1
|
Moussa Z, Ramanathan M, Al-Masri HT, Ahmed SA. Recent Progress in the Synthesis of Benzoxazin-4-Ones, Applications in N-Directed Ortho-Functionalizations, and Biological Significance. Molecules 2024; 29:5710. [PMID: 39683871 PMCID: PMC11643898 DOI: 10.3390/molecules29235710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The development of efficient synthetic procedures to access fused N, O-heterocyclic skeletons has been a pivotal research topic in organic synthesis for several years. Owing to the applications of N, O-fused heterocycles in organic synthesis, material sciences, and medicinal chemistry, significant efforts have been dedicated to design novel methods for their construction. To this end, 1,3-benzoxazin-4-ones are privileged candidates for N, O-heterocyclic molecules often found in natural products, agrochemicals, and materials science applications. In this review, we aim to summarize the existing literature on the synthesis of 1,3-benzoxazin-4-ones from 2010 onwards. Moreover, 1,3-benzoxazin-4-ones have also been identified as an excellent native directing group for the ortho-functionalization via C-H activation, which is often a strenuous task requiring pre-functionalized substrates. In the latter part of this report, we compiled several interesting examples of N-directed functionalizations of 1,3-benzoxazin-4-ones. Additionally, to emphasize biological importance, recent developments on the anticancer evaluations of benzoxazine-4-one core are included. We believe that by harnessing the methodologies discussed herein, new possibilities could be unlocked for the synthesis of fused N, O-heterocycles, leading to the development of novel biologically active compounds and functional materials.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P.O. Box 130040, Mafraq 25113, Jordan
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
2
|
Nissinen L, Riihilä P, Viiklepp K, Rajagopal V, Storek MJ, Kähäri VM. C1s targeting antibodies inhibit the growth of cutaneous squamous carcinoma cells. Sci Rep 2024; 14:13465. [PMID: 38866870 PMCID: PMC11169539 DOI: 10.1038/s41598-024-64088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The incidence of cSCC is increasing globally and the prognosis of metastatic disease is poor. Currently there are no specific targeted therapies for advanced or metastatic cSCC. We have previously shown abundant expression of the complement classical pathway C1 complex components, serine proteases C1r and C1s in tumor cells in invasive cSCCs in vivo, whereas the expression of C1r and C1s was lower in cSCCs in situ, actinic keratoses and in normal skin. We have also shown that knockdown of C1s expression results in decreased viability and growth of cSCC cells by promoting apoptosis both in culture and in vivo. Here, we have studied the effect of specific IgG2a mouse monoclonal antibodies TNT003 and TNT005 targeting human C1s in five primary non-metastatic and three metastatic cSCC cell lines that show intracellular expression of C1s and secretion of C1s into the cell culture media. Treatment of cSCC cells with TNT003 and TNT005 significantly inhibited their growth and viability and promoted apoptosis of cSCC cells. These data indicate that TNT003 and TNT005 inhibit cSCC cell growth in culture and warrant further investigation of C1s targeted inhibition in additional in vitro and in vivo models of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | | | | | - Veli-Matti Kähäri
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland.
| |
Collapse
|
3
|
Xu X, Herdendorf TJ, Duan H, Rohlik DL, Roy S, Zhou H, Alkhateeb H, Khandelwal S, Zhou Q, Li P, Arepally GM, Walker JK, Garcia BL, Geisbrecht BV. Inhibition of the C1s Protease and the Classical Complement Pathway by 6-(4-Phenylpiperazin-1-yl)Pyridine-3-Carboximidamide and Chemical Analogs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:689-701. [PMID: 38149922 PMCID: PMC10872613 DOI: 10.4049/jimmunol.2300630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 μM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 μM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Timothy J. Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Huiquan Duan
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Denise L. Rohlik
- Department of Microbiology & Immunology, Brody School of Medicine East Carolina University; Greenville, NC 27834 U.S.A
| | - Sourav Roy
- Department of Microbiology & Immunology, Brody School of Medicine East Carolina University; Greenville, NC 27834 U.S.A
| | - Hinman Zhou
- Department of Pharmacology, School of Medicine, St. Louis University; St. Louis, MO 63104 U.S.A
| | - Haya Alkhateeb
- Department of Pharmacology, School of Medicine, St. Louis University; St. Louis, MO 63104 U.S.A
| | - Sanjay Khandelwal
- Division of Hematology, Duke University Medical Center; Durham, NC 27710 U.S.A
| | - Qilong Zhou
- Department of Chemistry, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Ping Li
- Department of Chemistry, Kansas State University; Manhattan, KS 66506 U.S.A
| | | | - John K. Walker
- Department of Pharmacology, School of Medicine, St. Louis University; St. Louis, MO 63104 U.S.A
- Department of Chemistry, St. Louis University; St. Louis, MO 63103 U.S.A
| | - Brandon L. Garcia
- Department of Microbiology & Immunology, Brody School of Medicine East Carolina University; Greenville, NC 27834 U.S.A
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| |
Collapse
|
4
|
Ikeda Z, Kamei T, Sasaki Y, Reynolds M, Sakai N, Yoshikawa M, Tawada M, Morishita N, Dougan DR, Chen CH, Levin I, Zou H, Kuno M, Arimura N, Kikukawa Y, Kondo M, Tohyama K, Sato K. Discovery of a Novel Series of Potent, Selective, Orally Available, and Brain-Penetrable C1s Inhibitors for Modulation of the Complement Pathway. J Med Chem 2023; 66:6354-6371. [PMID: 37120845 PMCID: PMC10184130 DOI: 10.1021/acs.jmedchem.3c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A novel series of non-amidine-based C1s inhibitors have been explored. Starting from high-throughput screening hit 3, isoquinoline was replaced with 1-aminophthalazine to enhance C1s inhibitory activity while exhibiting good selectivity against other serine proteases. We first disclose a crystal structure of a complex of C1s and a small-molecule inhibitor (4e), which guided structure-based optimization around the S2 and S3 sites to further enhance C1s inhibitory activity by over 300-fold. Improvement of membrane permeability by incorporation of fluorine at the 8-position of 1-aminophthalazine led to identification of (R)-8 as a potent, selective, orally available, and brain-penetrable C1s inhibitor. (R)-8 significantly inhibited membrane attack complex formation induced by human serum in a dose-dependent manner in an in vitro assay system, proving that selective C1s inhibition blocked the classical complement pathway effectively. As a result, (R)-8 emerged as a valuable tool compound for both in vitro and in vivo assessment.
Collapse
Affiliation(s)
- Zenichi Ikeda
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Taku Kamei
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Sasaki
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Matthew Reynolds
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nozomu Sakai
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yoshikawa
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Michiko Tawada
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Nao Morishita
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Douglas R Dougan
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Chien-Hung Chen
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Irena Levin
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Hua Zou
- Structural Biology, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Masako Kuno
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoto Arimura
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Kikukawa
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuyo Kondo
- Discovery Biology, Discovery Science, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Kimio Tohyama
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kenjiro Sato
- Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
5
|
Ye J, Yang P, Yang Y, Xia S. Complement C1s as a diagnostic marker and therapeutic target: Progress and propective. Front Immunol 2022; 13:1015128. [PMID: 36275687 PMCID: PMC9582509 DOI: 10.3389/fimmu.2022.1015128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Sheng Xia,
| |
Collapse
|
6
|
Bajusz D, Keserű GM. Maximizing the integration of virtual and experimental screening in hit discovery. Expert Opin Drug Discov 2022; 17:629-640. [PMID: 35671403 DOI: 10.1080/17460441.2022.2085685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Experimental and virtual screening contributes to the discovery of more than 50% of clinical candidates. Considering the similar concept and goals, early-phase drug discovery would benefit from the effective integration of these approaches. AREAS COVERED After reviewing the recent trends in both experimental and virtual screening, the authors discuss different integration strategies from parallel, focused, sequential, and iterative screening. Strategic considerations are demonstrated in a number of real-life case studies. EXPERT OPINION Experimental and virtual screening are complementary approaches that should be integrated in lead discovery settings. Virtual screening can access extremely large synthetically feasible chemical space that can be effectively searched on GPU clusters or cloud architectures. Experimental screening provides reliable datasets by quantitative HTS applications, and DNA-encoded libraries (DEL) have enlarged the chemical space covered by these technologies. These developments, together with the use of artificial intelligence methods, represent new options for their efficient integration. The case studies discussed here demonstrate the benefits of complementary strategies, such as focused and iterative screening.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening. Molecules 2021; 26:5593. [PMID: 34577064 PMCID: PMC8468386 DOI: 10.3390/molecules26185593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach in early drug discovery. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compounds' databases. This approach can be combined with physico-chemical parameter and diversity filtering, bioisosteric replacements, and fragment-based approaches for performing a first round biological screening. Our objectives were to investigate the combination of 2D similarity search with various 3D ligand and structure-based methods for hit expansion and validation, in order to increase the hit rate and novelty. In the present account, six case studies are described and the efficiency of mixing is evaluated. While sequentially combined 2D/3D similarity approach increases the hit rate significantly, sequential combination of 2D similarity with pharmacophore model or 3D docking enriched the resulting focused library with novel chemotypes. Parallel integrated approaches allowed the comparison of the various 2D and 3D methods and revealed that 2D similarity-based and 3D ligand and structure-based techniques are often complementary, and their combinations represent a powerful synergy. Finally, the lessons we learnt including the advantages and pitfalls of the described approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - György Dormán
- TargetEx Ltd., Madách I. u. 31/2, 2120 Dunakeszi, Hungary; (K.S.); (B.F.); (I.H.); (M.S.); (K.D.); (Z.L.); (S.C.)
| |
Collapse
|
8
|
Lee K, Yang A, Lin YC, Reker D, Bernardes GJ, Rodrigues T. Combating small-molecule aggregation with machine learning. CELL REPORTS PHYSICAL SCIENCE 2021; 2:100573. [DOI: 10.1016/j.xcrp.2021.100573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Yang M, Wang J, Lv W, Ba D, Cheng G, Wang L. Synthesis of 2‐Alkenyl‐4
H
‐3,1‐Benzoxazin‐4‐Ones through HFIP‐Mediated Decarboxylative [4+2]‐Annulation of Isatoic Anhydrides with Cyclopropenones under Silver Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mengqi Yang
- School of Medicine Huaqiao University Quanzhou 362021 People's Republic of China
| | - Jixin Wang
- School of Medicine Huaqiao University Quanzhou 362021 People's Republic of China
| | - Weiwei Lv
- College of Materials Science and Engineering Huaqiao University Xiamen 361021 People's Republic of China
| | - Dan Ba
- College of Materials Science and Engineering Huaqiao University Xiamen 361021 People's Republic of China
| | - Guolin Cheng
- College of Materials Science and Engineering Huaqiao University Xiamen 361021 People's Republic of China
| | - Lianhui Wang
- School of Medicine Huaqiao University Quanzhou 362021 People's Republic of China
| |
Collapse
|
10
|
Recent Trends in Enzyme Inhibition and Activation in Drug Design. Molecules 2020; 26:molecules26010017. [PMID: 33375159 PMCID: PMC7792938 DOI: 10.3390/molecules26010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
It is known that enzymes are involved in many pathological conditions, such as inflammation, diabetes, microbial infections, HIV, neoplastic, neglected diseases and others [...]
Collapse
|
11
|
Przybyłek M. Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening. Molecules 2020; 25:E5942. [PMID: 33333961 PMCID: PMC7765417 DOI: 10.3390/molecules25245942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Beta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural Networks, SANN). In order to evaluate the models' accuracy and select the best classifiers among automatically generated SANNs, the Matthews correlation coefficient (MCC) was used. The application of the combination of maxHBint3 and SpMax8_Bhs descriptors leads to the highest predicting abilities of SANNs, as evidenced by the averaged test set prediction results (MCC = 0.748) calculated for ten different dataset splits. Additionally, the models were analyzed employing receiver operating characteristics (ROC) and cumulative gain charts. The thirteen final classifiers obtained as a result of the model development procedure were applied for a natural compounds collection available in the BIOFACQUIM database. As a result of this beta-glucosidase inhibitors screening, eight compounds were univocally classified as active by all SANNs.
Collapse
Affiliation(s)
- Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| |
Collapse
|
12
|
Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing 2020; 17:38. [PMID: 33292368 PMCID: PMC7677104 DOI: 10.1186/s12979-020-00208-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune hemolytic anemia (AIHA) is an acquired, heterogeneous group of diseases which includes warm AIHA, cold agglutinin disease (CAD), mixed AIHA, paroxysmal cold hemoglobinuria and atypical AIHA. Currently CAD is defined as a chronic, clonal lymphoproliferative disorder, while the presence of cold agglutinins underlying other diseases is known as cold agglutinin syndrome. AIHA is mediated by autoantibodies directed against red blood cells (RBCs) causing premature erythrocyte destruction. The pathogenesis of AIHA is complex and still not fully understood. Recent studies indicate the involvement of T and B cell dysregulation, reduced CD4+ and CD25+ Tregs, increased clonal expansions of CD8 + T cells, imbalance of Th17/Tregs and Tfh/Tfr, and impaired lymphocyte apoptosis. Changes in some RBC membrane structures, under the influence of mechanical stimuli or oxidative stress, may promote autohemolysis. The clinical presentation and treatment of AIHA are influenced by many factors, including the type of AIHA, degree of hemolysis, underlying diseases, presence of concomitant comorbidities, bone marrow compensatory abilities and the presence of fibrosis and dyserthropoiesis. The main treatment for AIHA is based on the inhibition of autoantibody production by mono- or combination therapy using GKS and/or rituximab and, rarely, immunosuppressive drugs or immunomodulators. Reduction of erythrocyte destruction via splenectomy is currently the third line of treatment for warm AIHA. Supportive treatment including vitamin supplementation, recombinant erythropoietin, thrombosis prophylaxis and the prevention and treatment of infections is essential. New groups of drugs that inhibit immune responses at various levels are being developed intensively, including inhibition of antibody-mediated RBCs phagocytosis, inhibition of B cell and plasma cell frequency and activity, inhibition of IgG recycling, immunomodulation of T lymphocytes function, and complement cascade inhibition. Recent studies have brought about changes in classification and progress in understanding the pathogenesis and treatment of AIHA, although there are still many issues to be resolved, particularly concerning the impact of age-associated changes to immunity.
Collapse
Affiliation(s)
- Sylwia Sulimiera Michalak
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland.
| | - Anna Olewicz-Gawlik
- Department of Anatomy and Histology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Poznan University of Medical Sciences, Poznan, Poland
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Edyta Wolny-Rokicka
- Department of Radiotherapy, Multidisciplinary Hospital, Gorzów Wielkopolski, Poland
| | - Elżbieta Nowakowska
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zielona Góra, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
Lin K, Zhang L, Kong M, Yang M, Chen Y, Poptic E, Hoffner M, Xu J, Tam C, Lin F. Development of an anti-human complement C6 monoclonal antibody that inhibits the assembly of membrane attack complexes. Blood Adv 2020; 4:2049-2057. [PMID: 32396613 PMCID: PMC7218433 DOI: 10.1182/bloodadvances.2020001690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Membrane attack complexes (MACs; C5b-9) assembled after complement activation can directly injure self-tissues, leading to various diseases. Eculizumab, a monoclonal antibody (mAb) against complement component C5, is being used in the clinic to treat diseases in which MAC-mediated tissue damage is a primary cause. However, C5 is not a selective target for MAC assembly inhibition, and some patients respond incompletely or not at all to the eculizumab treatment. Therefore, C6, the next essential component in the terminal pathway of complement activation, may be an alternative target for the selective inhibition of MAC formation. Surprisingly, few reports describe a functional blockade of C6 using a specific mAb. Here, we report the development of an anti-human C6 mAb (clone 1C9) that recognizes C6 both in free circulation and within C5b6 complexes. This mAb blocked C7 binding to C5b6 complexes and consequently inhibited MAC formation and protected affected paroxysmal nocturnal hemoglobinuria patient red blood cells from MAC-mediated damage in vitro. In addition, this mAb cross-reacts with rhesus monkey but not mouse complement C6. Finally, 1C9 significantly reduced human complement-mediated intravascular hemolysis in vivo in a mouse model. These results suggest that the anti-C6 mAb holds promise as a new therapeutic agent that selectively targets MAC for many complement-mediated pathological conditions.
Collapse
Affiliation(s)
- Kimberly Lin
- Hathaway Brown School, Shaker Heights, OH
- Cole Eye Institute, and
| | - Lingjun Zhang
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | - Maojing Yang
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH; and
| | - Earl Poptic
- Hybridoma Core Facility, Lerner Research Institute, and
| | | | - Jijun Xu
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Pain Management, Cleveland Clinic, Cleveland, OH
| | | | - Feng Lin
- Cole Eye Institute, and
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|