1
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
2
|
Elsewedy HS, Shehata TM, Alqahtani NK, Khalil HE, Soliman WE. Date Palm Extract ( Phoenix dactylifera) Encapsulated into Palm Oil Nanolipid Carrier for Prospective Antibacterial Influence. PLANTS (BASEL, SWITZERLAND) 2023; 12:3670. [PMID: 37960029 PMCID: PMC10648499 DOI: 10.3390/plants12213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nashi K. Alqahtani
- Department of Food Science and Technology, College of Agriculture, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Date Palm Research Center of Excellence, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| |
Collapse
|
3
|
R A, Das S, Theresa M, K S S, Mathew J, E K R. 9-Tricosene Containing Blend of Volatiles Produced by Serratia sp. NhPB1 Isolated from the Pitcher Plant Provide Plant Protection Against Pythium aphanidermatum. Appl Biochem Biotechnol 2023; 195:6098-6112. [PMID: 36809430 DOI: 10.1007/s12010-023-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/23/2023]
Abstract
Plant-associated bacteria exhibit diverse chemical means to protect plants from the pathogens. The present study has been conducted to evaluate the volatile-mediated antifungal activity of Serratia sp. NhPB1 isolated from the pitcher plant against the notorious pathogen Pythium aphanidermatum. The study has also evaluated the protective effect of NhPB1 on Solanum lycopersicum and Capsicum annuum leaves and fruits against P. aphanidermatum. From the results, NhPB1 was found to have remarkable activity against the tested pathogen. The isolate was also found to impart disease protection in selected plants as evidenced by the morphological changes. Here, the leaves and fruits of S. lycopersicum and C. annuum control which were treated with the uninoculated LB and distilled water were found to have the presence of P. aphanidermatum growth with lesions and decaying of tissues. However, the NhPB1-treated plants did not show any symptoms of fungal infection. This could further be confirmed by the microscopical examination of tissues by propidium iodide staining. Here, the normal architecture of leaf and fruit tissues could be observed in the NhPB1-treated group, but the tissue invasion by P. aphanidermatum was observed in the control group which further confirms the promises of selected bacteria for biocontrol applications.
Collapse
Affiliation(s)
- Aswani R
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, India, 686561
| | - Mary Theresa
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560
| | - Sebastian K S
- Department of Zoology, Government College, Kottayam, India, 686013
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India, 686560.
| |
Collapse
|
4
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
5
|
Ahmmed F, Al-Mijalli SH, Abdallah EM, Eissa IH, Ali F, Bhat AR, Jamalis J, Ben Hadda T, Kawsar SMA. Galactoside-Based Molecule Enhanced Antimicrobial Activity through Acyl Moiety Incorporation: Synthesis and In Silico Exploration for Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:998. [PMID: 37513910 PMCID: PMC10385442 DOI: 10.3390/ph16070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a series of galactoside-based molecules, compounds of methyl β-d-galactopyranoside (MDGP, 1), were selectively acylated using 2-bromobenzoyl chloride to obtain 6-O-(2-bromobenzoyl) substitution products, which were then transformed into 2,3,4-tri-O-6-(2-bromobenzoyl) compounds (2-7) with various nontraditional acyl substituents. The chemical structures of the synthesized analogs were characterized by spectroscopic methods and physicochemical and elemental data analyses. The antimicrobial activities of the compounds against five human pathogenic bacteria and two phyto-fungi were evaluated in vitro and it was found that the acyl moiety-induced synthesized analogs exhibited varying levels of antibacterial activity against different bacteria, with compounds 3 and 6 exhibiting broad-spectrum activity and compounds 2 and 5 exhibiting activity against specific bacteria. Compounds 3 and 6 were tested for MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) based on their activity. The synthesized analogs were also found to have potential as a source of new antibacterial agents, particularly against gram-positive bacteria. The antifungal results suggested that the synthesized analogs could be a potential source of novel antifungal agents. Moreover, cytotoxicity testing revealed that the compounds are less toxic. A structure-activity relationship (SAR) investigation revealed that the lauroyl chain [CH3(CH2)10CO-] and the halo-aromatic chain [3(/4)-Cl.C6H4CO-] in combination with sugar, had the most potent activity against bacterial and fungal pathogens. Density functional theory (DFT)-calculated thermodynamic and physicochemical parameters, and molecular docking, showed that the synthesized molecule may block dengue virus 1 NS2B/NS3 protease (3L6P). A 150 ns molecular dynamic simulation indicated stable conformation and binding patterns in a stimulating environment. In silico ADMET calculations suggested that the designed (MDGP, 1) had good drug-likeness values. In summary, the newly synthesized MDGP analogs exhibit potential antiviral activity and could serve as a therapeutic target for dengue virus 1 NS2B/NS3 protease.
Collapse
Affiliation(s)
- Faez Ahmmed
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 116884, Egypt
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | | | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda 60000, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
6
|
Raza A, Abbas Khan M, Ahmad I, Bari A, Masood A, Ullah F, Awan B. Aceclofenac Derivatives: Synthesis, Characterization, and Determination of Anti‐oxidant and Anti‐inflammatory Activities by Chemiluminescence Assays and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Asim Raza
- Department of Pharmaceutical chemistry Faculty of Pharmacy The Islamia University of Bahawalpur Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical chemistry Faculty of Pharmacy The Islamia University of Bahawalpur Pakistan
| | - Irshad Ahmad
- Department of Pharmaceutical chemistry Faculty of Pharmacy The Islamia University of Bahawalpur Pakistan
| | - Ahmad Bari
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh 11451 Saudi Arabia
| | - Anum Masood
- Department of Pharmaceutical chemistry Faculty of Pharmacy The Islamia University of Bahawalpur Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical chemistry Faculty of Pharmacy The Islamia University of Bahawalpur Pakistan
| | - Breena Awan
- Department of Pharmaceutical chemistry Faculty of Pharmacy The Islamia University of Bahawalpur Pakistan
| |
Collapse
|
7
|
Lipase-catalyzed synthesis of antibacterial and antioxidative erythorbyl ricinoleate with high emulsifying activity. Food Chem 2023; 404:134697. [DOI: 10.1016/j.foodchem.2022.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
8
|
Nyalo PO, Omwenga GI, Ngugi MP. Antibacterial properties and GC-MS analysis of ethyl acetate extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). Heliyon 2023; 9:e14461. [PMID: 36925541 PMCID: PMC10010989 DOI: 10.1016/j.heliyon.2023.e14461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Conventional antibiotics are associated with various side-effects. Therefore, there is need of using plant-derived antibiotics with fewer side-effects. Grewia tembensis and Xerophyta spekei, which have been extensively utilized in the Mbeere community, were studied to support their folkloric use and demonstrate their antibacterial capabilities. Salmonella Typhi ATCC 1408, Bacillus subtilis ATCC 21332, Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922 were all used in this study. As a standard reference, Ciprofloxacin (100 μg/ml) was employed, and 5% DMSO was used as a negative reference. Tests for antibacterial activities included disc diffusion, minimum inhibitory concentrations, and bactericidal concentrations. G. tembensis exhibited effects on S. aureus only with Mean Zone Inhibition (MZI) of 07.07 ± 0.07 to 12.33 ± 0.33 mm and 08.33 ± 0.33 to 11.67 ± 0.33 mm for stem bark and leaf extracts respectively. While X. spekei extract had effects on S. aureus with MZI of 07.67 ± 0.33 to 14.67 ± 0.33 mm and B. subtilis with MZI of 09.67 ± 0.33 to 14.33 ± 0.33 mm. Ciprofloxacin demonstrated significantly higher activities as compared to the plant extracts in all the concentrations (p < 0.05), while 5% DMSO had no activity. GC-MS analysis demonstrated the availability of compounds with known antibacterial effects. Therefore, the current study recommends ethnomedicinal and therapeutic use of G. tembensis and X. spekei as antibacterial agents.
Collapse
Affiliation(s)
- Paul Ochieng Nyalo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya.,Penda Health (K) Ltd, Medical Laboratory Department, P.O Box 22647-00100, Nairobi, Kenya
| | - George Isanda Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Toledo E, Félix C, Vicente TFL, Augusto A, Félix R, Toledo B, Silva J, Trindade C, Raimundo D, Lemos MFL. Seaweed Extracts to Control Postharvest Phytopathogenic Fungi in Rocha Pear. J Fungi (Basel) 2023; 9:jof9020269. [PMID: 36836383 PMCID: PMC9967800 DOI: 10.3390/jof9020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Fungal infections cause losses amounting to between 20 and 25% of the fruit industry's total outcome, with an escalating impact on agriculture in the last decades. As seaweeds have long demonstrated relevant antimicrobial properties against a wide variety of microorganisms, extracts from Asparagopsis armata, Codium sp., Fucus vesiculosus, and Sargassum muticum were used to find sustainable, ecofriendly, and safe solutions against Rocha pear postharvest fungal infections. Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, and Penicillium expansum mycelial growth and spore germination inhibition activities were tested in vitro with five different extracts of each seaweed (n-hexane, ethyl acetate, aqueous, ethanolic, and hydroethanolic). An in vivo assay was then performed using the aqueous extracts against B. cinerea and F. oxysporum in Rocha pear. The n-hexane, ethyl acetate, and ethanolic extracts from A. armata showed the best in vitro inhibitory activity against B. cinerea, F. oxysporum, and P. expansum, and promising in vivo results against B. cinerea using S. muticum aqueous extract were also found. The present work highlights the contribution of seaweeds to tackle agricultural problems, namely postharvest phytopathogenic fungal diseases, contributing to a greener and more sustainable bioeconomy from the sea to the farm.
Collapse
Affiliation(s)
- Eloísa Toledo
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Augusto
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bernardo Toledo
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | | | | | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- Correspondence:
| |
Collapse
|
10
|
Potential application of postbiotics metabolites from bioprotective culture to fabricate bacterial nanocellulose based antimicrobial packaging material. Int J Biol Macromol 2022; 220:528-536. [PMID: 35988726 DOI: 10.1016/j.ijbiomac.2022.08.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
Postbiotics (P) of FreshQ, a food protective culture, was prepared and used to develop an antimicrobial membrane by bacterial nanocellulose (BNC). Postbiotics were prepared in de Man, Rogosa and Sharpe medium and freeze-dried. The chemical composition was investigated by GC-MS and the antibacterial activity of postbiotics on different bacterial and fungal strains was investigated. Finally, postbiotics were included in wet and lyophilized BNC by ex-situ method, and their antibacterial activity and FTIR specifications were studied. The GC-MS analysis of postbiotics revealed the presence of fatty acids, alkanes, aldehydes, hydrocarbones fatty acid esters, propionic acid, and certain antibacterial and antifungal compounds such as 2,4-Di-tert-butyl phenol and dotriacontane. Postbiotics revealed antibacterial activity on all investigated strains in a concentration-dependent manner and as the concentation decreased, there was a significant reduction in antimicrobial effects. The zone of inhibition for all bacterial pathogens exceeded 20 mm, then they were classified as "extremely sensitive microorganisms" to the postbiotics at 50 % concentration, while fungal strains revealed a lower zone of inhibition (<17 mm). The order of antimicrobial susceptibility was as follows: Listeria monocytogenes > Staphylococcus aureus > Escherichia coli > Salmonella Typhimurium > Aspergillus flavus > Penicillium citrinum. We also recognized that P-BNC in wet form has significant antimicrobial activity than lyophilized form due to the high adsorption capacity and open 3D structure of BNC in wet form. The fabricated material can serve as an antimicrobial membrane for food applications.
Collapse
|
11
|
Enzymatic Production of Lauroyl and Stearoyl Monoesters of d-Xylose, l-Arabinose, and d-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts 2022. [DOI: 10.3390/catal12060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forestry and agricultural industries constitute highly relevant economic activities globally. They generate large amounts of residues rich in lignocellulose that have the potential to be valorized and used in different industrial processes. Producing renewable fuels and high-value-added compounds from lignocellulosic biomass is a key aspect of sustainable strategies and is central to the biorefinery concept. In this study, the use of biomass-derived monosaccharides for the enzymatic synthesis of sugar fatty acid esters (SFAEs) with antimicrobial activity was investigated to valorize these agro-industrial residues. With the aim to evaluate if lignocellulosic monosaccharides could be substrates for the synthesis of SFAEs, d-xylose, l-arabinose, and d-glucose, lauroyl and stearoyl monoesters were synthetized by transesterification reactions catalyzed by Lipozyme RM IM as biocatalyst. The reactions were performed using commercial d-xylose, l-arabinose, and d-glucose separately as substrates, and a 74:13:13 mixture of these sugars. The proportion of monosaccharides in the latter mixture corresponds to the composition found in hemicellulose from sugarcane bagasse and switchgrass, as previously described in the literature. Products were characterized using nuclear magnetic resonance (NMR) spectroscopy and showed that only the primary hydroxyl group of these monosaccharides is involved in the esterification reaction. Antimicrobial activity assay using several microorganisms showed that 5-O-lauroyl-d-xylofuranose and 5-O-lauroyl-l-arabinofuranose have the ability to inhibit the growth of Gram-positive bacteria separately and in the products mix. Furthermore, 5-O-lauroyl-l-arabinofuranose was the only product that exhibited activity against Candida albicans yeast, and the four tested filamentous fungi. These results suggest that sugar fatty acid esters obtained from sustainable and renewable resources and produced by green methods are promising antimicrobial agents.
Collapse
|
12
|
Marathe SJ, Dedhia N, Singhal RS. Esterification of sugars and polyphenols with fatty acids: techniques, bioactivities, and applications. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
14
|
Foschi C, Parolin C, Giordani B, Morselli S, Luppi B, Vitali B, Marangoni A. Lactobacillus crispatus BC1 Biosurfactant Counteracts the Infectivity of Chlamydia trachomatis Elementary Bodies. Microorganisms 2021; 9:microorganisms9050975. [PMID: 33946391 PMCID: PMC8147163 DOI: 10.3390/microorganisms9050975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Lactobacilli-derived biosurfactants (BS) have shown promising effects as antimicrobial molecules. Since Lactobacillus crispatus plays a crucial role in maintaining vaginal eubiosis, BS from this species could represent novel therapeutic agents to counteract sexually transmitted pathogens, such as Chlamydia trachomatis (CT). The aim of the present study was to assess the inhibitory effects of a BS produced by the vaginal strain L. crispatus BC1 on the infectivity of CT elementary bodies (EBs). For concentrations ranging between 1 and 0.5 mg/mL at 60-min contact time, L. crispatus BC1 BS displayed a highly significant anti-CT activity, with about 50% reduction of EB infectivity towards HeLa cells. To identify the components responsible for chlamydial inhibition, a panel of selected fatty acids, including those present in BS lipopeptidic structure, was tested against CT EBs. Pentadecanoic acid, myristic acid, β-hydroxy-myristic acid, and β-hydroxy-palmitic acid were able to significantly reduce EBs infectivity up to 5–0.5 µg/mL, concentrations that resulted to be non-toxic for HeLa cells. These data can contribute to the understanding of the biological role of lactobacilli in the vaginal niche, as well as to promote the application of their produced BS as an innovative and antibiotic-sparing anti-chlamydial strategy.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (C.F.); (S.M.); (A.M.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (B.G.); (B.L.); (B.V.)
- Correspondence: ; Tel.: +39-051-2088750
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (B.G.); (B.L.); (B.V.)
| | - Sara Morselli
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (C.F.); (S.M.); (A.M.)
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (B.G.); (B.L.); (B.V.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (B.G.); (B.L.); (B.V.)
| | - Antonella Marangoni
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (C.F.); (S.M.); (A.M.)
| |
Collapse
|
15
|
Hegde N, Juvale K, Prabhakar B. Synthesis and In Vitro Evaluation of Inherent Properties of L-Glutamic Acid Based Dendritic Lipopeptide Oligomers. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09493-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Ghosh S, Sohn HY, Pyo SJ, Jensen AB, Meyer-Rochow VB, Jung C. Nutritional Composition of Apis mellifera Drones from Korea and Denmark as a Potential Sustainable Alternative Food Source: Comparison Between Developmental Stages. Foods 2020; 9:E389. [PMID: 32230865 PMCID: PMC7230812 DOI: 10.3390/foods9040389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023] Open
Abstract
We compared nutrient compositions of honey bee (Apis mellifera) drones of different developmental stages from two different populations-the Italian honey bee reared in Korea and Buckfast bees from Denmark. Analyses included amino acid, fatty acid, and mineral content as well as evaluations of antioxidant properties and haemolysis activities. The compositions of total amino acids, and thus protein content of the insects, increased with development. A similar trend was observed for minerals presumably due to the consumption of food in the adult stage. In contrast, total fatty acid amounts decreased with development. Altogether, seventeen amino acids, including all the essential ones, except tryptophan, were determined. Saturated fatty acids dominated over monounsaturated fatty acids in the pupae, but the reverse held true for the adults. Drones were found to be rich in minerals and the particularly high iron as well as K/Na ratio was indicative of the nutritional value of these insects. Among the three developmental stages, adult Buckfast drones exhibited the highest antioxidant activity. Bearing in mind the overall high nutritional value, i.e., high amino acids, minerals and less fatty acids, late pupae and adult drones can be useful for human consumption while the larvae or early pupal stage can be recommended as feed. However, owing to their relatively high haemolysis activity, we advocate processing prior to the consumption of these insects.
Collapse
Affiliation(s)
- Sampat Ghosh
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea; (S.G.); (V.B.M.-R.)
| | - Ho-Yong Sohn
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (H.-Y.S.); (S.-J.P.)
| | - Su-Jin Pyo
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (H.-Y.S.); (S.-J.P.)
| | - Annette Bruun Jensen
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Victor Benno Meyer-Rochow
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea; (S.G.); (V.B.M.-R.)
- Department of Genetics and Ecology, Oulu University, SF-90140 Oulu, Finland
| | - Chuleui Jung
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea; (S.G.); (V.B.M.-R.)
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
17
|
Campana R, Merli A, Verboni M, Biondo F, Favi G, Duranti A, Lucarini S. Synthesis and Evaluation of Saccharide-Based Aliphatic and Aromatic Esters as Antimicrobial and Antibiofilm Agents. Pharmaceuticals (Basel) 2019; 12:ph12040186. [PMID: 31861227 PMCID: PMC6958352 DOI: 10.3390/ph12040186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/23/2022] Open
Abstract
A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Duranti
- Correspondence: (A.D.); (S.L.); Tel.: +39-0722-303501 (A.D.); +39-0722-303333 (S.L.)
| | - Simone Lucarini
- Correspondence: (A.D.); (S.L.); Tel.: +39-0722-303501 (A.D.); +39-0722-303333 (S.L.)
| |
Collapse
|