1
|
Akulava V, Smirnova M, Byrtusova D, Zimmermann B, Ekeberg D, Kohler A, Blazhko U, Miamin U, Valentovich L, Shapaval V. Explorative characterization and taxonomy-aligned comparison of alterations in lipids and other biomolecules in Antarctic bacteria grown at different temperatures. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13232. [PMID: 38308519 PMCID: PMC10878007 DOI: 10.1111/1758-2229.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.
Collapse
Affiliation(s)
- Volha Akulava
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dana Byrtusova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Boris Zimmermann
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Uladzislau Blazhko
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Leonid Valentovich
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
2
|
Zhang RJ, Liu B, Song SS, Salah R, Song CJ, Xia SW, Hao Q, Liu YJ, Li Y, Lai YS. Lipid-Related Domestication Accounts for the Extreme Cold Sensitivity of Semiwild and Tropic Xishuangbanna Cucumber ( Cucumis sativus L. var. xishuangbannanesis). Int J Mol Sci 2023; 25:79. [PMID: 38203249 PMCID: PMC10779220 DOI: 10.3390/ijms25010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannanesis) is a semiwild variety originating from low latitude tropic areas, and therefore shows extreme cold sensitivity and heat tolerance. Here, we mapped the quantitative trait loci (QTLs) that control the cold sensitivity and heat tolerance of XIS cucumber seedlings. Using bulked segregant analysis (BSA), we identified three QTLs (HTT1.1, HTT3.1, and HTT3.2, with a total length of 11.98 Mb) for heat tolerance and two QTLs (LTT6.1 and LTT6.2, with a total length of 8.74 Mb) for cold sensitivity. The QTL LTT6.1 was then narrowed down to a length of 641 kb by using kompetitive allele-specific PCR (KASP) markers. Based on structural variants (SVs) and single-nucleotide polymorphisms (SNPs), we found the LTT6.1 is covered by a high divergent region including a 50 kb deletion in the XIS49 genome, which affects the gene structure of lipase abhydrolase domain containing 6 (ABHD6, Csa_6G032560). Accordingly, there is a very big difference in lipid composition, but not in other osmoprotectants like free amino acids and fatty acids, between XIS49 and cultivated cucumber CL. Moreover, we calculated the composite likelihood ratio (CLR) and identified selective sweeps from 115 resequencing data, and found that lipid- and fatty-acid-related processes are major aspects in the domestication of the XIS group cucumber. LTT6.1 is a particularly special region positioned nearby lipid-related selective sweeps. These studies above suggested that the lipid-related domestication of XIS cucumbers should account for their extreme cold sensitivity.
Collapse
Affiliation(s)
- Rui-Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Shan-Shan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Radwa Salah
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Chang-Jiang Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Shi-Wei Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Qian Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Yan-Jun Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Yu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| |
Collapse
|
3
|
Hong YW, Ban GH, Bae D, Kim SA. Microbial investigation of aquacultured olive flounder (Paralichthys olivaceus) from farm to table based on high-throughput sequencing. Int J Food Microbiol 2023; 389:110111. [PMID: 36746029 DOI: 10.1016/j.ijfoodmicro.2023.110111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/02/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The microbial ecologies of fish, such as the olive flounder (Paralichthys olivaceus), one of the most widely consumed fish in East Asia, remain to be elucidated. The microbiome of olive flounder and related environmental samples (i.e., feed, water, workers' aprons and gloves) were collected from six different sources (i.e., a fish farm, a transporting truck, a Wando market and restaurant, and a Seoul market and restaurant). These samples (n = 102) were investigated at various farm-to-distribution stages based on their 16S rRNA sequences. The microbial communities of fish from the farms and trucks were dominated by Photobacterium (>86 %) and showed distinct differences from fish from the Wando and Seoul markets and restaurants. There was also a significant difference in fish microbiomes according to geographical location. The relative abundances of Shewanella, Acinetobacter, Enterobacteriaceae, and Pseudomonas increased as the distribution and consumption stages of the supply chain advanced. The percentages of Shewanella (24.74 %), Acinetobacter (18.32 %), and Enterobacteriaceae (11.24 %) in Wando, and Pseudomonas (42.98 %) in Seoul markets and restaurants implied the importance of sanitation control in these areas. Alpha and beta diversity results corresponded to taxonomic analyses and showed the division of two groups (i.e., fish from the production and transporting stage (farm and truck fish) and fish from the distribution and consumption stages (market and restaurant fish)). The present study provides an in-depth understanding of olive flounder and its environmental microbiomes and suggests control measures to improve food safety.
Collapse
Affiliation(s)
- Ye Won Hong
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Dongryeoul Bae
- Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
4
|
Gold A, Chen L, Zhu J. More than Meets the Eye: Untargeted Metabolomics and Lipidomics Reveal Complex Pathways Spurred by Activation of Acid Resistance Mechanisms in Escherichia coli. J Proteome Res 2022; 21:2958-2968. [PMID: 36322795 PMCID: PMC10317704 DOI: 10.1021/acs.jproteome.2c00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Escherichia coli is a ubiquitous group of bacteria that can be either commensal gut microbes or enterohemorrhagic food-borne pathogens. Regardless, both forms must survive acidic environments in the stomach and intestines to reach and colonize the gut, a process that partially relies on amino acid-dependent acid resistance (AR) mechanisms and modifications to membrane phospholipids. However, only the basic tenets of these mechanisms have been elucidated. In this paper, we aim to conduct a full-scale metabolic and lipidomic characterization of E. coli's adaptations to acid stress. We hypothesized that the use of untargeted metabolomics and lipidomics would reveal mechanisms downstream of AR processes that provide novel contributions to acid stress survival. We detected significant differences in the extracellular metabolome and the lipidome induced by amino acid supplementation (glutamine, arginine, or lysine) and contextualized these results using real-time quantitative polymerase chain reaction (RT-qPCR). We additionally identified several metabolic pathways as well as a significant alteration in phospholipid synthetic pathways induced by differential amino acid supplementation. These results demonstrate that AR may extend beyond canonical mechanisms to a coordinated metabolic phenotype. Future studies may benefit from our analysis to further elucidate distinct targets for prebiotic supplements to cultivate commensal strains or therapies to combat pathogenic ones.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Li Chen
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT. Lipidomic analysis of moss species Bryum pseudotriquetrum and Physcomitrium patens under cold stress. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:254-263. [PMID: 37284430 PMCID: PMC10168071 DOI: 10.1002/pei3.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 06/08/2023]
Abstract
Bryophytes, which lack lignin for protection, support themselves in harsh environments by producing various chemicals. In response to cold stress, lipids play a crucial role in cell adaptation and energy storage. Specifically, bryophytes survive at low temperatures by producing very long-chain polyunsaturated fatty acids (vl-PUFAs). The in-depth understanding of the lipid response to cold stress of bryophytes was studied by performing lipid profiling using ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). Two moss species (Bryum pseudotriquetrum and Physcomitrium patens) cultivated at 23°C and at 10°C were included in this study. Relative quantitative lipid concentrations were compared and the potential lipid biomarkers were identified by multivariate statistical analysis in each species. In B. pseudotriquetrum, it was observed that the phospholipids and glycolipids increased under cold stress, while storage lipids decreased. The accumulation of the lipids with high unsaturation degrees mostly appears in phospholipids and glycolipids for both mosses. The results also indicate that two unusual lipid classes in plants, sulfonolipids and phosphatidylmethanol are biosynthesized by the bryophytes. This has not been seen previously and show that bryophytes have a very diverse chemistry and substantially different from other plant groups.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
- ArcticMassReykjavikIceland
| | - Finnur Freyr Eiriksson
- ArcticMassReykjavikIceland
- Faculty of Pharmaceutical SciencesUniversity of IcelandReykjavikIceland
| | - Margrét Thorsteinsdóttir
- ArcticMassReykjavikIceland
- Faculty of Pharmaceutical SciencesUniversity of IcelandReykjavikIceland
| | - Henrik Toft Simonsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark
- Laboratoire Biotechnologies Végétales plantes aromatiques et médicinales, Faculté des sciencesUniversité Jean MonnetSaint‐Étienne Cédex 2France
| |
Collapse
|
6
|
Yi Z, Xie J. Comparative Proteomics Reveals the Spoilage-Related Factors of Shewanella putrefaciens Under Refrigerated Condition. Front Microbiol 2021; 12:740482. [PMID: 34925259 PMCID: PMC8678035 DOI: 10.3389/fmicb.2021.740482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella putrefaciens is a microorganism with strong spoilage potential for aquatic products. This study aimed to investigate the potential spoilage factors of S. putrefaciens by comparative proteomic analysis. The spoilage potential of two strains of S. putrefaciens (00A and 00B) isolated from chilled spoiled bigeye tuna was investigated. The results of total volatile basic nitrogen (TVB-N), trimethylamine (TMA) in fish inoculated with S. putrefaciens, extracellular protease activity of S. putrefaciens, and degradation of fish proteins indicated that the spoilage potential of S. putrefaciens 00A was much higher than that of 00B. Fish proteins are usually degraded by spoilage microorganism proteases into small molecular peptides and amino acids, which are subsequently degraded into spoilage metabolites in bacterial cells, leading to deterioration of fish quality. Thus, proteomic analysis of the extracellular and intracellular proteins of 00A vs. 00B was performed. The results indicated that the intracellular differentially expressed protein (IDEP) contained 243 upregulated proteins and 308 downregulated proteins, while 78 upregulated proteins and 4 downregulated proteins were found in the extracellular differentially expressed protein (EDEP). GO annotation revealed that IDEP and EDEP were mainly involved in cellular and metabolic processes. KEGG annotation results showed that the upregulated proteins in IDEP were mainly involved in sulfur metabolism, amino acid metabolism, and aminoacyl-tRNA biosynthesis, while downregulated proteins were related to propanoate metabolism. In contrast, EDEP of KEGG annotation was mainly involved in ribosomes, quorum sensing, and carbohydrate metabolism. Proteins associated with spoilage containing sulfur metabolism (sulfite reductase, sulfate adenylyltransferase, adenylyl-sulfate kinase), amino acid metabolism (biosynthetic arginine decarboxylase, histidine ammonia-lyase), trimethylamine metabolism (trimethylamine-N-oxide reductase), and extracellular proteins (ATP-dependent Clp protease proteolytic subunit) were identified as upregulated. These proteins may play a key role in the spoilage potential of S. putrefaciens. These findings would contribute to the identification of key spoilage factors and understanding of the spoilage mechanism of microorganisms.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
7
|
Laydevant F, Mahabadi M, Llido P, Bourgouin JP, Caron L, Arnold AA, Marcotte I, Warschawski DE. Growth-phase dependence of bacterial membrane lipid profile and labeling for in-cell solid-state NMR applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183819. [PMID: 34800428 DOI: 10.1016/j.bbamem.2021.183819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Cell labeling is a preliminary step in multiple biophysical approaches, including the solid-state nuclear magnetic resonance (NMR) study of bacteria in vivo. Deuterium solid-state NMR has been used in the past years to probe bacterial membranes and their interactions with antimicrobial peptides, following a standard labeling protocol. Recent results from our laboratory on a slow-growing bacterium has shown the need to optimize this protocol, especially the bacterial growth time before harvest and the concentration of exogenous labeled fatty acids to be used for both Escherichia coli and Bacillus subtilis. It is also essential for the protocol to remain harmless to cells while providing optimal labeling. We have therefore developed a fast and facile approach to monitor the lipid composition of bacterial membranes under various growth conditions, combining solution 31P NMR and GCMS. Using this approach, the optimized labeling conditions of Escherichia coli and Bacillus subtilis with deuterated palmitic acid were determined. Our results show a modification of B. subtilis phospholipid profile as a function of the growth stage, as opposed to E. coli. Our protocol recommends low concentrations of exogenous palmitic acid in the growth medium, and bacteria harvest after the exponential phase.
Collapse
Affiliation(s)
- Florent Laydevant
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Mahsa Mahabadi
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Pierre Llido
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Jean-Philippe Bourgouin
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Laurence Caron
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.
| | - Dror E Warschawski
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada; Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005 Paris, France.
| |
Collapse
|
8
|
Wang C, Gong Y, Deng F, Ding E, Tang J, Codling G, Challis JK, Green D, Wang J, Chen Q, Xie Y, Su S, Yang Z, Raine J, Jones PD, Tang S, Giesy JP. Remodeling of Arctic char (Salvelinus alpinus) lipidome under a stimulated scenario of Arctic warming. GLOBAL CHANGE BIOLOGY 2021; 27:3282-3298. [PMID: 33837644 DOI: 10.1111/gcb.15638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.
Collapse
Affiliation(s)
- Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Tang
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Research Centre for Contaminants in the Environment, Masaryk University, Brno, Czech Republic
| | | | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiliang Chen
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shu Su
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zilin Yang
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jason Raine
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
TMT-Based Quantitative Proteomics Analysis of the Fish-Borne Spoiler Shewanella putrefaciens Subjected to Cold Stress Using LC-MS/MS. J CHEM-NY 2021. [DOI: 10.1155/2021/8876986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shewanella putrefaciens is a specific spoilage bacterium for fish during cold storage. To better understand the molecular mechanisms of cold stress adaptation of S. putrefaciens, tandem mass tag- (TMT-) based quantitative proteomic analysis was performed to detect the effects of cold stress on protein expression profiles in S. putrefaciens which had been cultivated at 4°C and 30°C, respectively. A total of 266670 peptide spectrum matching numbers were quantified proteins after data analysis. Of the 2292 proteins quantitatively analyzed, a total of 274 were found to be differentially expressed (DE) under cold stress compared with the nonstress control. By integrating the results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, 9 common KEGG terms were found notable for the cold-responsive proteins. Generally, the DE proteins involved in carbohydrate, amino acid, and fatty acid biosynthesis and metabolism were significantly upregulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription, and translation were upregulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress.
Collapse
|
10
|
Enhanced Performance of Microbial Fuel Cells with Anodes from Ethylenediamine and Phenylenediamine Modified Graphite Felt. Processes (Basel) 2020. [DOI: 10.3390/pr8080939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A microbial fuel cell (MFC) is a promising renewable energy option, which enables the effective and sustainable harvesting of electrical power due to bacterial activity and, at the same time, can also treat wastewater and utilise organic wastes or renewable biomass. However, the practical implementation of MFCs is limited and, therefore, it is important to improve their performance before they can be scaled up. The surface modification of anode material is one way to improve MFC performance by enhancing bacterial cell adhesion, cell viability and extracellular electron transfer. The modification of graphite felt (GF), used as an anode in MFCs, by electrochemical oxidation followed by the treatment with ethylenediamine or p-phenylenediamine in one-step short duration reactions with the aim of introducing amino groups on the surface of GF led to the enhancement of the overall performance characteristics of MFCs. The MFC with the anode from GF modified with p-phenylenediamine provided approx. 32% higher voltage than the control MFC with a bare GF anode, when electric circuits of the investigated MFCs were loaded with resistors of 659 Ω. Its surface power density was higher by approx. 1.75 times than that of the control. Decreasing temperature down to 0 °C resulted in just an approx. 30% reduction in voltage generated by the MFC with the anode from GF modified with p-phenylenediamine.
Collapse
|
11
|
Advances in lipidomics. Clin Chim Acta 2020; 510:123-141. [PMID: 32622966 DOI: 10.1016/j.cca.2020.06.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
Abstract
The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
Collapse
|
12
|
Wang X, Liu SF, Li RY, Yang WD, Liu JS, Lin CSK, Balamurugan S, Li HY. TAG pathway engineering via GPAT2 concurrently potentiates abiotic stress tolerance and oleaginicity in Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:160. [PMID: 32944076 PMCID: PMC7491103 DOI: 10.1186/s13068-020-01799-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/04/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Despite the great potential of marine diatoms in biofuel sector, commercially viable biofuel production from native diatom strain is impractical. Targeted engineering of TAG pathway represents a promising approach; however, recruitment of potential candidate has been regarded as critical. Here, we identified a glycerol-3-phosphate acyltransferase 2 (GPAT2) isoform and overexpressed in Phaeodactylum tricornutum. RESULTS GPAT2 overexpression did not impair growth and photosynthesis. GPAT2 overexpression reduced carbohydrates and protein content, however, lipid content were significantly increased. Specifically, TAG content was notably increased by 2.9-fold than phospho- and glyco-lipids. GPAT2 overexpression elicited the push-and-pull strategy by increasing the abundance of substrates for the subsequent metabolic enzymes, thereby increased the expression of LPAAT and DGAT. Besides, GPAT2-mediated lipid overproduction coordinated the expression of NADPH biosynthetic genes. GPAT2 altered the fatty acid profile in TAGs with C16:0 as the predominant fatty acid moieties. We further investigated the impact of GPAT2 on conferring abiotic stress, which exhibited enhanced tolerance to hyposaline (70%) and chilling (10 ºC) conditions via altered fatty acid saturation level. CONCLUSIONS Collectively, our results exemplified the critical role of GPAT2 in hyperaccumulating TAGs with altered fatty acid profile, which in turn uphold resistance to abiotic stress conditions.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Ruo-Yu Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| |
Collapse
|