1
|
Lin J, Oludare A, Jung H. Connecting dots between nucleotide biosynthesis and DNA lesion repair/bypass in cancer. Biosci Rep 2024; 44:BSR20231382. [PMID: 39189649 PMCID: PMC11427732 DOI: 10.1042/bsr20231382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Purine and pyrimidine nucleotides are crucial building blocks for the survival of cells, and there are layers of pathways to make sure a stable supply of them including de novo nucleotide biosynthesis. Fast-growing cells including cancer cells have high demand for nucleotide, and they highly utilize the nucleotide biosynthesis pathways. Due to the nature of the fast-growing cells, they tend to make more errors in replication compared with the normal cells. Naturally, DNA repair and DNA lesion bypass are heavily employed in cancer cells to ensure fidelity and completion of the replication without stalling. There have been a lot of drugs targeting cancer that mimic the chemical structures of the nucleobase, nucleoside, and nucleotides, and the resistance toward those drugs is a serious problem. Herein, we have reviewed some of the representative nucleotide analog anticancer agents such as 5-fluorouracil, specifically their mechanism of action and resistance is discussed. Also, we have chosen several enzymes in nucleotide biosynthesis, DNA repair, and DNA lesion bypass, and we have discussed the known and potential roles of these enzymes in maintaining genomic fidelity and cancer chemotherapy.
Collapse
Affiliation(s)
- Jackson C. Lin
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| | - Ayobami Oludare
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| | - Hunmin Jung
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| |
Collapse
|
2
|
Averill JR, Lin JC, Jung J, Jung H. Novel insights into the role of translesion synthesis polymerase in DNA incorporation and bypass of 5-fluorouracil in colorectal cancer. Nucleic Acids Res 2024; 52:4295-4312. [PMID: 38416579 PMCID: PMC11077093 DOI: 10.1093/nar/gkae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent in colorectal cancer, and resistance to 5-FU easily emerges. One of the mechanisms of drug action and resistance of 5-FU is through DNA incorporation. Our quantitative reverse-transcription PCR data showed that one of the translesion synthesis (TLS) DNA polymerases, DNA polymerase η (polη), was upregulated within 72 h upon 5-FU administration at 1 and 10 μM, indicating that polη is one of the first responding polymerases, and the only TLS polymerase, upon the 5-FU treatment to incorporate 5-FU into DNA. Our kinetic studies revealed that 5-fluoro-2'-deoxyuridine triphosphate (5FdUTP) was incorporated across dA 41 and 28 times more efficiently than across dG and across inosine, respectively, by polη indicating that the mutagenicity of 5-FU incorporation is higher in the presence of inosine and that DNA lesions could lead to more mutagenic incorporation of 5-FU. Our polη crystal structures complexed with DNA and 5FdUTP revealed that dA:5FdUTP base pair is like dA:dTTP in the active site of polη, while 5FdUTP adopted 4-enol tautomer in the base pairs with dG and HX increasing the insertion efficiency compared to dG:dTTP for the incorrect insertions. These studies confirm that polη engages in the DNA incorporation and bypass of 5-FU.
Collapse
Affiliation(s)
- Jameson R Averill
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Jackson C Lin
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - John Jung
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Hunmin Jung
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
4
|
Schmaltz LF, Koag MC, Kou Y, Zhang L, Lee S. Genotoxic effects of the major alkylation damage N7-methylguanine and methyl formamidopyrimidine. Biochem J 2023; 480:573-585. [PMID: 37078496 PMCID: PMC11061863 DOI: 10.1042/bcj20220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023]
Abstract
Various alkylating agents are known to preferentially modify guanine in DNA, resulting in the formation of N7-alkylguanine (N7-alkylG) and the imidazole ring opened alkyl-formamidopyrimidine (alkyl-FapyG) lesions. Evaluating the mutagenic effects of N7-alkylG has been challenging due to the instability of the positively charged N7-alkylG. To address this issue, we developed a 2'-fluorine-mediated transition-state destabilization approach, which stabilizes N7-alkylG and prevents spontaneous depurination. We also developed a postsynthetic conversion of 2'-F-N7-alkylG DNA into 2'-F-alkyl-FapyG DNA. Using these methods, we incorporated site-specific N7-methylG and methyl-FapyG into pSP189 plasmid and determined their mutagenic properties in bacterial cells using the supF-based colony screening assay. The mutation frequency of N7-methylG was found to be less than 0.5%. Our crystal structure analysis revealed that N7-methylation did not significantly alter base pairing properties, as evidenced by a correct base pairing between 2'-F-N7-methylG and dCTP in Dpo4 polymerase catalytic site. In contrast, the mutation frequency of methyl-FapyG was 6.3%, highlighting the mutagenic nature of this secondary lesion. Interestingly, all mutations arising from methyl-FapyG in the 5'-GGT(methyl-FapyG)G-3' context were single nucleotide deletions at the 5'-G of the lesion. Overall, our results demonstrate that 2'-fluorination technology is a useful tool for studying the chemically labile N7-alkylG and alkyl-FapyG lesions.
Collapse
Affiliation(s)
- Lillian F Schmaltz
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Myong-Chul Koag
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Yi Kou
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Louis Zhang
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Seongmin Lee
- From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A
| |
Collapse
|
5
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
6
|
Jung H, Rayala NK, Lee S. Effects of N7-Alkylguanine Conformation and Metal Cofactors on the Translesion Synthesis by Human DNA Polymerase η. Chem Res Toxicol 2022; 35:512-521. [PMID: 35239327 DOI: 10.1021/acs.chemrestox.1c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-enzymatic alkylation on DNA often generates N7-alkyl-2'-deoxyguanosine (N7alkylG) adducts as major lesions. N7alkylG adducts significantly block replicative DNA polymerases and can be bypassed by translesion synthesis (TLS) polymerases such as polymerase η (polη). To gain insights into the bypass of N7alkylG by TLS polymerases, we conducted kinetic and structural studies of polη catalyzing across N7BnG, a genotoxic lesion generated by the carcinogenic N-nitrosobenzylmethylamine. The presence of templating N7BnG in the polη catalytic site decreased the replication fidelity by ∼9-fold, highlighting the promutagenicity of N7BnG. The catalytic efficiency for dCTP incorporation opposite N7BnG decreased ∼22-fold and ∼7-fold compared to the incorporation opposite undamaged guanine in the presence of Mg2+ and Mn2+, respectively. A crystal structure of the complexes grown with polη, templating N7BnG, incoming dCTP, and Mg2+ ions showed the lack of the incoming nucleotide and metal cofactors in the polη catalytic site. Interestingly, the templating N7BnG adopted a syn conformation, which has not been observed in the published N7alkylG structures. The preferential formation of syn-N7BnG conformation at the templating site may deter the binding of an incoming dCTP, causing the inefficient bypass by polη. In contrast, the use of Mn2+ in place of Mg2+ in co-crystallization yielded a ternary complex displaying an anti-N7BnG:dCTP base pair and catalytic metal ions, which would be a close mimic of a catalytically competent state. We conclude that certain bulky N7-alkylG lesions can slow TLS polymerase-mediated bypass by adopting a catalytically unfavorable syn conformation in the replicating base pair site.
Collapse
Affiliation(s)
- Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Naveen Kumar Rayala
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
7
|
Suo C, Chen H, Binczyk F, Zhao R, Fan J, Yang X, Yuan Z, Kreil D, Łabaj P, Zhang T, Lu M, Jin L, Polańska J, Chen X, Ye W. Tumor infiltrating lymphocyte signature is associated with single nucleotide polymorphisms and predicts survival in esophageal squamous cell carcinoma patients. Aging (Albany NY) 2021; 13:10369-10386. [PMID: 33819921 PMCID: PMC8064198 DOI: 10.18632/aging.202798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 12/09/2022]
Abstract
Purpose: Esophageal cancer is the sixth leading cause of cancer-related death worldwide, and is associated with a poor prognosis. Stromal tumor infiltrating lymphocytes (sTIL) and certain single nucleotide polymorphisms (SNPs) have been found to be predictive of patient survival. In this study, we explored the association between SNPs and sTIL regarding the predictability of disease-free survival in patients with esophageal squamous cell carcinoma (ESCC). Materials and methods: We collected 969 pathologically confirmed ESCC patients from 2010 to 2013 and genotyped 101 SNPs from 59 genes. The number of sTIL for each patient was determined using an automatic algorithm. A Kruskal-Wallis test was used to determine the association between genotype and sTIL. The genotypes and clinical factors related to survival were analyzed using a Kaplan-Meier curve, Cox proportional hazards model, and log-rank test. Results: The median age of the patients was 67 (42-85 years), there was a median follow-up of 851.5 days and 586 patients died. The univariable analysis showed that 10 of the 101 SNPs were associated with sTIL. Six SNPs were also associated with disease-free survival. A multivariable analysis revealed that sTIL, rs1801131, rs25487, and rs8030672 were independent prognostic markers for ESCC patients. The model combining SNPs, clinical characteristics and sTIL outperformed the model with clinical characteristics alone for predicting outcomes in ESCC patients. Conclusion: We discovered 10 SNPs associated with sTIL in ESCC and we built a model of sTIL, SNPs and clinical characteristics with improved prediction of survival in ESCC patients.
Collapse
Affiliation(s)
- Chen Suo
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Huiyao Chen
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.,Center for Molecular Medicine of Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Franciszek Binczyk
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Renjia Zhao
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Jiahui Fan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - David Kreil
- IMBT Bioinformatics Research, Boku University Vienn, Vienna, Austria
| | - Paweł Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiejun Zhang
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Joanna Polańska
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Translesion synthesis of the major nitrogen mustard-induced DNA lesion by human DNA polymerase η. Biochem J 2021; 477:4543-4558. [PMID: 33175093 DOI: 10.1042/bcj20200767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.
Collapse
|
9
|
Structural insights into the bypass of the major deaminated purines by translesion synthesis DNA polymerase. Biochem J 2020; 477:4797-4810. [PMID: 33258913 DOI: 10.1042/bcj20200800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.
Collapse
|