330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
A smart and environmentally friendly pesticide system was developed that could respond to environmental stimuli while mitigating environmental risks. In this study, thiabendazole (Thi), an effective fungicide, was loaded onto zeolitic imidazolate framework-8 (ZIF-8) using the impregnation method to fabricate a pH-responsive nano hybrid delivery system (Thi@ZIF-8). The results demonstrated that Thi@ZIF-8 had a rhombic dodecahedral morphology and a loading capacity of approximately 25%. Notably, the amount of Thi released from Thi@ZIF-8 at a pH of 5.0 reached 79.54%, which was higher than that at pH 7.0 and 9.0, for 251 h. Such pH-responsive release characteristics of Thi@ZIF-8 were probably related to the pH-dependent structure stability of ZIF-8. The release mechanism of Thi@ZIF-8 conformed to non-Fickian diffusion. Additionally, Thi@ZIF-8 showed a higher control efficacy against B. cinerea compared with Thi alone. Importantly, the ZIF-8 carrier could effectively reduce the leaching loss of Thi in soil and showed no negative effects on the three varieties of tomato seedlings, implying good biocompatibility. This work provides a novel and eco-friendly approach to control B. cinerea effectively that has great potential in modern sustainable agriculture.
Collapse
Affiliation(s)
- Shuzhen Yang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Xiang S, Wang X, Peng S, Kang X, Wang J, Peng L, Ma X, Huang J, Sun X. Washout-Resistant, pH-Responsive Anti-TMV Nanoimmune Inducer Based on Cellulose Nanocrystals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16542-16553. [PMID: 37877141 DOI: 10.1021/acs.jafc.3c05733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The application of antiplant virus agents on leaf surfaces faces challenges due to their vulnerability to wear, instability, and limited duration, which in turn jeopardizes plant health and yield. In recent years, high-aspect-ratio nanomaterials have gained prominence as powerful carriers for disease treatment, thanks to their exceptional penetrability and precise drug delivery capabilities. Here, we synthesized a pH-responsive nanoimmune inducer (CNC-AMO) with strong leaf adhesion through a Schiff base reaction, achieved by grafting amino-oligosaccharides (AMOs) on the surface of aldehyde-based CNC (CNC-CHO). Fourier transform infrared spectrometry, zeta potential, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, and elemental analysis were used to characterize the CNC-AMO. The CNC-AMO displayed the capability for pH-responsive AMO release, showcasing its potential for targeted and controlled delivery. When applied to plants, the CNC-AMO exhibited impressive anti-TMV efficacy during a weeklong observation period. Meanwhile, the CNC-AMO exhibited remarkable adhesion and scouring resistance on the surfaces of the plant leaves. We strongly believe that the synergy of environmentally friendly synthetic materials, efficient plant virus control, and streamlined scalability positions CNC-AMOs as a promising pesticide for plant virus therapy.
Collapse
Affiliation(s)
- Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xiaoyan Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shiqi Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinke Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liyuan Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhang Z, Yang N, Yu J, Jin S, Shen G, Chen H, Yuzhen N, Xiang D, Qian K. Research Progress of a Pesticide Polymer-Controlled Release System Based on Polysaccharides. Polymers (Basel) 2023; 15:2810. [PMID: 37447458 DOI: 10.3390/polym15132810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, with the development of the nanomaterials discipline, many new pesticide drug-carrying systems-such as pesticide nano-metal particles, nano-metal oxides, and other drug-carrying materials-had been developed and applied to pesticide formulations. Although these new drug-loading systems are relatively friendly to the environment, the direct exposure of many metal nanoparticles to the environment will inevitably lead to potential effects. In response to these problems, organic nanomaterials have been rapidly developed due to their high-quality biodegradation and biocompatibility. Most of these organic nanomaterials were mainly polysaccharide materials, such as chitosan, carboxymethyl chitosan, sodium alginate, β-cyclodextrin, cellulose, starch, guar gum, etc. Some of these materials could be used to carry inorganic materials to develop a temperature- or pH-sensitive pesticide drug delivery system. Herein, the pesticide drug-carrying system developed based on polysaccharide materials, such as chitosan, was referred to as the pesticide polymer drug-carrying system based on polysaccharide materials. This kind of drug-loading system could be used to protect the pesticide molecules from harsh environments, such as pH, light, temperature, etc., and was used to develop the function of a sustained release, targeted release of pesticides in the intestine of insects, and achieve the goal of precise application, reduction, and efficiency of pesticides. In this review, the recent progress in the field of polysaccharide-based polymer drug delivery systems for pesticides has been discussed, and suggestions for future development were proposed based on the current situation.
Collapse
Affiliation(s)
- Zan Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ni Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jie Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shuo Jin
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Guangmao Shen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hanqiu Chen
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Nima Yuzhen
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Dong Xiang
- Institute of Vegetable, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Li W, Long Y, Yin X, Wang W, Zhang R, Mo F, Zhang Z, Chen T, Chen J, Wang B, Chen X. Antifungal activity and mechanism of tetramycin against Alternaria alternata, the soft rot causing fungi in kiwifruit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105409. [PMID: 37105636 DOI: 10.1016/j.pestbp.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Kiwifruit rot caused by the fungus Alternaria alternata occurs in many countries, leading to considerable losses during kiwifruit production. In this study, we evaluated the antifungal activity and mechanism of tetramycin against kiwifruit soft rot caused by Alternaria alternata. Tetramycin exerted antifungal effects through the suppression of mycelial growth, conidial germination, and the pathogenicity of A. alternata. Scanning electron microscopic observations revealed that tetramycin destroyed the mycelial structure, causing the mycelia to twist, shrink, and even break. Furthermore, transmission electron microscopy revealed that tetramycin caused severe plasmolysis and a decrease in cell inclusions, and the cell wall appeared thinner with blurred boundaries. In addition, tetramycin destroyed cell membrane integrity, resulting in the leakage of cellular components such as nucleic acids and proteins in mycelial suspensions. Moreover, tetramycin also caused cell wall lysis by enhancing the activities of chitinase and β-1,3-glucanase and inducing the overexpression of related chitinase gene (Chit) and β-1,3-glucanase gene (β-1,3-glu) in A. alternata. In field trials, tetramycin not only decreased the incidence of kiwifruit rot but also create a beneficial living space for kiwifruit growth. Overall, this study indicated that the application of tetramycin could serve as an alternative measure for the management of kiwifruit rot.
Collapse
Affiliation(s)
- Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China; Teaching Experiment Farm, Guizhou University, Guiyang 550025, China.
| | - Xianhui Yin
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Rongquan Zhang
- Management Committee of Eastern Agricultural Industrial Park of Shuicheng County, Liupanshui 553000, China
| | - Feixu Mo
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Wang Y, Yang L, Zhou X, Wang Y, Liang Y, Luo B, Dai Y, Wei Z, Li S, He R, Ding W. Molecular mechanism of plant elicitor daphnetin-carboxymethyl chitosan nanoparticles against Ralstonia solanacearum by activating plant system resistance. Int J Biol Macromol 2023; 241:124580. [PMID: 37100321 DOI: 10.1016/j.ijbiomac.2023.124580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop protection. Due to its good biocompatibility and water solubility, carboxymethyl chitosan (CMCS) has been widely applied as a pesticide carrier biomaterial. However, the mechanism by which carboxymethyl chitosan-grafted natural product nanoparticles induce tobacco systemic resistance against bacterial wilt remains largely unknown. In this study, water-soluble CMCS-grafted daphnetin (DA) nanoparticles (DA@CMCS-NPs) were successfully synthesized, characterized, and assessed for the first time. The grafting rate of DA in CMCS was 10.05 %, and the water solubility was increased. In addition, DA@CMCS-NPs significantly increased the activities of CAT, PPO and SOD defense enzymes, activated the expression of PR1 and NPR1, and suppressed the expression of JAZ3. DA@CMCS-NPs could induce immune responses against R. solanacearum in tobacco, including increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. The application of DA@CMCS-NPs effectively suppressed the development of tobacco bacterial wilt in pot experiments, and the control efficiency was as high as 74.23 %, 67.80 %, 61.67 % at 8, 10, and 12 days after inoculation. Additionally, DA@CMCS-NPs has excellent biosafety. Therefore, this study highlighted the application of DA@CMCS-NPs in manipulating tobacco to generate defense responses against R. solanacearum, which can be attributed to systemic resistance.
Collapse
Affiliation(s)
- Yao Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiao Zhou
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ye Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yijia Liang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binshao Luo
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuhao Dai
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhouling Wei
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Rong He
- Chongqing Tobacco Industry Co., Ltd., Chongqing 400060, China.
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Jiang L, Wang Q, Zhang S, Liu C, Wang K, Li F, Wang X, Liu W, Ma X, Fan G, Chen T, Jin Y, Sun X. Fabrication of an alginate-based ZhiNengCong gel showed an enhanced antiviral and plant growth promoting functions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105373. [PMID: 36963942 DOI: 10.1016/j.pestbp.2023.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tobacco mosaic disease is a worldwide viral disease that can cause huge economic losses. Plant immune inducers have become the main force in the prevention and treatment of viral disease own to their high efficiency and rapid effect. However, since tobacco mosaic disease can occur at any point in the plant growth cycle, a single application period cannot guarantee the completely management. In this study, an extract from Paecilomyces variotii named ZhiNengCong (ZNC), which can fight against tobacco mosaic disease with 65% control effect, and improve the promotion of tobacco stem girth, was selected from five commercial antiviral medicines, and a sustained release sodium alginate (Alg)-based ZNC (ZNC@Alg) was prepared by physical absorption. ZNC@Alg, who contains only 5 mg/mL ZNC, can release ZNC for 7 consecutive days, and displayed an enhanced effect in inducing the PAL-mediated salicylic acid signaling pathway activation to participate in the inhibition of green fluorescent protein (GFP)-tagged tobacco mosaic virus (TMV-GFP) infection, even after 7 days of the application. Notably, field experiments showed that the control effect of ZNC@Alg was up to 88%, which was significantly better than that of ZNC with the same concentration (10 μg per plant). In addition, ZNC@Alg exhibited a stronger growth-promoting effect than ZNC, which significantly increased the wet weight of tobacco. Taken together, we screened out a plant immune inducer ZNC that can effectively inhibit tobacco virus disease, and created ZNC@Alg with higher control effect and growth promotion effect, laying a foundation for effective field management of tobacco mosaic disease.
Collapse
Affiliation(s)
- Long Jiang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qin Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shuai Zhang
- Chongqing Company of China Tobacco Corporation, Chongqing 409100, China
| | - Changyun Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ke Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fengwei Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiaoyan Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Weina Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xiaozhou Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Guangjin Fan
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Tiancai Chen
- Chongqing Company of China Tobacco Corporation, Chongqing 409100, China.
| | - Yabo Jin
- China Tobacco Guangxi Industry Corporation Limited. Nanning 530001, China.
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Ma X, Zhu X, Mu Y, Gao C, He W, Ran M, Cai L, Fan G, Ma G, Sun X. Fabrication of polydopamine reduced CuO nanoparticle-alginate composite nanogels for management of Pseudomonas synringae pv. tabaci in tobacco. PEST MANAGEMENT SCIENCE 2023; 79:1213-1224. [PMID: 36414610 DOI: 10.1002/ps.7298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The wildfire disease on tobacco can seriously hinder plants. Meanwhile, its pathogen, Pseudomonas syringae, can also infect over 200 plants and threat agriculture production. However, the disease usually occurs after summer rains which washes away most copper (Cu)-based bactericides, allowing the disease to invade. Therefore, we fabricate a new nanogel with high disease control and anti-erosion ability and study the effects of the reductant on the performance of the copper oxide nanoparticle (CuONP) composite nanogel. RESULTS Polydopamine (PDA) is a polycation for both in situ reduction of CuONP in alginate nanogels and for adjusting the copper ion (Cu2+ ) releasing rate in this work. The composite nanogel fabricated by PDA (PDA-CuONP@ALGNP@CTAC) had a higher Cu2+ releasing rate, damaging the pathogen membrane more efficiently, allowing for better disease control and plant growth promotion when compared to sodium borohydride (SBH)-fabricated nanogel (SBH-CuONP@ALGNP@CTAC) or the commercial bactericide, thiodiazole copper. The PDA-CuONP@ALGNP@CTAC had a high anti-erosion ability and could remain adhered to the leaf surface even after five rain event simulations. CONCLUSION The addition of polycations (like PDA) into CuONP composite nanogel could increase the Cu2+ releasing rate, resulting in improved disease management when compared to SBH-CuONP@ALGNP@CTAC or thiodiazole copper. The PDA containing gel had an improved anti-erosion ability and water resistance. This new composite nanogel has a high potential for wildfire disease control, improving agricultural production. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yanling Mu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Changdan Gao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Wenjie He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing Company of China Tobacco Corporation, Chongqing, China
| | - Lin Cai
- Guizhou Key Laboratory for Tobacco Quality, Guizhou University, Guiyang, China
| | - Guangjin Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guanhua Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
8
|
pH and Redox Dual-Responsive Mesoporous Silica Nanoparticle as Nanovehicle for Improving Fungicidal Efficiency. MATERIALS 2022; 15:ma15062207. [PMID: 35329659 PMCID: PMC8948809 DOI: 10.3390/ma15062207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 01/08/2023]
Abstract
Prochloraz (Pro) controlled-release nanoparticles (NPs) based on bimodal mesoporous silica (BMMs) with redox and pH dual responses were successfully prepared in this study. BMMs was modified by a silane coupling agent containing a disulfide bond, and β-cyclodextrin (β-CD) was grafted on the surface of the NPs through host–guest interaction. Pro was encapsulated into the pores of nanoparticles by physical adsorption. NPs had a spherical structure, and their average diameter was 546.4 ± 3.0 nm as measured by dynamic light scattering. The loading rate of Pro was 28.3%, and it achieved excellent pH/redox dual-responsive release performance under acidic conditions. Foliage adhesion tests on tomato leaves showed that the NPs had good adhesion properties compared to the commercial formulation. Owing to the protection of the nanocarrier, NPs became more stable under ultraviolet light and high temperature, which improves the efficient utilization of Pro. Biological activity tests showed that the NPs exhibited effective antifungal activity, and the benign biosafety of the nanocarrier was also observed through toxicology tests on cell viability and the growth of Escherichiacoli (E. coli). This work provides a promising approach to improving the efficient utilization of pesticides and reducing environmental pollution.
Collapse
|
9
|
Belakhov VV. Ecological Aspects of Application of Tetraene Macrolide Antibiotic Tetramycin in Agriculture and Food Industry (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221130156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Viscusi G, Liparoti S, Pantani R, Gorrasi G. Natural resources derived biocomposites as potential carriers of green pesticides in agricultural field: Designing and fabrication of a pot‐like device. J Appl Polym Sci 2021. [DOI: 10.1002/app.51240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Sara Liparoti
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Roberto Pantani
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering University of Salerno Fisciano Italy
| |
Collapse
|
11
|
Lv X, Yuan M, Pei Y, Liu C, Wang X, Wu L, Cheng D, Ma X, Sun X. The Enhancement of Antiviral Activity of Chloroinconazide by Aglinate-based Nanogel and Its Plant Growth Promotion Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4992-5002. [PMID: 33904309 DOI: 10.1021/acs.jafc.1c00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Improving the efficiency and prolonging the duration of pesticides are of great significance in agricultural production. In this work, based on the antiviral compound chloroinconazide (CHI) synthesized previously, the improvement of the fabricated CHI-loaded alginate-based nanogel (CHI@ALGNP) was studied. It was found that CHI@ALGNP showed higher foliar adhesion than CHI and exhibited a sustained release for up to 7 days. CHI@ALGNP could also continuously activate the reactive oxygen species and antioxidant levels and induce the increase of salicylic acid content and the expression of its responsive gene PR2 for a long time, thus achieving sustained resistance to tobacco mosaic virus infection in Nicotiana benthamiana. Strikingly, CHI@ALGNP could release Ca2+ and Mg2+ to promote the growth of N. benthamiana. Taken together, for the first time, we have shown the improvement of a nanogel carrier to the antiviral activity and growth promotion of small molecular pesticides. As the alginate-based nanogel can be easily applied to the spray-based pesticide delivery technology, our study provides a new strategy for the development of new pesticide preparations and the application of multifunctional pesticides.
Collapse
Affiliation(s)
- Xing Lv
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Mengting Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yuehong Pei
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Changyun Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xiangchuan Wang
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. LED, Binzhou 256500, China
| | - Lei Wu
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. LED, Binzhou 256500, China
| | - Daoquan Cheng
- National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. LED, Binzhou 256500, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases. Antibiotics (Basel) 2021; 10:antibiotics10030289. [PMID: 33802124 PMCID: PMC7998335 DOI: 10.3390/antibiotics10030289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Tetramycin, a novel polyene agriculture antibiotic, has excellent antimicrobial activity against many plant pathogens. In this study, the antimicrobial activities of tetramycin and conventional antibiotics on eight common pathogens and their field control efficacies against four serious diseases in kiwifruit were investigated. The results show that 0.3% tetramycin aqueous solutions (AS) exhibited the superior antibacterial and antifungal activity against Pseudomonas syringae pv. actinidiae, Pseudomonas fulva, Agrobacterium tumefaciens, Botryosphaeriadothidea, Phomopsis sp., Alternaria tenuissima, Armillariella mellea and Phytophthora cactorum of kiwifruit pathogens with EC50 values of 1.21, 1.24, 0.72, 0.14, 0.09, 0.16, 0.06 and 0.17 mg kg−1, respectively. These EC50 values of tetramycin were much higher than those of conventional kasugamycin, zhongshengmycin or polyoxin. Meanwhile, 0.3% tetramycin AS possessed the good field control efficacies for canker, soft rot, blossom blight and brown spot disease of kiwifruit with 74.45, 83.55, 84.74 and 89.62%. Moreover, 0.3% tetramycin AS application notably increased fruit resistance substances contents, activated fruit superoxide dismutase and polyphenoloxidase activities, as well as remarkably enhanced fruit growth, improved fruit quality and storability. This study highlights that tetramycin can be used as a preferred alternative to conventional antibiotics in kiwifruit production.
Collapse
|