1
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
2
|
Ritter GS, Dolgova EV, Petrova DD, Efremov YR, Proskurina AS, Potter EA, Ruzanova VS, Kirikovich SS, Levites EV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. The new general biological property of stem-like tumor cells Part I. Peculiarities of the process of the double-stranded DNA fragments internalization into stem-like tumor cells. Front Genet 2022; 13:954395. [PMID: 36159968 PMCID: PMC9492886 DOI: 10.3389/fgene.2022.954395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) via the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization. The abrogation of internalization by dextran sulfate implies the role of scavenger receptors in this process. Cells were shown to uptake DNA in amounts constituting ∼0.008% of the haploid genome. Inhibitors of caveolae-dependent internalization abrogate the DNA uptake in Krebs-2 cells, and inhibitors of the clathrin/caveolar mechanism block the internalization in B-lymphoma cells. In the present report, it is shown for the first time that in contrast to the majority of committed tumor cells, stem-like tumor cells of Krebs-2 and B-lymphoma carry a general positive charge on their surface.
Collapse
Affiliation(s)
- Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Daria D. Petrova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk National Research State University, Novosibirsk, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A. Potter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk National Research State University, Novosibirsk, Russia
| | - Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Recent Progress on Heparin–Protamine Particles for Biomedical Application. Polymers (Basel) 2022; 14:polym14050932. [PMID: 35267754 PMCID: PMC8912589 DOI: 10.3390/polym14050932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Biomolecules are attractive building blocks with self-assembly ability, structural diversity, and excellent functionality for creating artificial materials. Heparin and protamine, a clinically relevant pair of biomolecules used in cardiac and vascular surgery, have been shown to coassemble into particulate polyelectrolyte complexes in vitro. The resulting heparin–protamine particles exhibit adhesive properties that enable advantageous interactions with proteins, cells, and various other substances and have been employed as functional materials for biomedical applications. In this review article, we summarize recent progress in research on the use of heparin–protamine particles as drug carriers, cell adhesives, and cell labels. Studies have demonstrated that heparin–protamine particles are potentially versatile in biomedical fields from drug delivery and regenerative medicine to plastic surgery.
Collapse
|
4
|
Chitosan/Alginate Nanoparticles for the Enhanced Oral Antithrombotic Activity of Clam Heparinoid from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20020136. [PMID: 35200665 PMCID: PMC8879524 DOI: 10.3390/md20020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin (Cur), on the characteristics of the nanoparticles, were investigated. Results indicate that chitosan and alginate can be used as polymer matrices to encapsulate DG1, and nanoparticle characteristics depend on the preparation parameters. Nano-particles should be prepared using 0.6 mg/mL SA, 0.33 mg/mL CaCl2, 0.6 mg/mL CTS, 7.2 mg/mL DG1, and 0.24 mg/mL Cur under vigorous stirring to produce DG1-NPS and DG1/Cur-NPS with small size, high encapsulation efficiency, high loading capacity, and negative zeta potential from approximately −20 to 30 mV. Data from scanning electron microscopy, Fourier-transform infrared spectrometry, and differential scanning calorimetry analyses showed no chemical reaction between DG1, Cur, and the polymers; only physical mixing. Moreover, the drug was loaded in the amorphous phase within the nanoparticle matrix. In the acute pulmonary embolism murine model, DG1-NPs enhanced the oral antithrombotic activity of DG1, but DG1/Cur-NPs did not exhibit higher antithrombotic activity than DG1-NPs. Therefore, the chitosan/alginate nanoparticles enhanced the oral antithrombotic activity of DG1, but curcumin did not further enhance this effect.
Collapse
|
5
|
Chen G, Zeng R, Wang X, Cai H, Chen J, Zhong Y, Zhong S, Jia X. Antithrombotic Activity of Heparinoid G2 and Its Derivatives from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20010050. [PMID: 35049905 PMCID: PMC8779706 DOI: 10.3390/md20010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Clam heparinoid G2 (60.25 kDa) and its depolymerized derivatives DG1 (24.48 kDa) and DG2 (6.75 kDa) prepared from Coelomactra antiquata have been documented to have excellent fibrinolytic and anticoagulant activity. In this study, to further explore the antithrombotic activity of G2, DG1 and DG2, azure A, sheep plasma, and clot lytic rate assays were used to determine their anticoagulant and thrombolytic activity in vitro. The results indicated that the anticoagulant titer of G2 was approximately 70% that of heparin and the thrombolytic activity of DG2 was greater than G2, DG1, and heparin activities. Moreover, in a carrageenan-induced venous thrombosis model, oral administration of G2 and DG1 each at 20 mg/kg and 40 mg/kg for 7 days significantly reduced blacktail thrombus formation, increased tissue-type plasminogen activator, fibrin degradation products, and D-dimer levels, decreased von Willebrand factor and thromboxane B2 levels, and restored phylum and genus abundance changes of intestinal bacteria. DG2 had no antithrombotic effect. At 20 mg/kg, G2, DG1, and heparin had comparable antithrombotic activities, and DG1 at 40 mg/kg had more muscular antithrombotic activity than G2. Thus, DG1 could be an antithrombotic oral agent owing to its more robust antithrombotic activity and lower molecular weight.
Collapse
Affiliation(s)
- Guanlan Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Rui Zeng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongying Cai
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingxiong Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-188-2669-9336
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Pérez-Campos Mayoral L, Hernández-Huerta MT, Papy-García D, Barritault D, Zenteno E, Sánchez Navarro LM, Pérez-Campos Mayoral E, Matias Cervantes CA, Martínez Cruz M, Mayoral Andrade G, López Cervantes M, Vázquez Martínez G, López Sánchez C, Pina Canseco S, Martínez Cruz R, Pérez-Campos E. Immunothrombotic dysregulation in chagas disease and COVID-19: a comparative study of anticoagulation. Mol Cell Biochem 2021; 476:3815-3825. [PMID: 34110554 PMCID: PMC8190527 DOI: 10.1007/s11010-021-04204-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.
Collapse
Affiliation(s)
- Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04360, México
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | - Gabriel Mayoral Andrade
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | - Claudia López Sánchez
- Tecnológico Nacional de México / Instituto Tecnológico de Oaxaca, Oaxaca, 68030, México
| | - Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | - Ruth Martínez Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México / Instituto Tecnológico de Oaxaca, Oaxaca, 68030, México.
- Laboratorio de Patología Clínica "Eduardo Pérez Ortega", Oaxaca, 68000, México.
| |
Collapse
|
7
|
Development of Novel Heparin/Protamine Nanoparticles Useful for Delivery of Exogenous Proteins In Vitro and In Vivo. NANOMATERIALS 2020; 10:nano10081584. [PMID: 32806578 PMCID: PMC7466629 DOI: 10.3390/nano10081584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
We previously reported that heparin/protamine particles (LHPPs) produced as nanoparticles through simple mixing of raw materials exhibit sustained protein release and can be retained in cells. In the present study, we modified LHPPs without employing any organic synthetic approach. The resulting LHPPs were re-named as improved LHPPs (i-LHPPs) and have the ability to retain cell-penetrating peptides (GRKKRRQRRRPPQ) based on electrostatic interactions. We examined whether i-LHPPs can introduce exogenous proteins (i.e., lacZ protein encoding bacterial β-galactosidase) into cultured cells in vitro, or into murine hepatocytes in vivo through intravenous injection to anesthetized mice. We found an accumulation of the transferred protein in both in vitro cultured cells and in vivo hepatocytes. To the best of our knowledge, reports of successful in vivo delivery to hepatocytes are rare. The i-LHPP-based protein delivery technique will be useful for in vivo functional genetic modification of mouse hepatocytes using Cas9 protein-mediated genome editing targeting specific genes, leading to the creation of hepatic disease animal models for research that aims to treat liver diseases.
Collapse
|