1
|
Wang Y, Yu D, Zhu S, Du X, Wang X. The genus Dioscorea L. (Dioscoreaceae), a review of traditional uses, phytochemistry, pharmacology, and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118069. [PMID: 38552992 DOI: 10.1016/j.jep.2024.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Dioscorea, a member of the Dioscoreaceae family, comprises approximately 600 species and is widely distributed across temperate and tropical regions such as Asia, South Africa, and North America. The traditional medicinal uses of Dioscorea have been documented in Asian and African pharmacological systems. In Asia, this genus is traditionally used to treat respiratory illnesses, rheumatism, diabetes, diarrhea, dysentery, and other conditions. In Africa, this genus has been used to treat human immunodeficiency virus and ring worms. However, the traditional medicinal practices in North America rarely mention the use of this genus. AIM OF THE STUDY The aim of this review is to comprehensively review the genus Dioscorea, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. The research also aims to highlight the valuable bioactive compounds within Dioscorea and emphasize the need for further investigations into acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors to contribute to the discovery of novel pharmaceuticals. MATERIALS AND METHODS A search for available information on Dioscorea was conducted using scientific databases, including PubMed, ISI-WOS, Scopus, and Google Scholar, as well as recent academic publications from reputable publishers and other literature sources. The search was not limited by language and spanned the literature published between 1950 and 2022. RESULTS This article provides a comprehensive review of the Dioscorea genus, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. Extensive research has been conducted on this genus, resulting in the isolation and examination of over 1000 compounds, including steroids, terpenoids, and flavonoids, to determine their biological activities. These activities include anti-tumor, anti-inflammatory, immunomodulatory, neuroprotective, hypoglycemic, and hypolipidemic effects. However, some studies have indicated the potential toxicity of high doses of Dioscorea, highlighting the need for further investigations to assess the safety of this genus. Additionally, this review explores potential avenues for future research and discusses the challenges associated with a comprehensive understanding of the Dioscorea genus. CONCLUSIONS Based on the existing literature, it can be concluded that Dioscorea is a valuable source of bioactive compounds that have the potential to treat various disorders. Future research should prioritize the investigation of acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors. This review provides a comprehensive analysis of the Dioscorea genus, emphasizing its potential to enable a deeper exploration of the biological activity mechanisms of these plants and contribute to the discovery of novel pharmaceuticals.
Collapse
Affiliation(s)
- Yufei Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Dan Yu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shaojie Zhu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiaowei Du
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Xijun Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
2
|
Habib Z, Ijaz S, Haq IU. Comparative metabolomic profiling and nutritional chemistry of Chenopodium quinoa of diverse panicle architecture and agroecological zones. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1959-1979. [PMID: 38222284 PMCID: PMC10784447 DOI: 10.1007/s12298-023-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Chenopodium quinoa possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in Chenopodium quinoa accessions of varying panicle architecture. Metabolic profiling using liquid chromatography-mass spectrometry (LC-MS) analysis identified seventeen metabolites, including flavonoids, phenolics, fatty acids, terpenoids, phenylbutenoid dimers, amino acids, and saccharides. Eight metabolic compounds were reported in this study for the first time in quinoa. Some metabolites were detected as differentially expressed. The compound (Z)-1-(2,4,5-trimethoxyphenyl) butadiene and chrysin were found only in SPrecm. Sodium ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxtetrahydrofuran-2-yl) methyl hydrogen phosphate and elenolic acid were detected only in CHEN-33, and quercetin, 3-hydroxyphloretin-3'-C-glucoside, kurarinone, and rosmarinic acid were identified only in D-12175. Variable importance in projection (VIP) scores annotated ten metabolites contributing to variability. Mineral analysis using atomic absorption spectrophotometry indicated that the quantity of magnesium and calcium is high in D-12175. In comparison, SPrecm showed a high quantity of magnesium compared to CHEN-33, while CHEN-33 showed a high quantity of calcium compared to SPrecm. However, the proximate composition showed no significant difference among quinoa accessions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01398-2.
Collapse
Affiliation(s)
- Zakia Habib
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
3
|
Wu C, Zhang R, Wang J, Chen Y, Zhu W, Yi X, Wang Y, Wang L, Liu P, Li P. Dioscorea nipponica Makino: A comprehensive review of its chemical composition and pharmacology on chronic kidney disease. Biomed Pharmacother 2023; 167:115508. [PMID: 37716118 DOI: 10.1016/j.biopha.2023.115508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a widespread ailment that significantly impacts global health. It is characterized by high prevalence, poor prognosis, and substantial healthcare costs, making it a major public health concern. The current clinical treatments for CKD are not entirely satisfactory, leading to a high demand for alternative therapeutic options. Chinese herbal medicine, with its long history, diverse varieties, and proven efficacy, offers a promising avenue for exploration. One such Chinese herbal medicine, Dioscorea nipponica Makino (DNM), is frequently used to treat kidney diseases. In this review, we have compiled studies examining the mechanisms of action of DNM in the context of CKD, focusing on five primary areas: improvement of oxidative stress, inhibition of renal fibrosis, regulation of metabolism, reduction of inflammatory response, and regulation of autophagy.
Collapse
Affiliation(s)
- Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
4
|
Wang Z, Zhao S, Tao S, Hou G, Zhao F, Tan S, Meng Q. Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases. Molecules 2023; 28:molecules28062878. [PMID: 36985850 PMCID: PMC10051580 DOI: 10.3390/molecules28062878] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Dioscorea spp. belongs to the Dioscoreaceae family, known as "yams", and contains approximately 600 species with a wide distribution. It is a major food source for millions of people in tropical and subtropical regions. Dioscorea has great medicinal and therapeutic capabilities and is a potential source of bioactive substances for the prevention and treatment of many diseases. In recent years, increasing attention has been paid to the phytochemicals of Dioscorea, such as steroidal saponins, polyphenols, allantoin, and, in particular, polysaccharides and diosgenin. These bioactive compounds possess anti-inflammatory activity and are protective against a variety of inflammatory diseases, such as enteritis, arthritis, dermatitis, acute pancreatitis, and neuroinflammation. In addition, they play an important role in the prevention and treatment of metabolic diseases, including obesity, dyslipidemia, diabetes, and non-alcoholic fatty liver disease. Their mechanisms of action are related to the modulation of a number of key signaling pathways and molecular targets. This review mainly summarizes recent studies on the bioactive compounds of Dioscorea and its treatment of inflammatory and metabolic diseases, and highlights the underlying molecular mechanisms. In conclusion, Dioscorea is a promising source of bioactive components and has the potential to develop novel natural bioactive compounds for the prevention and treatment of inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shengnan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Siyu Tao
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shenpeng Tan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Yang G, Liu P, Shi H, Fan W, Feng X, Chen J, Jing S, Wang L, Zheng Y, Zhang D, Guo L. Identification of anti-inflammatory components in Dioscorea nipponica Makino based on HPLC-MS/MS, quantitative analysis of multiple components by single marker and chemometric methods. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123531. [DOI: 10.1016/j.jchromb.2022.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
6
|
Xi P, Niu Y, Zhang Y, Li W, Gao F, Gu W, Kui F, Liu Z, Lu L, Du G. The mechanism of dioscin preventing lung cancer based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115138. [PMID: 35245631 DOI: 10.1016/j.jep.2022.115138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscorea nipponica Makino as a Chinese folk medicine has been used for the treatment of chronic bronchitis, cough, and asthma. Several studies have established the antimetastatic potential of Dioscorea nipponica Makino extract. Dioscin is a major bioactive compound in Dioscorea nipponica Makino and has anti-tumor property in lung cancer cell lines. However, the preventive effect of dioscin against lung cancer and its key mechanism haven't been identified yet. AIM OF STUDY To identify the prevention effect of dioscin on lung cancer and explore its key mechanism based on network pharmacology and experimental validation. METHODS The potential targets of dioscin were obtained from the HERB database. The therapeutic targets of lung cancer were acquired from the GeneCards database. Protein-protein interaction network (PPI) was constructed in the STRING 11.0 database. The David database was used for enrichment analysis. Molecular Docking was finished by the AutoDock Vina. NSCLC cell lines and mouse lung cancer model were used to confirm the prevention effect of dioscin on lung cancer and its key mechanism. RESULTS 76 potential targets of dioscin were identified to be involved in lung cancer treatment, which refer to 512 biological processes, 47 molecular functions, 77 cellular components and 107 signal pathways. The molecular docking suggested that dioscin might bind to AKT1, Caspase3, TP53, C-JUN and IL-6. The DARTS indicated that dioscin could bind to AKT1. In vitro, dioscin could decrease proliferation, invasion and migration in A549 and PC-9 cells with the significant reduction in the expression of p-AKT, MMP2, and PCNA. In vivo, dioscin could reduce lung nodules, lung injury, and mortality in mouse lung cancer model with reducing the expression of p-AKT, MMP2, PCNA and increasing the expression of active-caspase3. CONCLUSION Dioscin could prevent lung cancer and its key target is AKT1 kinase, a center protein of PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Peng Xi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Adomėnienė A, Venskutonis PR. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082530. [PMID: 35458730 PMCID: PMC9026138 DOI: 10.3390/molecules27082530] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022]
Abstract
Dioscorea, consisting of over 600 species, is the most important genus in the Dioscoreaceae family; however, the practically used plants, which are commonly called yam, are restricted to a remarkably smaller number of species. Numerous studies have reported the high nutritional value of yam, particularly as an alternative source of starch and some important micronutrients. Several Dioscorea species are widely used for various medicinal purposes as well. In many studies, the bioactivities and health benefits of Dioscorea extracts and other preparations have been related to the presence of phytochemicals, which possess antioxidant properties; they are related mainly to radical-scavenging capacity in chemical assays and positive effects on the endogenous antioxidant system in cell-based and in vivo assays. Considering the increasing number of publications on this topic and the absence of comprehensive and focused review papers on antioxidant potential, this article summarizes the results of studies on the antioxidant properties of Dioscorea spp. and their relation to phytochemicals and health benefits. A comprehensive survey of the published articles has revealed that the majority of studies have been performed with plant tubers (rhizomes, roots), while reports on leaves are rather scarce. In general, leaf extracts demonstrated stronger antioxidant potential than tuber preparations. This may be related to the differences in phytochemical composition: saponins, phenanthrenes and, for some pigment-rich species (purple yams), anthocyanins are important constituents in tubers, while phenolic acids and flavonoids are characteristic phytochemicals in the leaves. The review may assist in explaining ethnopharmacological knowledge on the health benefits of Dioscorea plants and their preparations; moreover, it may foster further studies of poorly investigated species, as well as their wider application in developing new functional foods and nutraceuticals.
Collapse
|
8
|
Zou XZ, Hao JF, Zhou XH. Inhibition of SREBP-1 Activation by a Novel Small-Molecule Inhibitor Enhances the Sensitivity of Hepatocellular Carcinoma Tissue to Radiofrequency Ablation. Front Oncol 2021; 11:796152. [PMID: 34900747 PMCID: PMC8660695 DOI: 10.3389/fonc.2021.796152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Radiofrequency ablation (RFA) is an important strategy for treatment of advanced hepatocellular carcinoma (HCC). However, the prognostic indicators of RFA therapy are not known, and there are few strategies for RFA sensitization. The transcription factor sterol regulatory element binding protein 1 (SREBP)-1 regulates fatty-acid synthesis but also promotes the proliferation or metastasis of HCC cells. Here, the clinical importance of SREBP-1 and potential application of knockdown of SREBP-1 expression in RFA of advanced HCC was elucidated. In patients with advanced HCC receiving RFA, a high level of endogenous SREBP-1 expression correlated to poor survival. Inhibition of SREBP-1 activation using a novel small-molecule inhibitor, SI-1, not only inhibited the aerobic glycolysis of HCC cells, it also enhanced the antitumor effects of RFA on xenograft tumors. Overall, our results: (i) revealed the correlation between SREBP-1 and HCC severity; (ii) indicated that inhibition of SREBP-1 activation could be a promising approach for treatment of advanced HCC.
Collapse
Affiliation(s)
- Xiao-Zheng Zou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, China
| | - Jun-Feng Hao
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University/Institute of Nephrology and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang City, China
| | - Xiu-Hua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, China
| |
Collapse
|
9
|
Zhong T, Feng M, Su M, Wang D, Li Q, Jia S, Luo F, Wang H, Hu E, Yang X, Fan Y. Qihuzha granule attenuated LPS-induced acute spleen injury in mice via Src/MAPK/Stat3 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114458. [PMID: 34352329 DOI: 10.1016/j.jep.2021.114458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qihuzha granule (QHZG), is one of traditional Chinese patent medicines composed of eleven edible medicinal plant, which has been used in the clinic for the treatment of indigestion and anorexia in children caused by deficiency of the spleen and stomach. Yet it is noteworthy that QHZG has therapeutic effect on recurrent respiratory tract infection (RRTI) in children. However, its potential molecular mechanisms remained unclear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic effect and potential mechanism of QHZG on lipopolysaccharide (LPS) induced acute spleen injury. MATERIALS AND METHODS The acute spleen injury model was induced by intraperitoneal injection of LPS (10 mg/kg) and safe doses of QHZG was administered by gavage once a day for 23 days before LPS treatment. Serum inflammatory cytokines including interleukin-2 (IL-2), IL-1β, IFN-γ, and tumor necrosis factor-α (TNF-α) were tested by ELISA. Related protein levels were detected by Western blotting. Hematoxylin-eosin (HE) staining was employed to observe the histological alterations. The distribution of macrophages and neutrophils in the mouse spleen was examined by immunofluorescence analysis. RESULTS QHZG pretreatment significantly abolished the increased secretion of cytokines such as interleukin-2 (IL-2), IL-1β, IFN-γ, and tumor necrosis factor-α (TNF-α), which were attributable to LPS treatment. Immunofluorescence staining and Histological analysis of spleen tissue revealed the protective effect of QHZG against LPS-induced acute spleen injury in mice. Further study indicated that pretreatment with QHZG significantly inhibited LPS-induced phosphorylation of Src. Accordingly, the increased phosphorylation of Src downstream components (JNK, ERK, P38 and STAT3) induced by LPS was remarkably diminished by QHZG, suggesting the involvement of Src/MAPK/STAT3 pathway in the inhibitory effects of QHZG on spleen injury in mice. CONCLUSION Our study demonstrated that QHZG protected mice from LPS-induced acute spleen injury via inhibition of Src/MAPK/Stat3 signal pathway. These results suggested that QHZG might serve as a new drug for the treatment of LPS-stimulated spleen injury.
Collapse
Affiliation(s)
- Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Min Feng
- Sunflower Pharmaceutical Group (Guizhou) Hongqi Co., Ltd, Liupanshui, 553400, PR China
| | - Minzhi Su
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Shuqin Jia
- Guiyang First People's Hospital, Guiyang, 550014, PR China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Haibo Wang
- Sunflower Pharmaceutical Group (Guizhou) Hongqi Co., Ltd, Liupanshui, 553400, PR China
| | - Enming Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China.
| |
Collapse
|
10
|
Yang GY, Song JN, Chang YQ, Wang L, Zheng YG, Zhang D, Guo L. Natural Deep Eutectic Solvents for the Extraction of Bioactive Steroidal Saponins from Dioscoreae Nipponicae Rhizoma. Molecules 2021; 26:molecules26072079. [PMID: 33916390 PMCID: PMC8038615 DOI: 10.3390/molecules26072079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, a simple and environmentally friendly extraction method based on natural deep eutectic solvents (NADESs) was established to extract four bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma (DNR). A total of twenty-one types of choline chloride, betaine, and L-proline based NADESs were tailored, and the NADES composed of 1:1 molar ratio of choline chloride and malonic acid showed the best extraction efficiency for the four steroidal saponins compared with other NADESs. Then, the extraction parameters for extraction of steroidal saponins by selected tailor-made NADES were optimized using response surface methodology and the optimal extraction conditions are extraction time, 23.5 min; liquid–solid ratio, 57.5 mL/g; and water content, 54%. The microstructure of the DNR powder before and after ultrasonic extraction by conventional solvents (water and methanol) and the selected NADES were observed using field emission scanning electron microscope. In addition, the four steroidal saponins were recovered from NADESs by D101 macroporous resin with a satisfactory recovery yield between 67.27% and 79.90%. The present research demonstrates that NADESs are a suitable green media for the extraction of the bioactive steroidal saponins from DNR, and have a great potential as possible alternatives to organic solvents for efficiently extracting bioactive compounds from natural products.
Collapse
Affiliation(s)
- Gui-Ya Yang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
| | - Jun-Na Song
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
| | - Ya-Qing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
| | - Lei Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
| | - Yu-Guang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050200, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
- Correspondence: (D.Z.); (L.G.); Tel.: +86-0311-8992-6017 (D.Z. & L.G.)
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.-Y.Y.); (J.-N.S.); (Y.-Q.C.); (L.W.); (Y.-G.Z.)
- Correspondence: (D.Z.); (L.G.); Tel.: +86-0311-8992-6017 (D.Z. & L.G.)
| |
Collapse
|
11
|
Lee CY, Chou YE, Hsin MC, Lin CW, Wang PH, Yang SF, Hsiao YH. Dioscorea nipponica Makino suppresses TPA-induced migration and invasion through inhibition of matrix metalloproteinase-9 in human cervical cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1194-1201. [PMID: 32519806 DOI: 10.1002/tox.22984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Dioscorea nipponica Makino has been used for the treatment of chronic bronchitis, rheumatoid arthritis, cough, and asthma. Several studies have established the antitumor effect of D. nipponica Makino extract (DNE). However, no investigations have considered the antimetastatic potential of DNE in cervical cancer cells. The present study examined the effects of DNE on cervical cancer cells treated with 12-O-tetradecanoylphorbol-13-acetate and characterized the possible molecular mechanisms. MTT assay results indicated that DNE exhibited very low cytotoxicity, and DNE significantly reduced the invasion and migration abilities of cervical cancer cells. Gelatin zymography analysis revealed that DNE significantly inhibited matrix metalloproteinase-9 (MMP-9) activity. Reverse transcription-polymerase chain reaction assay results revealed that DNE treatment inhibited the MMP-9 mRNA levels of HeLa and SiHa cells. Western blot results revealed that DNE significantly diminished the ERK1/2 phosphorylation. In conclusion, we revealed that the antimetastatic effects of DNE on cervical cancer cells are due to its inhibition of MMP-9 expression through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Chung-Yuan Lee
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Chien Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
12
|
Dioscorea nipponica extracts enhance recovery from skeletal muscle atrophy by suppressing NF-κB expression. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|