1
|
Caballero-Gallardo K, Alvarez-Ortega N, Olivero-Verbel J. Cytotoxicity of Nine Medicinal Plants from San Basilio de Palenque (Colombia) on HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:2686. [PMID: 37514300 PMCID: PMC10383961 DOI: 10.3390/plants12142686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The utilization of plants with medicinal properties is deeply rooted in the traditional knowledge of diverse human populations. This study aims to investigate the cytotoxicity of nine plants commonly used by communities in San Basilio de Palenque, Bolivar (Colombia), for managing inflammation-related illnesses. Hydroethanolic extracts from various plant parts such as roots, stems, barks, or leaves were prepared through a process involving drying, powdering, and maceration in an ethanol-water (7:3) solution. The extracts were subsequently freeze-dried and dissolved in DMSO for the bioassays. Cytotoxicity against the human hepatoma HepG2 cell line was assessed using the MTT assay, with extract concentrations ranging from 0 to 500 µg/mL and treatment durations of 24 and 48 h. The total phenolic content of the nine extracts varied from 96.7 to 167.6 mg GAE/g DT. Among them, eight hydroethanolic extracts from Jatropha gossypiifolia L., Piper peltatum L., Malachra alceifolia, Verbesina turbacensis, Ricinus communis, Desmodium incanum, and Dolichandra unguis-cati showed low toxicity (IC50 > 500 µg/mL, 24 h) against HepG2 cells. On the other hand, the extracts of Aristolochia odoratissima L. (IC50 = 95.7 µg/mL) and Picramnia latifolia (IC50 = 128.9 µg/mL) demonstrated the highest cytotoxicity against the HepG2 cell line, displaying a modest selectivity index when compared to the HEKn cell line after 48 h of treatment. These findings suggest that medicinal plants from San Basilio de Palenque, particularly Picramnia latifolia and Aristolochia odoratissima, have potential activity against cancer cells, highlighting their potential for further research and development.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
2
|
Bekhouche M, Benyammi R, Slaoui MK, Krimat S, Paris C, Khelifi L, Morsli A. Flavonoid profile and antioxidant properties of Algerian common yew (Taxus baccata L.). CLINICAL PHYTOSCIENCE 2022. [DOI: 10.1186/s40816-022-00348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Background
In humans, various diseases are associated with the accumulation of free radicals. The antioxidants can scavenge free radicals and reduce their impact; thus, the search for effective natural antioxidants of plant origin is indispensable. The present study aims to determine, for the first time, the flavonoid compounds profile and to investigate the free radical scavenging and antioxidant properties of the methanolic extract of Taxus baccata L. from Algeria.
Methods
The determination of the flavonoid compound profile of the methanolic extract of Taxus baccata L. was established using high-performance liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI–MS/MS). The total flavonoid content (TFC) was performed according to the aluminum chloride colorimetric method, while the free radical scavenging and antioxidant activities were carried out using three methods, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical assay and ferric reducing antioxidant power (FRAP) Assay.
Results
A total of 26 compounds including flavon-3-ols, flavanonols, flavones, flavonols and bioflavonoids were characterized and identifiedusing HPLC–DAD–ESI–MS/MS analysis, five were reported for the first time such as taxifolin, apigenin, apigenin 7-O-glucoside, isorhamnetin 3-O-rutinoside and robustaflavone. The plant extract exhibited high total flavonoid content (TFC = 204.26 ± 6.02 mg RE/g dry extract) which corresponded to its strong radical scavenging activities [(DPPH IC50 = 35.31 ± 0.29 µg/ml and ABTS IC50 = 8.27 ± 0.52 µg/ml)] as compared to the synthetic antioxidant BHT [(DPPH IC50 = 78.96 ± 5.70 µg/ml and ABTS IC50 = 13.56 ± 0.06 µg/ml)]. However, the methanolic extract of T. baccata showed the lowest ferric reducing ability as compared to the positive controls (BHT, BHA, ascorbic acid, trolox and quercetin).
Conclusion
Our results imply that the Taxus Baccata L. might be a potential source for the isolation of natural antioxidant compounds.
Collapse
|
3
|
Caballero-Gallardo K, Quintero-Rincón P, Stashenko EE, Olivero-Verbel J. Photoprotective Agents Obtained from Aromatic Plants Grown in Colombia: Total Phenolic Content, Antioxidant Activity, and Assessment of Cytotoxic Potential in Cancer Cell Lines of Cymbopogon flexuosus L. and Tagetes lucida Cav. Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131693. [PMID: 35807645 PMCID: PMC9269283 DOI: 10.3390/plants11131693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/02/2023]
Abstract
Photoprotective agents obtained from plants provide benefits for the health of the skin. The present study aims to assess the total phenolic content (TPC) and in vitro UV-protective properties of twelve essential oils (EOs) from plants grown in Colombia and to evaluate the antioxidant and cytotoxic potential of two species identified as photoprotective potentials: Cymbopogon flexuosus and Tagetes lucida. The composition of EOs was studied by GC/MS. The cytotoxicity of both EOs was examined using an MTT assay, and an H2-DCFDA probe was employed to estimate the intracellular production of ROS in HepG2 and Calu-1 cells. Major constituents (≥10%) were neral, geranial, geranyl acetate in C. flexuosus and estragole in T. lucida. The TPC for C. flexuosus and T. lucida EOs were ≥10 mg GAE/g of byproduct. Both EOs showed photoprotective properties (SPFin vitro: 13−14), and long-wavelength UVA protection (λc > 370 nm). HepG2 and Calu-1 cells exposed to C. flexuosus exhibited antiproliferative activity (˂50%) at 125 µg/mL, while T. lucida was at 250 and 500 µg/mL. The IC50 values for C. flexuosus were 75 and 100 µg/mL in HepG2 and Calu-1 cells, respectively, whereas those for T. lucida were >250 µg/mL. These EOs achieved significant inhibitory effects (between 15.6 and 40.4%) against H2O2-induced oxidative stress. The results showed that EO compounds recognized as antioxidants could counteract the effects elicited by H2O2.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (K.C.-G.); (P.Q.-R.)
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Patricia Quintero-Rincón
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (K.C.-G.); (P.Q.-R.)
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Elena E. Stashenko
- Center for Chromatography and Mass Spectrometry CROM-MASS, Research Center for Biomolecules CIBIMOL, School of Chemistry, Universidad Industrial de Santander, Bucaramanga 680006, Colombia;
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (K.C.-G.); (P.Q.-R.)
- Correspondence:
| |
Collapse
|
4
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
5
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|