1
|
Das J, Somabattini RA, Chhabra N, Roy PP, Islam R, Dhaked DK, Nanjappan SK. Network pharmacology and bioinformatics based investigation of Phyllanthus fraternus: herb-drug interaction study. J Biomol Struct Dyn 2025; 43:1101-1115. [PMID: 38069602 DOI: 10.1080/07391102.2023.2291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2025]
Abstract
Phyllanthus fraternus (PF), a plant from the Euphorbiaceae family, is used extensively in ayurvedic formulations for its significant medicinal properties. When PF is administered alongside conventional drugs, there could be potential herb-drug interactions between the active compounds and the genes involved in drug transport and metabolism. Hence, this study was designed to investigate potential herb-drug interactions, focusing on elucidating their functional and pharmacological mechanisms, using an integrated approach of metabolite profiling and network pharmacology. We utilized LC-MS to generate metabolite profiling of PF and network pharmacology for predicting key targets and pathways. This comprehensive analysis involved the construction of networks illustrating the relationships among compounds, targets, and pathways and the exploration of protein-protein interactions and protein-ligand interactions. In this study, a total of 79 compounds were identified in LC-MS, such as alkaloids, steroids, saponins, flavonoids, lignans, phenolic acids, tannins, terpenoids, and fatty acids. The identified compound's physicochemical properties were predicted using SwissADME. Network analysis predicted 1076 PF-related genes and 1497 genes associated with drug transport and metabolism, identifying 417 overlapping genes, including 51 related to drug transport and metabolism. Based on the degree of interaction the hub targets like ABCB1, CYP1A1, CYP1A2, CYP2C9, and CYP3A4 were identified. In the compound-target-pathway network, 2,4-bis(1,1-dimethyl ethyl)-phenol; 5-Methoxy-N-[(5-Methylpyridin-2-yl) sulfonyl]-1h-Indole-2-Carboxamide; and E,E,Z-1,3,12-Nonadecatriene-5,14-diol possessed more interactions with the targets. This study helps identify bioactive compounds, essential targets, and pathways potentially implicated in these interactions, laying the foundation for future studies (in vitro and in vivo) to verify their potential to explore their clinical implications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Joyeeta Das
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, India
| | - Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, India
| | - Nikita Chhabra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rakibul Islam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, India
| |
Collapse
|
2
|
Tan J, Xu C, Liu D, Liu S, Liu Y, Zou JY, You S, Deng Z, Li Y, Xie Y, Li X, Yin Y, Li L. Design, Synthesis, and Biological Activity Evaluation of 5-Aryl-cyclopenta[ c]pyridine Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1672-1681. [PMID: 39754580 DOI: 10.1021/acs.jafc.4c08156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[c]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[c]pyridines. The modification of the position-5 of compound 2 was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound 2. Compounds 4g and 4k showed higher anti-TMV activity levels than commercial varieties of ribavirin at concentrations of 500 and 100 μg/mL. In particular, compound 4k, which contained a m-methoxyphenyl substitution, displayed the most potent anti-TMV activity in vivo (inactivation effect 51.1 ± 1.9%, curative effect 50.7 ± 3.6%, protection effect 53.8 ± 2.8% at 500 μg/mL) The toxicological experiments also revealed that compound 4k exhibited low toxicity to zebrafish. Additionally, molecular docking results indicated that access to the benzene ring enhanced the binding affinity of these derivatives for TMV receptor proteins. Furthermore, studies on the insecticidal and fungicidal activities of these derivatives showed that most of the compounds exhibited good larvicidal efficacy against Plutella xylostella and broad-spectrum fungicidal activities. Notably, compound 4i (3,4,5-trifluorophenyl) displayed an outstanding inhibition ratio of 91.9% against Sclerotinia sclerotiorum, 75% against Botrytis cinerea, and 62.5% against Phytophthora infestans at a concentration of 50 μg/mL. These results suggest that 5-aryl-cyclopenta[c]pyridine derivatives could serve as promising candidate agents for antiviral, insecticidal, and fungicidal applications in agricultural production.
Collapse
Affiliation(s)
- Jie Tan
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Changjiang Xu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Dong Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhaoyang Deng
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yuxiang Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu Xie
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xingsheng Li
- Jiangxi Oushi Chemical Co., Ltd, Ji'an 331300, China
| | - Yu Yin
- Jiangxi Oushi Chemical Co., Ltd, Ji'an 331300, China
| | - Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| |
Collapse
|
3
|
Ullah S, Amen Y, Shimizu K. Phytochemical, ethnomedicinal uses and pharmacological profile of Juncus decipiens (Buchenau) Nakai (common rush). Nat Prod Res 2024; 38:3253-3263. [PMID: 37312583 DOI: 10.1080/14786419.2023.2223749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Juncus decipiens is a member of the Juncaceae family and has culinary, medicinal, and decorative properties. It is also used in traditional Chinese Medicines for many years that promotes diuresis for strangury and clears out heart fire. This species has recently gained medicinal attention as a source of phenanthrenes, phenolic compounds, glycerides, flavonoids, and cycloartane triterpenes. This plant was also shown to be active, and researchers explored its antioxidant, anti-inflammatory, antialgal, antibacterial, and psychological behaviour-boosting properties. Preliminary research suggests that this species might be used for skin protection and brain disorders if proper clinical trials are conducted. The ethnomedicinal, phytochemistry, biological potencies, dangers, and scopes of Juncus decipiens have been examined in this respect.
Collapse
Affiliation(s)
- Sana Ullah
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Guo D, He B, Feng F, Lv D, Han T, Chen X. iTRAQ-based proteomic analysis reveals the effect of ribosomal proteins on essential-oil accumulation in Houttuynia cordata Thunb. PeerJ 2024; 12:e17519. [PMID: 38903882 PMCID: PMC11188929 DOI: 10.7717/peerj.17519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Houttuynia cordata Thunb., also known as Yuxingcao in Chinese, occupies a pivotal role in Asian traditional medicine and cuisine. The aerial parts and underground stems of H. cordata exhibit remarkable chemical diversity, particularly in essential oil. Nevertheless, the mechanisms regulating essential oil biosynthesis in H. cordata remain unclear. In this study, we present a quantitative overview of the proteomes across four tissues (flower, stem, leaf, and underground stem) of H. cordata, achieved through the application of the isobaric tag for relative and absolute quantitation (iTRAQ). Our research findings indicate that certain crucial ribosomal proteins and their interactions may significantly impact the production of essential oils in H. cordata. These results offer novel insights into the roles of ribosomal proteins and their associations in essential oil biosynthesis across various organisms of H. cordata.
Collapse
Affiliation(s)
- Dandan Guo
- School of Pharmacy, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Beixuan He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Fei Feng
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
5
|
Zhang W, Bai H, Wang Y, Wang X, Jin R, Guo H, Lai H, Tang Y, Wang Y. Identification of mIDH1 R132C/S280F Inhibitors from Natural Products by Integrated Molecular Docking, Pharmacophore Modeling and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2024; 17:336. [PMID: 38543123 PMCID: PMC10976062 DOI: 10.3390/ph17030336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 11/19/2024] Open
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1) is a common driving factor in acute myeloid leukemia (AML), with the R132 mutation accounting for a high proportion. The U.S. Food and Drug Administration (FDA) approved Ivosidenib, a molecular entity that targets IDH1 with R132 mutations, as a promising therapeutic option for AML with mIDH1 in 2018. It was of concern that the occurrence of disease resistance or recurrence, attributed to the IDH1 R132C/S280F second site mutation, was observed in certain patients treated with Ivosidenib within the same year. Furthermore, it should be noted that most mIDH1 inhibitors demonstrated limited efficacy against mutations at this specific site. Therefore, there is an urgent need to investigate novel inhibitors targeting mIDH1 for combating resistance caused by IDH1 R132C/S280F mutations in AML. This study aimed to identify novel mIDH1 R132C/S280F inhibitors through an integrated strategy of combining virtual screening and dynamics simulations. First, 2000 hits were obtained through structure-based virtual screening of the COCONUT database, and hits with better scores than -10.67 kcal/mol were obtained through molecular docking. A total of 12 potential small molecule inhibitors were identified through pharmacophore modeling screening and Prime MM-GBSA. Dynamics simulations were used to study the binding modes between the positive drug and the first three hits and IDH1 carrying the R132C/S280F mutation. RMSD showed that the four dynamics simulation systems remained stable, and RMSF and Rg showed that the screened molecules have similar local flexibility and tightness to the positive drug. Finally, the lowest energy conformation, hydrogen bond analysis, and free energy decomposition results indicate that in the entire system the key residues LEU120, TRP124, TRP267, and VAL281 mainly contribute van der Waals forces to the interaction, while the key residues VAL276 and CYS379 mainly contribute electrostatic forces.
Collapse
Affiliation(s)
- Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hailong Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Xiaorui Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China;
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | | | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| |
Collapse
|
6
|
Abu Ghazal T, Veres K, Vidács L, Szemerédi N, Spengler G, Berkecz R, Hohmann J. Furanonaphthoquinones, Diterpenes, and Flavonoids from Sweet Marjoram and Investigation of Antimicrobial, Bacterial Efflux, and Biofilm Formation Inhibitory Activities. ACS OMEGA 2023; 8:34816-34825. [PMID: 37780020 PMCID: PMC10536869 DOI: 10.1021/acsomega.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
The chloroform extract of Origanum majorana exhibited high antibacterial and antifungal activities against 12 bacterial and 4 fungal strains; therefore, it was subjected to bioassay-guided isolation to afford six compounds (1-6). The structures were determined via one- and two-dimensional nuclear magnetic spectroscopy and high-resolution electrospray ionization mass spectrometry experiments. The compounds were identified as furanonaphthoquinones [majoranaquinone (1), 2,3-dimethylnaphtho[2,3-b]furan-4,9-dione (2)], diterpenes [19-hydroxyabieta-8,11,13-trien-7-one (3), 13,14-seco-13-oxo-19-hydroxyabieta-8-en-14-al (4)], and flavonoids [sterubin (5) and majoranin (6)]. Compounds 1 and 2 were first obtained from a natural source and compounds 3 and 4 were previously undescribed. Majoranaquinone (1) exhibited a high antibacterial effect against 4 Staphylococcus, 1 Moraxella, and 1 Enterococcus strains (MIC values between 7.8 μM and 1 mM). In the efflux pump inhibition assay, majoranaquinone (1) showed substantial activity in Escherichia coli ATCC 25922 strain. Furthermore, 1 was found to be an effective biofilm formation inhibitor on E. coli ATCC 25922 and E. coli K-12 AG100 bacteria. Our findings proved that bioactivities of majoranaquinone (1) significantly exceed those of the essential oil constituents; therefore, it should also be considered when assessing the antimicrobial effects of O. majorana.
Collapse
Affiliation(s)
| | - Katalin Veres
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| | - Lívia Vidács
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| | - Nikoletta Szemerédi
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary
| | - Gabriella Spengler
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary
| | - Róbert Berkecz
- Institute
of Pharmaceutical Analysis, University of
Szeged, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
- Interdisciplinary
Centre for Natural Products, University
of Szeged, Szeged H-6720, Hungary
- ELKH-USZ
Biologically Active Natural Products Research Group, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
7
|
Mengarda AC, Silva TC, Silva AS, Roquini DB, Fernandes JPS, de Moraes J. Toward anthelmintic drug candidates for toxocariasis: Challenges and recent developments. Eur J Med Chem 2023; 251:115268. [PMID: 36921525 DOI: 10.1016/j.ejmech.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Infections caused by parasitic helminths rank among the most prevalent infections of humans and animals. Toxocariasis, caused by nematodes of the genus Toxocara, is one of the most widespread and economically important zoonotic parasitic infections that humans share with dogs and cats. Despite the completion of the Toxocara canis draft genome project, which has been an important step towards advancing the understanding of this parasite and the search for drug targets, the treatment of toxocariasis has been dependent on a limited set of drugs, necessitating the search for novel anthelmintic agents, specially against Toxocara larvae in tissues. Given that research, development, and innovation are crucial to finding appropriate solutions in the fight against helminthiasis, this paper reviews the progress made in the discovery of anthelmintic drug candidates for toxocariasis. The main compounds reported in the recent years regards on analogues of albendazole, reactive quinone derivatives and natural produts and its analogues. Nanoparticles and formulations were also reviewed. The in vitro and/or in vivo anthelmintic properties of such alternatives are herein discussed as well as the opportunities and challenges for treatment of human toxocariasis. The performed review clarify that the scarcity of validated molecular targets and limited chemical space explored are the main bottlenecks for advancing in the field of anti-Toxocara agents.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - Tais C Silva
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - Aline S Silva
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - Daniel B Roquini
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, campus Diadema, Rua São Nicolau 210, 09913-030, Diadema, SP, Brazil.
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| |
Collapse
|
8
|
Jia B, Zhao L, Liu P, Li M, Tian Z. Limonin ameliorates indomethacin-induced intestinal damage and ulcers through Nrf2/ARE pathway. Immun Inflamm Dis 2023; 11:e787. [PMID: 36840501 PMCID: PMC9958512 DOI: 10.1002/iid3.787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause intestinal damage and ulcers and the incidence is increasing. Limonin plays an important role in the regulation of inflammatory diseases, but it has not been reported in the treatment of intestinal injury and ulcers. METHODS Indomethacin (INDO) induced intestinal injury and ulcer model in rats. The indexes related to intestinal injury were detected. Western blot and molecular docking techniques were used to detect the docking between Limonin and Nrf2. Next, ML385, an inhibitor of Nrf2/ARE signaling pathway, was applied to treat intestinal epithelial IEC-6 cells induced by INDO. And CCK8, Western blot, TUNEL, ELISA, DCFH-DA assay, kits, and immunofluorescence were conducted to detect cell activity, apoptosis, inflammatory response, oxidative stress, and tight junction again. RESULTS INDO can significantly induce intestinal ulcerative lesions in rats. Limonin could improve intestinal ulcerative lesions induced by INDO in rats. Limonin could reduce INDO-induced inflammatory response and oxidative stress in the small intestine of rats, and improve the intestinal barrier dysfunction induced by INDO. Limonin could dock with Nrf2 structure and activate Nrf2/ARE signaling pathway. ML385 could reverse the protective effect of Limonin against INDO-induced cell damage. CONCLUSION Limonin ameliorates INDO-induced intestinal damage and ulcers through Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Bo Jia
- Department of Spleen and Stomach Diseases, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Leyi Zhao
- Qihuang CollegeBeijing University of Chinese MedicineBeijingChina
| | - Pengpeng Liu
- School of PharmacyLiaoning University of Traditional Chinese MedicineDalianChina
| | - Meng Li
- Department of Spleen and Stomach Diseases, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Zhilei Tian
- Department of GastroenterologyAir Force Specialty Medical CenterBeijingChina
| |
Collapse
|
9
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
10
|
Sahoo A, Mandal AK, Kumar M, Dwivedi K, Singh D. Prospective Challenges for Patenting and Clinical Trials of Anticancer Compounds from Natural Products: Coherent Review. Recent Pat Anticancer Drug Discov 2023; 18:470-494. [PMID: 36336805 DOI: 10.2174/1574892818666221104113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Each year, millions of people worldwide are diagnosed with cancer, and more than half of them die. Various conventional therapies for cancer, including chemotherapy and radiotherapy, have extreme side effects. Therefore, to minimize the global burden of lethal diseases like cancer, an effective and novel drug must be discovered. Its patent should be acquired to secure the novel medicament. The pharmacological potential of different natural products has made them popular in the healthcare and pharmaceutical industries. Various anticancer compounds are obtained from natural sources such as plants, microbes, and marine and terrestrial animals, including alkaloids, terpenoids, biophenols, enzymes, glycosides, etc. The term "natural products" is defined as the product of secondary or non-essential metabolic processes produced by living organisms (such as plants, invertebrates, and microorganisms). Although more precise definitions of NPs exist, they do not always meet consensus. Others define NPs as small molecules (excluding biomolecules) that emerge from the metabolic reaction. A handful of effective compounds are used currently from natural or analog moieties, and many more are in clinical studies. There is an excellent need for patenting molecules from natural products as the hit lead molecules are derived, isolated, and synthesized from natural products. However, these naturally occurring products may not be patentable under the law because they come from nature. This review highlights why natural products and compounds are hard to patent, under what patent law criteria we can patent these natural products and compounds, patent procedural guideline sources and why researchers prefer publication rather than a patent. Here, various patent scenarios of natural products and compounds for cancer have been given.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Natural Product Research Laboratory, Thapathali, Kathmandu, Nepal, 44600
| | - Mayank Kumar
- Department of Pharmaceutical Chemistry, Aryakul College of Pharmacy and Research, Natkur, Lucknow, Uttar Pradesh-226002, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| |
Collapse
|
11
|
Basnet S, Marahatha R, Shrestha A, Bhattarai S, Katuwal S, Sharma KR, Marasini BP, Dahal SR, Basnyat RC, Patching SG, Parajuli N. In Vitro and In Silico Studies for the Identification of Potent Metabolites of Some High-Altitude Medicinal Plants from Nepal Inhibiting SARS-CoV-2 Spike Protein. Molecules 2022; 27:8957. [PMID: 36558090 PMCID: PMC9786757 DOI: 10.3390/molecules27248957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Despite ongoing vaccination programs against COVID-19 around the world, cases of infection are still rising with new variants. This infers that an effective antiviral drug against COVID-19 is crucial along with vaccinations to decrease cases. A potential target of such antivirals could be the membrane components of the causative pathogen, SARS-CoV-2, for instance spike (S) protein. In our research, we have deployed in vitro screening of crude extracts of seven ethnomedicinal plants against the spike receptor-binding domain (S1-RBD) of SARS-CoV-2 using an enzyme-linked immunosorbent assay (ELISA). Following encouraging in vitro results for Tinospora cordifolia, in silico studies were conducted for the 14 reported antiviral secondary metabolites isolated from T. cordifolia-a species widely cultivated and used as an antiviral drug in the Himalayan country of Nepal-using Genetic Optimization for Ligand Docking (GOLD), Molecular Operating Environment (MOE), and BIOVIA Discovery Studio. The molecular docking and binding energy study revealed that cordifolioside-A had a higher binding affinity and was the most effective in binding to the competitive site of the spike protein. Molecular dynamics (MD) simulation studies using GROMACS 5.4.1 further assayed the interaction between the potent compound and binding sites of the spike protein. It revealed that cordifolioside-A demonstrated better binding affinity and stability, and resulted in a conformational change in S1-RBD, hence hindering the activities of the protein. In addition, ADMET analysis of the secondary metabolites from T. cordifolia revealed promising pharmacokinetic properties. Our study thus recommends that certain secondary metabolites of T. cordifolia are possible medicinal candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Kathmandu 44600, Nepal
| | - Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
- Department of Chemistry, Oklahoma State University, Still Water, OK 74078, USA
| | - Asmita Shrestha
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | | | - Salik Ram Dahal
- Department of Chemistry, Oklahoma State University, Still Water, OK 74078, USA
- Oakridge National Laboratory, Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Ram Chandra Basnyat
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| |
Collapse
|
12
|
New Perspectives on the Sustainable Employment of Chestnut Shells as Active Ingredient against Oral Mucositis: A First Screening. Int J Mol Sci 2022; 23:ijms232314956. [PMID: 36499282 PMCID: PMC9737246 DOI: 10.3390/ijms232314956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Oral mucositis (OM), a common side effect of oncological treatment, is an oral mucosal disorder characterized by painful ulcerations and increased risk of infection. The use of natural antioxidants to suppress the redox imbalance responsible for the OM condition has emerged as an interesting approach to prevent/treat OM. This study aims to explore the chestnut (Castana sativa) shells as potential active ingredient against OM. Therefore, chestnut shells were extracted at different temperatures (110-180 °C) by Subcritical Water Extraction (SWE), aiming to recover antioxidants. The extracts were also evaluated against microorganisms present in the oral cavity as well as on human oral cell lines (TR146 and HSC3). The highest phenolic content was obtained with the extraction temperature of 110 °C, exhibiting the best antioxidant/antiradical activities and scavenging efficiencies against HOCl (IC50 = 4.47 μg/mL) and ROO• (0.73 μmol TE/mg DW). High concentrations of phenolic acids (e.g., gallic and protocatechuic acids) and flavanoids (catechin, epicatechin and rutin) characterized the phenolic profile. The antimicrobial activity against several oral microorganisms present in the oral cavity during OM, such as Streptococcus, Staphylococcus, Enterococcus, and Escherichia, was demonstrated. Finally, the effects on HSC3 and TR146 cell lines revealed that the extract prepared at 110 °C had the lowest IC50 (1325.03 and 468.15 µg/mL, respectively). This study highlights the potential effects of chestnut shells on OM.
Collapse
|
13
|
Shahid M, Law D, Azfaralariff A, Mackeen MM, Chong TF, Fazry S. Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review. TOXICS 2022; 10:656. [PMID: 36355947 PMCID: PMC9692539 DOI: 10.3390/toxics10110656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Garcinia atriviridis Griff ex T. Anders (G. atroviridis) is one of the well-known species of the genus Garicinia that is native to Thailand, Myanmar, Peninsular Malaysia, and India. G. atroviridis is a perennial medium-sized tree that has a wide range of values, from food to medicinal use. Different parts of G. atroviridis are a great source of bioactive substances that have a positive impact on health. The extracts or bioactive constituents from G. atroviridis have demonstrated various therapeutic functions, including antioxidant, antimicrobial, anticancer, anti-inflammatory, antihyperlipidemic, and anti-diabetic. In this paper, we provide a critical review of G. atroviridis and its bioactive constituents in the prevention and treatment of different diseases, which will provide new insight to explore its putative domains of research.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Ahmad Azfaralariff
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Mukram M. Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Teek Foh Chong
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
14
|
Rafiq S, Hao H, Ijaz M, Raza A. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15091079. [PMID: 36145299 PMCID: PMC9501394 DOI: 10.3390/ph15091079] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata) is a rhizomatous, herbaceous, and perennial plant widely distributed in Asia. It has multiple chemical constituents, such as alkaloids, essential oils, phenolic acids, and flavonoids used against various health problems. The essential oils and flavonoids are the main components of H. cordata that play an essential role in disease treatment and traditional health care. Moreover, the leaves and stems of H. cordata have a long medicinal history in China. In addition, H. cordata is used against several health issues, such as cold, cough, fever, pneumonia, mumps, and tumors, due to its anti-inflammatory, anti-bacterial, anti-viral, anti-oxidant, and anti-tumor effects. It protects organs due to its anti-inflammatory activity. H. cordata regulates immunity by enhancing immune barriers of the oral cavity, vagina, and gastrointestinal tract, and shows broad-spectrum activity against liver, lung, breast, and colon tumors. However, there are some gaps to be filled to understand its pathways and mechanisms. Mechanisms such as its interaction with cells, cell membranes, and various drugs are important. Studies in relation to the blood–brain barrier, lipophilicity, cAMP signaling, and skin permeability, including pharmaceutical effects, will be very useful. This review includes the biological and pharmacological activities of H. cordata based on up-to-date research.
Collapse
Affiliation(s)
- Shahzad Rafiq
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-158-7181-2208
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ahmed Raza
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Effect of Aronia Extract on Collagen Synthesis in Human Skin Cell and Dermal Equivalent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4392256. [PMID: 35979399 PMCID: PMC9377964 DOI: 10.1155/2022/4392256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The regulation of collagen synthesis, which occurs in fibroblasts in the dermal layer, is a key process in dermis regeneration and skin reconstruction. Herein, we investigated whether Aronia melanocarpa extract affects the human skin condition. We focused on type I collagen synthesis using two different types of model systems: a monolayer of cells and a bioprinted 3D dermal equivalent. The Aronia extract showed no cytotoxicity and increased cell proliferation in neonatal human dermal fibroblasts. Treatment with Aronia extract increased the transcription of COL1A1 mRNA in direct proportion to the extract concentration without causing a decrease in COL1A1 mRNA degradation. Additionally, the Aronia extract inhibited the expression of MMP1 and MMP3, and an increase in type I collagen was observed along with a decrease in MMP1 protein. We also fabricated dermal equivalents from type I collagen (the major component of the dermis) and dermal fibroblasts by bioprinting. In the 3D dermis model, the compressive modulus directly affected by collagen synthesis increased in direct proportion to the Aronia extract concentration, and expression levels of MMP1 and MMP3 decreased in exactly inverse proportion to its concentration. The findings that the Aronia extract increases synthesis of type I collagen and decreases MMP1 and MMP3 expression suggest that this extract may be useful for the treatment of damaged or aged skin.
Collapse
|
16
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
17
|
Wu Z, Deng X, Hu Q, Xiao X, Jiang J, Ma X, Wu M. Houttuynia cordata Thunb: An Ethnopharmacological Review. Front Pharmacol 2021; 12:714694. [PMID: 34539401 PMCID: PMC8440972 DOI: 10.3389/fphar.2021.714694] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata; Saururaceae) is widely distributed in Asian regions. It plays an important role in traditional health care and disease treatment, as its aboveground stems and leaves have a long medicinal history in China and are used in the treatment of pneumonia and lung abscess. In clinical treatment, it can usually be combined with other drugs to treat dysentery, cold, fever, and mumps; additionally, H. cordata is an edible plant. This review summarizes detailed information on the phytochemistry and pharmacological effects of H. cordata. By searching the keywords “H. cordata and lung”, “H. cordata and heart”, “H. cordata and liver”, and “H. cordata and inflammation” in PubMed, Web of Science and ScienceDirect, we screened out articles with high correlation in the past ten years, sorted out the research contents, disease models and research methods of the articles, and provided a new perspective on the therapeutic effects of H. cordata. A variety of its chemical constituents are characteristic of medicinal plants, the chemical constituents were isolated from H. cordata, including volatile oils, alkaloids, flavonoids, and phenolic acids. Flavonoids and volatile oils are the main active components. In pharmacological studies, H. cordata showed organ protective activity, such as reducing the release of inflammatory factors to alleviate lung injury. Moreover, H. cordata regulates immunity, enhances the immune barriers of the vagina, oral cavity, and intestinal tract, and combined with the antibacterial and antiviral activity of its extract, effectively reduces pathogen infection. Furthermore, experiments in vivo and in vitro showed significant anti-inflammatory activity, and its chemical derivatives exert potential therapeutic activity against rheumatoid arthritis. Antitumour action is also an important pharmacological activity of H. cordata, and studies have shown that H. cordata has a notable effect on lung tumour, liver tumour, colon tumour, and breast tumour. This review categorizes the biological activities of H. cordata according to modern research papers, and provides insights into disease prevention and treatment of H. cordata.
Collapse
Affiliation(s)
- Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Jiang
- School of Physical Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, China
| |
Collapse
|
18
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
19
|
Muhammad N, Ullah S, Abu-Izneid T, Rauf A, Shehzad O, Atif M, Khan H, Naz H, Herrera-Calderon O, Khalil AA, Uddin MS. The pharmacological basis of Cuscuta reflexa whole plant as an antiemetic agent in pigeons. Toxicol Rep 2020; 7:1305-1310. [PMID: 33024704 PMCID: PMC7529608 DOI: 10.1016/j.toxrep.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 08/13/2020] [Accepted: 09/20/2020] [Indexed: 01/17/2023] Open
Abstract
Cuscuta reflexa has been traditionally used as an antiemetic. Additionally, it has been used in various herbal formulations for the treatment of emesis. So far, there is no scientific evidence of the plant extract as antiemetic. Therefore, this study was intended to assess the antiemetic activity of Juice (JCR), aqueous (CRAE) and methanolic extract (CRME) of C. reflexa in pigeons. Emesis was induced through GIT irritants like ampicillin (300 mg/kg, IM), copper sulphate (100 mg/kg, PO), conc. sodium chloride solution (1600 mg/kg, PO) and cisplatin (5-HT3 receptor stimulator) (6 mg/kg, IM). Dimenhydrinate acted as a positive control (2 mg/kg; IM). JCR [(1 ml/kg (1 %) and 1 ml/kg (2 %)], CRAE, and CRME were administered intramuscularly at different doses (50, 100 and 200 mg/kg) to each pigeon (n = 6). In each group, calculation of total number of jerks & vomiting episodes, and vomiting-weight was carried out to evaluate its antiemetic activity. The JCR exhibited a significant (p < 0.05) antiemetic impact on both the frequency and onset of emesis at 1 ml/kg (2 %) against various emesis mediator, except sodium chloride. Similarly, CRAE and CRME elicited marked dose dependent inhibition both on onset and frequency of emesis with highly significant (p < 0.001) effect at 200 mg/kg. The study reflects that juice, aqueous and methanolic extract of C. reflexa have significant antiemetic potential and possess pharmacological active constituent(s) that interfered with the emetic mediators by acting through GIT irritation and 5-HT3 receptor stimulations. Results of this study provide a scientific background to its traditional antiemetic uses.
Collapse
Affiliation(s)
- Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Sana Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain Campus, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, KPK, Pakistan
| | - Omer Shehzad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Muhammad Atif
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Humira Naz
- Shaheed Benazir Bhutto Women University Peshawar, KPK, Pakistan
| | - Oscar Herrera-Calderon
- Academic Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Md. Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
- Department of Phramacy, Southeast University, Dhaka, Bangladesh
| |
Collapse
|