1
|
Massoud SS, Mautner FA, Louka FR, Salem NMH, Fischer RC, Torvisco A, Vančo J, Belza J, Dvořák Z, Trávníček Z. Structurally diverse zinc(II) complexes containing tripodal tetradentate phenoxido-amines with promising antiproliferative effects. Dalton Trans 2024; 53:12261-12280. [PMID: 38980002 DOI: 10.1039/d4dt00942h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Structurally diverse zinc(II) complexes with tripodal tetradentate phenolic-amines of variable substituents in the phenol and amine moieties were synthesized and thoroughly characterized. The two dinuclear [Zn2(L1)2](ClO4)2·MeOH (1), [Zn2(L2)2](ClO4)2 (2), and four mononuclear [Zn(L3)(H2O)]·MeOH (3), [Zn(L4)] (4), [Zn(L5)] (5) and [Zn(L6)] (6) complexes revealed distorted octahedral, trigonal-bipyramidal or tetrahedral geometries. The free HL1 and H2L3-6 ligands, and complexes 1-6 were evaluated for in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3 and 22Rv1) and normal healthy MRC-5 cells. Overall results revealed high-to-moderate cytotoxicity (with the best IC50 values for complex 6 ranging from 2.4 to 4.5 μM), which is however, significantly higher than that of the reference drug cisplatin. The moderately active complexes 1-4 showed considerable selectivity on A2780 cells (IC50 ≈ 16.3-19.5 μM) over MRC-5 ones (with IC50 >50 μM for 1, 2 and 4, and with IC50 >25 μM for 3). The complexes 1, 2, and 6 and the ligand H2L6 were chosen for subsequent deeper biological evaluations. Their time-resolved cellular uptake and other cellular effects in A2780 cells were studied, such as cell cycle profile, intracellular ROS production, induction of apoptosis and activation of caspases 3/7. Complexes 1 and 2 caused significant G0/G1 cell cycle arrest in A2780 cells and antioxidant effects at normal conditions. They showed only limited effects on cellular processes connected with cytotoxicity, i.e. induction of apoptosis, depletion of mitochondrial membrane potential, and autophagy. These findings can be at least partly attributed to the low ability of the complexes to enter the A2780 cells and the depression of metabolic activity of the target cancer cells.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
| | - Nahed M H Salem
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Ana Torvisco
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Huang X, Wang B, Sun D, Chen M, Xue X, Liu H, Zhou Y, Ma Z. Synthesis of substituted terpyridine nickel nitrate complexes and their inhibitory selectivity against cancer cell lines. J Inorg Biochem 2024; 256:112554. [PMID: 38613885 DOI: 10.1016/j.jinorgbio.2024.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Six terpyridine‑nickel complexes 1-6 were formed by the coordination of 4'-(4-R-phenyl)-2,2':6',2″-terpyridine (R = hydroxyl (L1), methoxyl (L2), methylsulfonyl (L3), fluoro (L4), bromo (L5), iodo (L6)) derivatives to nickel nitrate. The compositions and structures of these complexes were analyzed by Fourier Transform infrared spectroscopy (FT-IR), elemental analyses, electrospray ionization mass spectra (ESI-MS), solid-state ultraviolet-visible (UV-Vis) spectroscopy, and single crystal X-ray diffraction (1, 2 and 4) studies. In vitro anticancer cell proliferation experiments against SiHa (human cervical squamous cancer cell line) cells, Bel-7402 (human hepatoma cancer cell line), Eca-109 (human esophageal cancer cell line) and HL-7702 (human normal hepatocyte cell line) indicate that they have more excellent anti-proliferation effects than the cis-platin against Siha cells, Bel-7402 cells and Eca-109 cells. Especially, complex 5 showed a rather outstanding inhibitory effect against the SiHa cell line and was less toxic than the other compounds to the HL-7702 cell line, implying an obvious specific inhibitory effect. Therefore, complex 5 has the potential value to be developed as an anticancer cell-specific drug against human cervical squamous carcinoma. Molecular docking simulation, UV-vis absorption spectroscopy and circular dichroism experiments show that they prefer to bind to DNA part in an embedded binding manner.
Collapse
Affiliation(s)
- Xin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Dameng Sun
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, 530006 Nanning, Guangxi, China.
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China.
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China.
| |
Collapse
|
3
|
Ferraz Lobato L, Ciattini S, Gallo A, Allão Cassaro RA, Sorace L, Poneti G. Thermodynamics of spin crossover in a bis(terpyridine) cobalt(II) complex featuring a thioether functionality. Dalton Trans 2024; 53:9933-9941. [PMID: 38808660 DOI: 10.1039/d4dt00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this contribution, a terpyridine-based ligand bearing a thioether functionality is used to prepare a new cobalt(II) spin crossover complex: [Co(TerpyPhSMe)2](PF6)2 (1), where TerpyPhSMe is 4'-(4-methylthiophenyl)-2,2':6',2''-terpyridine. Its structure, determined by single crystal X-ray diffraction, reveals a mer coordination of the tridentate terpyridine ligands, leading to a tetragonally compressed octahedron. Intermolecular interactions in the crystal lattice freeze the complex in the high spin state in the solid state at all temperatures, as indicated by magnetometry and Electron Paramagnetic Resonance (EPR) spectra. When dissolved in acetonitrile, however, temperature dependent electronic, 1H-NMR and EPR spectra highlight an entropy-driven spin crossover transition, whose thermodynamics parameters have been determined. This is the first report of a cobalt(II) SCO complex featuring a thioether group, allowing its implementation in chemically grown bistable monolayers and may open important perspectives for the use of such systems in molecular spintronics.
Collapse
Affiliation(s)
- Lúcio Ferraz Lobato
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Samuele Ciattini
- Interdepartmental Center for Crystallography (CRIST), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Angelo Gallo
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Rafael A Allão Cassaro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Lorenzo Sorace
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
4
|
Vučelj S, Hasić R, Ašanin D, Šmit B, Caković A, Bogojeski J, Serafinović MĆ, Marković BS, Stojanović B, Pavlović S, Stanisavljević I, Ćorović I, Stojanović MD, Jovanović I, Soldatović TV, Stojanović B. Modes of Interactions with DNA/HSA Biomolecules and Comparative Cytotoxic Studies of Newly Synthesized Mononuclear Zinc(II) and Heteronuclear Platinum(II)/Zinc(II) Complexes toward Colorectal Cancer Cells. Int J Mol Sci 2024; 25:3027. [PMID: 38474273 DOI: 10.3390/ijms25053027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.
Collapse
Affiliation(s)
- Samir Vučelj
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Rušid Hasić
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Darko Ašanin
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Biljana Šmit
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Angelina Caković
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jovana Bogojeski
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | | | - Bojana Simović Marković
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Surgery, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Sladjana Pavlović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Isidora Stanisavljević
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Milica Dimitrijević Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Bojana Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathophysiology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Sun D, Huang X, Man R, Jia X, Song X, Wang S, Xue X, Liu H, Ma Z. Fe(II) complexes of 2,2':6',2''-terpyridine ligands functionalized with substituted-phenyl groups: synthesis, crystal structures and anticancer potential. Dalton Trans 2023; 52:18416-18428. [PMID: 38009014 DOI: 10.1039/d3dt02732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
With the aim of developing potential anticancer drug candidates, a series of Fe(II) complexes were synthesized using nine 2,2':6',2''-terpyridine ligands functionalized with substituted-phenyl groups, and their biological activities were systematically investigated. Their bis-terpyridine sandwich-like structures were determined by single crystal X-ray crystallography. In vitro antiproliferative experiments based on three human cancer cell lines, including human hepatoma cancer cell line (Bel-7402), human esophageal cancer cell line (Eca-109), and human cervical squamous cancer cell line (SiHa), indicate the high antiproliferation activities of these complexes compared with commercial cisplatin. And their toxicity to normal cells was estimated based on human normal hepatocyte (HL-7702) cell line. In particular, when the phenyl in terpyridine ligand was modified by a carboxyl group, the corresponding complex 3 exhibited much higher antiproliferation to cancer Bel-7402 cells (IC50 = 3.653 μmol L-1) than cisplatin and low toxicity to normal HL-7702 cells (IC50 = 99.92 μmol L-1), implying a significant selectivity for 3 in killing hepatoma cancer cells. Combined with the fact that iron element is more accessible than platin, this series of Fe(II) complexes comprises potential candidates for anticancer drugs with specific inhibition of hepatoma cancer. UV titration experiments and circular dichroism (CD) showed a strong binding affinity between these nine complexes and CT-DNA. However, molecular docking simulation revealed the competitive binding of DNA and protein to these complexes. Further, the interactions between these complexes and bovine serum albumin (BSA) have been studied by fluorescence titration and CD spectroscopy.
Collapse
Affiliation(s)
- Dameng Sun
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Ruojun Man
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530006 Nanning, Guangxi, People's Republic of China.
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Xinluan Song
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Sihan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530006 Nanning, Guangxi, People's Republic of China.
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Raya I, Kartina D, Wijaya RI, Irfandi R, Abdalrazaq EA, Prihantono P, Santi S, Pratiwi E, Khaerunnisa AB, Luthfiana D, Musa B, Natsir H, Maming M, Zainuddin ZD, Ramlawati R, Fudholi A, Usman AN, Supratman U, Mazaya M, Sufiandi S. Novel Complex of Zinc (II) Dichloroethylenediamine: Synthesis, Characterization, In-silico, and In-vitro Evaluation against Cervical Cancer Cells. Asian Pac J Cancer Prev 2023; 24:4155-4165. [PMID: 38156851 PMCID: PMC10909115 DOI: 10.31557/apjcp.2023.24.12.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Cervical cancer is a malignancy originating from the cervix and often caused by oncogenic Human Papilloma Virus (HPV), specifically subtypes 16 and 18. Anticancer drugs are chemotherapeutic compounds used for cancer treatment. Therefore, this research aims to synthesize and characterize Zinc (II) dichloroethylenediamine (Zn(en)Cl2) complex, as well as determine its antiproliferative activity against HeLa cells. The Zn(en)Cl2 complex was successfully synthesized, and the antiproliferative activity was tested. METHODS The synthesis involved reacting ethylenediamine and KCl with Zn metal. The complex formed was characterized using a conductometer, UV-Vis spectroscopy, FT-IR spectroscopy, and XRD, while the activity was measured against HeLa cells. RESULT The synthesis yielded a 56.12% conversion with a melting point of 198-200 oC and a conductivity value of 2.02 mS/cm. The Zn(en)Cl2 complex showed potential activity against HeLa cells with an IC50 value of 898.35 µg/mL, which was evidenced by changes in the morphological structure of HeLa cells. Its interaction with DNA targets was investigated by employing molecular docking. CONCLUSION The observed data indicated that the Zn(en)Cl2 complex bound to DNA at the nitrogenous base Guanine (DG) by coordinate covalent bonds. Interestingly, DG maintained interaction with the complex until the end of the docking simulation. Additionally, molecular dynamics (MD) simulation was conducted, and the results showed that Zn(en)Cl2 remained bound to the DNA binding pocket all through the process.
Collapse
Affiliation(s)
- Indah Raya
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Desy Kartina
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Universitas Pakuan Bogor, 16144 Indonesia
| | - Ronald Ivan Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Rizal Irfandi
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung, Sengkang 90915, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Jalan Daeng Tata Raya Makassar, 90244, Indonesia
| | - Eid A Abdalrazaq
- Chemistry department, Faculty of Science, Al Hussein Bin Talal University, Ma'an- Jordan
| | - Prihantono Prihantono
- Department of Surgery, Faculty of Medical, Hasanuddin University, Makassar, 90245, Indonesia
| | - Santi Santi
- Medical Laboratory Technology, Faculty of Health Technology, Megarezky University, Makassar 90234, Indonesia
| | - Eka Pratiwi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Besse Khaerunnisa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, Indonesia
| | - Bulkis Musa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Hasnah Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Maming Maming
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Zaraswati Dwyana Zainuddin
- Department of Biology, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar 90245, Indonesia
| | - Ramlawati Ramlawati
- Department of Natural Science Education, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Makassar, Indonesia
| | - Ahmad Fudholi
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
- Research Centre for Electrical Power and Mechatronics, Institute of Science (LIPI), Bandung, Indonesia
| | | | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Maulida Mazaya
- esearch Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, West Java, Indonesia
| | - Sandi Sufiandi
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, Deputy for Research and Innovation Infrastructure - The National Research and Innovation Agency of The Republic of Indonesia
| |
Collapse
|
7
|
Shahabadi N, Ghaffari L, Mardani Z, Shiri F. Interaction studies of water-soluble Zn(II) complex with calf thymus DNA using biophysical and molecular docking methods". NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:493-516. [PMID: 37963106 DOI: 10.1080/15257770.2023.2280001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
The binding between a fluorescent water-soluble Zn(II) complex of {2-[N-(2-hydroxyethylammonioethyl) imino methyl] phenol} and calf thymus DNA (ct-DNA) was investigated using spectroscopic techniques. The complex was prepared and identified by FT-IR, and 1H NMR spectroscopies. The significant changes in the absorption and the circular dichroism spectra of ct-DNA in the presence of the Zn(II) complex implied the interaction between the Zn(II) complex and ct-DNA. Upon addition of ct-DNA, the fluorescence emission intensity of the Zn(II) complex was increased and indicated the interaction between the Zn(II) complex and ct-DNA was occurred. The binding constant values (Kb) resulted from fluorescence spectra clearly showed the Zn(II) complex affinity to ct-DNA. The fluorescence studies also approved the static enhancement mechanism in the Zn(II) complex-DNA complexation process. The thermodynamic profile exhibited the exothermic and spontaneous formation of ct-DNA-Zn(II) complex system via hydrogen bonds and van der Waals forces. The competitive fluorescence investigation by methylene blue (MB), and Hoechst 33258 demonstrated that the Zn(II) complex could replace the DNA-bound Hoechst and bind to the minor groove binding site in ct-DNA. The viscosity changes were negligible, representing the Zn(II) complex binding to DNA via the groove binding mode. Molecular docking simulation affirmed that the Zn(II) complex is located in the minor groove of ct-DNA near the DG12, DA17, DA18, and DG16 nucleobases.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Lin K, Jia X, Zhang X, Li W, Wang B, Wang Z, Xue X, Fan X, Ma Z. Synthesis, characterization, antiproliferative activity and DNA binding calculation of substituted-phenyl-terpyridine copper(II) nitrate complexes. J Inorg Biochem 2023; 250:112418. [PMID: 39492401 DOI: 10.1016/j.jinorgbio.2023.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Ten 4'- (R-phenyl) -2,2': 6', 2' - terpyridine ligands (R = hydrogen (L1), hydroxyl (L2), methoxyl (L3), methylsulfonyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), and iodo (L10)) were synthesized. The reaction of these ligands with copper(II) nitrate led to complexes 1-10. The characterization of 1-10 was carried out by means of mass spectrometry, elemental analysis, infrared spectroscopy and X-ray single crystal diffraction. Four cell lines including esophageal cancer cell line (Eca-109), human liver cancer cell line (Bel-7402), human breast cancer cell line (SIHa) and human normal liver cell line (HL-7702) were selected to carry out antiproliferation and cytotoxicity experiments in vitro. The results showed that the complexes have strong inhibitory ability on the growth of tumor cells. In order to study the anticancer mechanism of the complexes, the binding mode and binding ability of the complexes with DNA were further determined and discussed with UV-Vis spectroscopy and circular dichroism. The effects of the lowest binding energy and hydrogen bond on the binding were studied using molecular docking calculation.
Collapse
Affiliation(s)
- Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xueying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Weikeduo Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530006 Nanning, Guangxi, People's Republic of China.
| | - Xiaosu Fan
- School of Agriculture, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
Wang B, Sun D, Wang S, Chen M, Liu H, Zhou Y, Chen H, Ma Z. Nickel chloride complexes with substituted 4'-phenyl-2',2':6',2″-terpyridine ligands: synthesis, characterization, anti-proliferation activity and biomolecule interactions. J Biol Inorg Chem 2023; 28:627-641. [PMID: 37523103 DOI: 10.1007/s00775-023-02011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
A series of Ni(II) sandwich-like coordinated compounds were synthesized by the reaction of nickel dichloride and ten 4'-(4-substituent phenyl)-2',2':6',2″-terpyridine ligands, and their structures were confirmed by elemental analysis, FT-IR, ESI-MS, solid state ultraviolet spectroscopy and X-ray single crystal diffraction analysis. Three human cancer cell lines and a normal human cell line were used for anti-proliferation potential study: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109), human liver cancer cells (Bel-7402) and normal human liver cells (HL-7702). The results show that these nickel complexes possess good inhibitory effects on the cancer cells, outperforming the commonly used clinical chemotherapy drug cisplatin. Especially, complexes 3 (-methoxyl) and 7 (-fluoro) have strong inhibitory ability against Eca-109 cell line with IC50 values of 0.223 μM and 0.335 μM, complexes 4 and 6 showed certain cell selectivity, and complex 6 can inhibit cancer cells and slightly poison normal cells when the concentration was controlled. The ability of these complexes binding to CT-DNA was studied by UV titration and CD spectroscopy, and CD spectroscopy was also used to study the secondary structural change of BSA under the action of the complexes. The binding of these complexes with DNA, DNA-Topo I and bovine serum protein has been simulated by molecular docking software, and the docking results and optimal binding conformation data showed that they interacted with DNA in the mode of embedded binding, which is consistent with the experimental results. These complexes are more inclined to move to the cleavage site when docking with DNA-Topo I, so as to play a role of enzyme cleavage, while BSA promotes the action of the complexes by binding to effective binding sites.
Collapse
Affiliation(s)
- Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Dameng Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Sihan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
10
|
Li J, Wang Z, Chen Z, Xue X, Lin K, Chen H, Pan L, Yuan Y, Ma Z. Silver complexes with substituted terpyridines as promising anticancer metallodrugs and their crystal structure, photoluminescence, and DNA interactions. Dalton Trans 2023; 52:9607-9621. [PMID: 37377144 DOI: 10.1039/d2dt03463h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Six silver hexafluoroantimonate complexes (1-6) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine compounds bearing hydrogen (L1), methyl (L2), methylsulfonyl (L3), chloro (L4), bromo (L5) and iodo (L6) were prepared and characterized by 1H NMR, 13C NMR, IR, elemental analysis and single crystal X-ray diffraction. All the compounds exhibit interesting photoluminescence properties in the solid state and solution. In vitro data demonstrate that all of them show higher antiproliferative activities than cisplatin against three human carcinoma cell lines, A549, Eca-109 and MCF-7. Compound 3 exhibits the lowest IC50 value (2.298 μM) against A549 cell lines, which is 2.963 μM for 4 against Eca-109 and 1.830 μM for 1 against MCF-7. For silver halogen-substituted terpyridine compounds, their anticancer activities decrease following the sequence of -Cl, -Br, and -I substituents. The comparison results show that their anticancer activity is significantly higher than that of their free ligands. The DNA interaction was studied by fluorescence titration, circular dichroism spectroscopy and molecular modeling methods. Spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalators and molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The DNA binding ability of the complexes has been correlated with their anticancer activities, which could potentially provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Zhongting Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
| | - Yulin Yuan
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
11
|
Wang Z, Li J, Liu R, Jia X, Liu H, Xie T, Chen H, Pan L, Ma Z. Synthesis, characterization and anticancer properties: A series of highly selective palladium(II) substituted-terpyridine complexes. J Inorg Biochem 2023; 244:112219. [PMID: 37058991 DOI: 10.1016/j.jinorgbio.2023.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Ten new palladium(II) complexes [PdCl(L1-10)]Cl have been synthesized by the reaction of palladium(II) chloride and ten 4'-(substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen(L1), p-hydroxyl(L2), m-hydroxyl (L3), o-hydroxyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), or iodo (L10). Their structures were confirmed by FT-IR, 1H NMR, elemental analysis and/or single crystal X-ray diffraction analysis. Their in vitro anticancer activities were investigated based on five cell lines, including four cancer cell lines (A549, Eca-109, Bel-7402, MCF-7) and one normal cell line (HL-7702). The results show that these complexes possess a strong killing effect on the cancer cells but a weak proliferative inhibition on the normal cells, implying their high inhibitory selectivity for the proliferation of the cancer cell lines. Flow cytometry characterization reveals that these complexes affect cell proliferation mainly in the G0/G1 phase and induce the late apoptotic of the cells. The quantity of palladium(II) ion in extracted DNA was determined by ICP-MS, which proved that these complexes target genomic DNA. And the strong affinity of the complexes with CT-DNA were confirmed by UV-Vis spectrum and circular dichroism (CD). The possible binding modes of the complexes with DNA were further explored by molecular docking. As the concentration of complexes 1-10 gradually increases, the fluorescence intensity of bovine serum albumin (BSA) decreases by a static quenching mechanism.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Pekdemir F, Sengul A, Akgun O, Ari F, Acar‐Selcuki N. Anti‐proliferative and Apoptotic Effects of Coordination Compounds of Zinc(II), Palladium(II), and Platinum(II) with Tridentate 4‐(6‐hydroxyphenyl)‐2,6‐di(thiazol‐2‐yl)pyridine. ChemistrySelect 2023. [DOI: 10.1002/slct.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Fatih Pekdemir
- Zonguldak Bülent Ecevit University Faculty of Science Department of Chemistry 67100 Incivez Zonguldak Turkey
| | - Abdurrahman Sengul
- Zonguldak Bülent Ecevit University Faculty of Science Department of Chemistry 67100 Incivez Zonguldak Turkey
| | - Oguzhan Akgun
- Bursa Uludag University Faculty of Science and Arts Department of Biology 16059 Nilüfer Bursa Turkey
| | - Ferda Ari
- Bursa Uludag University Faculty of Science and Arts Department of Biology 16059 Nilüfer Bursa Turkey
| | - Nursel Acar‐Selcuki
- Ege University Faculty of Science Department of Chemistry 35100 Bornova İzmir Turkey
| |
Collapse
|
13
|
Li J, Chen M, Jiang J, Huang J, Chen H, Pan L, Nesterov DS, Ma Z, Pombeiro AJL. A New Concept of Enhancing the Anticancer Activity of Manganese Terpyridine Complex by Oxygen-Containing Substituent Modification. Int J Mol Sci 2023; 24:ijms24043903. [PMID: 36835315 PMCID: PMC9963696 DOI: 10.3390/ijms24043903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Eleven manganese 4'-substituted-2,2':6',2″-terpyridine complexes (1a-1c and 2a-2h) with three non-oxygen-containing substituents (L1a-L1c: phenyl, naphthalen-2-yl and naphthalen-1-yl, L1a-L1c) and eight oxygen-containing substituents (L2a-L2h: 4-hydroxyl-phenyl, 3-hydroxyl-phenyl, 2-hydroxyl-phenyl, 4-methoxyl-phenyl, 4-carboxyl-phenyl, 4-(methylsulfonyl)phenyl, 4-nitrophenyl and furan-2-yl) were prepared and characterized by IR, elemental analysis or single crystal X-ray diffraction. In vitro data demonstrate that all of these show higher antiproliferative activities than cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 2d presents the strongest antiproliferative effect against A549 and HeLa cells, with IC50 values being 0.281 μM and 0.356 μM, respectively. The lowest IC50 values against Bel-7402 (0.523 μM) Eca-109 (0.514 μM) and MCF-7 (0.356 μM) were obtained for compounds 2h, 2g and 2c, respectively. Compound 2g with a nitro group showed the best results on the whole, with relevantly low IC50 values against all the tested tumor cells. The DNA interactions with these compounds were studied by circular dichroism spectroscopic and molecular modeling methods. Spectrophotometric results revealed that the compounds have strong affinities in binding with DNA as intercalators, and the binding induces DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The anticancer activities of the compounds are correlated with their DNA binding ability, and the modification of oxygen-containing substituents significantly enhanced the anticancer activity, which could provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jieyou Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (L.P.); or (Z.M.)
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence: (L.P.); or (Z.M.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
| |
Collapse
|
14
|
Karmakar S, Ghosh A, Rahimi FA, Rawat B, Maji TK. Complexing Eu 3+/Tb 3+ in a Nanoscale Postmodified Zr-MOF toward Temperature-Modulated Multispectrum Chromism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49014-49025. [PMID: 36278376 DOI: 10.1021/acsami.2c15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, extensive research has been directed toward the successful preparation of nanoscale luminescent thermometers with high sensitivities operative in a broad temperature range. To achieve this goal, we have devised a unique design and facile multistep synthesis of Zr-ctpy-NMOF@TbxEuy compounds by confining Ln-complexes (Ln = Eu3+/Tb3+) into a robust nanoscale Zr-NMOF (MOF-808) via postsynthetic modification. Covalent grafting of 4-(4'-carboxyphenyl)-2,2':6,2″terpyridine ligand (ctpy) with a high triplet state energy and corresponding immobilization of bimetallic Ln3+ ions resulted in yellow light-emitting Zr-ctpy-NMOF@Tb1.66Eu0.14 to achieve a sensitivity of 5.2% K-1 (thermal uncertainty dT < 1 K) operative over a broad temperature range of 25-400 K. To defeat the odds related to the detection of minute temperature changes using luminescent materials, we prepared a white light-emitting Zr-ctpy-NMOF@Tb1.4Eu0.31 that showed temperature-modulated multispectrum chromism where the color drastically changes from green (at 25 K, Q.Y.: 20.21%) to yellowish-green (at 200 K, Q.Y.: 23.13%) to white (at 300 K, Q.Y.: 26.4%) to orange (at 350 K, Q.Y.: 26.93%) and finally red (at 400 K, Q.Y.: 28.2%) with a high energy transfer efficiency of 49.8%, which is further supported by electron-phonon coupling.
Collapse
|
15
|
The Critical Role of 12-Methyl Group of Anthracycline Dutomycin to Its Antiproliferative Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103348. [PMID: 35630823 PMCID: PMC9144609 DOI: 10.3390/molecules27103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
Anthracycline dutomycin is a tetracyclic quinone glycoside produced by Streptomyces minoensis NRRL B-5482. SW91 is a C-12 demethylated dutomycin derivative, which was identified in our previous research. In vitro cytotoxicity and apoptosis assays of these two compounds were conducted to demonstrate their antiproliferation activities. The results showed that both dutomycin and SW91 block cells at the S phase, whereas dutomycin shows more significant inhibition of cell growth. Their interactions with calf thymus DNA (CT-DNA) were investigated, with dutomycin exhibiting higher binding affinity. The molecular docking demonstrated that the 12-methyl group makes dutomycin attach to the groove of DNA. These findings suggest that dutomycin has binding higher affinity to DNA and impairs DNA replication resulting in more significant antitumor activity.
Collapse
|
16
|
Nedeljković NV, Nikolić MV, Mijajlović MŽ, Radić GP, Stanković AS. Interaction of bioessential metal ions with quinolone antibiotics: Structural features and biological evaluation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Busto N, Carrión MC, Montanaro S, Díaz de Greñu B, Biver T, Jalón FA, Manzano BR, García B. Targeting G-quadruplex structures with Zn(II) terpyridine derivatives: a SAR study. Dalton Trans 2021; 49:13372-13385. [PMID: 32955070 DOI: 10.1039/d0dt02125c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Based on the ability of terpyridines to react with G-quadruplex DNA (G4) structures along with the interest aroused by Zn as an essential metal centre in many biological processes, we have synthesized and characterized six Zn chloride or nitrate complexes containing terpyridine ligands with different 4'-substituents. In addition, we have studied their interaction with G4 and their cytotoxicity. Our experimental results revealed that the leaving group exerts a strong influence on the cytotoxicity, since the complexes bearing chloride were more cytotoxic than their nitrate analogues and an effect of the terpyridine ligand was also observed. The thermal stabilization profiles showed that the greatest stabilization of hybrid G4, Tel22, was observed for the Zn complexes bearing the terpyridine ligand that contained one or two methylated 4-(imidazol-1-yl)phenyl substituents, 3Cl and 3(L)2, respectively, probably due to their extra positive charge. Stability and aquation studies for these complexes were carried out and no ligand release was detected. Complexes 3Cl and 3(L)2 were successfully internalized by SW480 cells and they seemed to be localized mainly in the nucleolus. The highest cytotoxicity, G4 selectivity and G4 affinity determined by fluorescence and ITC experiments, and subcellular localization quantified by ICP-MS measurements, rendered 3Cl a very interesting complex from a biological standpoint.
Collapse
Affiliation(s)
- Natalia Busto
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Yan H, Wang Z, Liu R, Luo B, Yang D, Chen H, Pan L, Ma Z. Copper chloride complexes with substituted 4'-phenyl-terpyridine ligands: synthesis, characterization, antiproliferative activities and DNA interactions. Dalton Trans 2021; 50:8243-8257. [PMID: 34036954 DOI: 10.1039/d0dt03989f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eleven copper chloride coordination compounds (1-11) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen (L1), cyano (L2), p-hydroxyl (L3), m-hydroxyl (L4), o-hydroxyl (L5), methoxyl (L6), iodo (L7), bromo (L8), chloro (L9), fluoro (L10) or methylsulfonyl (L11) were prepared and characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Antiproliferative activities against tumor cells were investigated and DNA interactions were studied by circular dichroism spectroscopy and molecular modeling methods. In vitro data demonstrate that all the compounds exhibit higher antiproliferative activities as compared to cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 6 with methoxyl shows the best anti-proliferation activity. Spectrophotometric results reveal the strong affinity of the compounds for binding with DNA as intercalators and induce DNA conformational transitions. The results of molecular docking studies show that the compounds interact with DNA through π-π stacking, van der Waals forces, hydrophobic interactions and hydrogen bonds. The binding energies between compound 11 and three macromolecules, including DNA duplex, oligonucleotide and DNA-Topo I complex, are the lowest. The binding stability of compounds containing hydroxyl, methoxy and methylsulfonyl groups with biological macromolecules mainly relies on the hydrogen bonds. The ability of a compound to form hydrogen bonds can promote its binding to biological targets, thereby exhibiting high antiproliferative activity.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Porchia M, Pellei M, Del Bello F, Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules 2020; 25:E5814. [PMID: 33317158 PMCID: PMC7763991 DOI: 10.3390/molecules25245814] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.
Collapse
Affiliation(s)
| | - Maura Pellei
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy;
| | - Carlo Santini
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| |
Collapse
|
20
|
Mughal EU, Mirzaei M, Sadiq A, Fatima S, Naseem A, Naeem N, Fatima N, Kausar S, Altaf AA, Zafar MN, Khan BA. Terpyridine-metal complexes: effects of different substituents on their physico-chemical properties and density functional theory studies. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201208. [PMID: 33391801 PMCID: PMC7735333 DOI: 10.1098/rsos.201208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
A series of different substituted terpyridine (tpy)-based ligands have been synthesized by Kröhnke method. Their binding behaviour was evaluated by complexing them with Co(II), Fe(II) and Zn(II) ions, which resulted in interesting coordination compounds with formulae, [Zn(tpy)2]PF6, [Co(tpy)2](PF6)2, [Fe(tpy)2](PF6)2 and interesting spectroscopic properties. Their absorption and emission behaviours in dilute solutions were investigated in order to explain structure-property associations and demonstrate the impact of different aryl substituents on the terpyridine scaffold as well as the role of the metal on the complexes. Photo-luminescence analysis of the complexes in acetonitrile solution revealed a transition from hypsochromic to bathochromic shift. All the compounds displayed remarkable photo-luminescent properties and various maximum emission peaks owing to the different nature of the functional groups. Furthermore, the anti-microbial potential of ligands and complexes was evaluated with docking analyses carried out to investigate the binding affinity of terpyridine-based ligands along with corresponding proteins (shikimate dehydrogenase and penicillin-binding protein) binding sites. To obtain further insight into molecular orbital distributions and spectroscopic properties, density functional theory calculations were performed for representative complexes. The photophysical activity and interactions between chromophore structure and properties were both investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, PO Box 9177948974, Mashhad, Iran
| | - Amina Sadiq
- Department of Chemistry, Government College Women University, Sialkot 51300, Pakistan
| | - Sana Fatima
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Ayesha Naseem
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Samia Kausar
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Gujarat, Gujarat 50700, Pakistan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | | | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
21
|
Adrian RA, Arman HD. Chlorido-(4'-chloro-2,2':6',2''-terpyridine-κ 3 N, N', N'')(tri-fluoro-methane-sulfonato-κ O)zinc(II) aceto-nitrile monosolvate. IUCRDATA 2020; 5:x201292. [PMID: 36338906 PMCID: PMC9462286 DOI: 10.1107/s2414314620012924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022] Open
Abstract
In the title complex, [Zn(CF3O3S)Cl(C15H10ClN3)]·CH3CN, the zinc(II) core is fivefold coordinated by one chloride, one tri-fluoro-methane-sulfonate O atom and three terpyridine N atoms in a slightly distorted square-pyramidal geometry. The structure provides a distinct example amongst other zinc(II) 4-chloro-terpyridine complexes because of the unusual planarity of the coordinated chloride, the short length of the Zn-N bond opposite to the chloride ligand [1.9572 (15) Å], and the presence of an elongated Zn-O bond [2.3911 (14) Å] in the coordinated tri-fluoro-methane-sulfonate ion. A molecule of acetonitrile is also found in the asymmetric unit of the title complex.
Collapse
Affiliation(s)
- Rafael A. Adrian
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio TX 78209, USA
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio TX 78249, USA
| |
Collapse
|
22
|
Synthesis, characterization, photoluminescence, antiproliferative activity, and DNA interaction of cadmium(II) substituted 4′-phenyl-terpyridine compounds. J Inorg Biochem 2020; 210:111165. [DOI: 10.1016/j.jinorgbio.2020.111165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
|
23
|
Liu R, Yan H, Jiang J, Li J, Liang X, Yang D, Pan L, Xie T, Ma Z. Synthesis, Characterization, Photoluminescence, Molecular Docking and Bioactivity of Zinc (II) Compounds Based on Different Substituents. Molecules 2020; 25:molecules25153459. [PMID: 32751372 PMCID: PMC7436059 DOI: 10.3390/molecules25153459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Six new zinc(II) complexes were prepared by the reaction of ZnBr2 or ZnI2 with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine compounds, bearing p-methylsulfonyl (L1), p-methoxy (L2) and p-methyl (L3), which were characterized by elemental analysis, FT-IR, NMR and single crystal X-ray diffraction. The antiproliferative properties against Eca-109, A549 and Bel-7402 cell lines and the cytotoxicity test on RAW-264.7 of these compounds were monitored using a CCK-8 assay, and the studies indicate that the complexes show higher antiproliferative activities than cisplatin. The interactions of these complexes with CT-DNA and proteins (BSA) were studied by UV-Vis, circular dichroism (CD) and fluorescent spectroscopy, respectively. The results indicate that the interaction of these zinc(II) complexes with CT-DNA is achieved through intercalative binding, and their strong binding affinity to BSA is fulfilled through a static quenching mechanism. The simulation of the complexes with the CT-DNA fragment and BSA was studied by using molecular docking software. It further validates that the complexes interact with DNA through intercalative binding mode and that they have a strong interaction with BSA.
Collapse
Affiliation(s)
- Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
| | - Hao Yan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| |
Collapse
|
24
|
Jiang J, Li J, Liu C, Liu R, Liang X, Zhou Y, Pan L, Chen H, Ma Z. Study on the substitution effects of zinc benzoate terpyridine complexes on photoluminescence, antiproliferative potential and DNA binding properties. J Biol Inorg Chem 2020; 25:311-324. [PMID: 32112291 DOI: 10.1007/s00775-020-01763-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Six zinc(II) complexes, [Zn(OCOPh)2LR] (R = 1, 2, 3, 4, 5, 6) were synthesized by the reaction of zinc benzoate and six para-substituted 4-phenyl-terpyridine complexes and their structures were confirmed by elemental analysis, FT-IR, 1H NMR and X-ray single crystal diffraction analysis. Their photoluminescent properties in solid and in solutions of DMSO were studied. Three human cancer cell lines were used for antiproliferative potential: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109) and human breast cancer cell line (MCF-7). The results have shown that these zinc complexes have good inhibitory effects on cancer cells, which are better than that of the commonly used clinical drug cisplatin. The ability of the complexes to binding to CT-DNA was studied by UV spectroscopy and fluorescence titration, while the interaction between the complexes and CT-DNA, AT6, GC6 short-chain DNA sequences and G-quadruplex were analyzed by circular dichroism (CD). It is found that these complexes can bind to DNA, and the binding mode is mainly intercalator. The docking of the complexes with the DNA fragment was simulated using molecular docking software. All the results clearly display that the substituents at these ligands of the complexes have the substitution effects on the properties of photoluminescence, antiproliferative potential and DNA binding study.
Collapse
Affiliation(s)
- Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengzhang Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530004, PR China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|